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The stabilizability problem

We consider the control system ẏ = f(y, u) where y in R
n is the state and u in R

m is the
control. We assume that f(0, 0) = 0.

Problem

Does there exists u : Rn → R
m vanishing at 0 such that 0 ∈ R

n is (locally) asymptotically
stable for ẏ = f(y, u(y))? (If the answer is yes, one says that the control system is locally
asymptotically stabilizable.)

Remark

The map u : y ∈ R
n 7→ R

m is called a feedback (or feedback law). The dynamical system
ẏ = f(y, u(y)) is called the closed loop system.



Regularity of the feedback laws

The regularity of y 7→ u(y) is an important point. With u continuous, asymptotic stability
implies the existence of a smooth strict Lyapunov function and, therefore, one has robustness
with respect to small actuator errors as well as small measurement errors.
If u is discontinuous, one needs to define the notion of solution of the closed loop system
ẏ = f(y, u(y)) and study carefully the robustness of the closed loop system. In this talk we
assume that the feedback laws are continuous.



Controllability

Let T > 0. Given two states y0 and y1, does there exist a control t ∈ [0, T ] 7→ u(t) which steers
the control system from y0 to y1, i.e. such that

(

ẏ = f(y, u(t)), y(0) = y0
)

⇒
(

y(T ) = y1
)

?(1)

If the answer is yes, the control system is said to be controllable on [0, T ].



Controllability of linear control systems

The control system is

(1) ẏ = Ay +Bu, y ∈ R
n, u ∈ R

m,

where A ∈ R
n×n and B ∈ R

n×m.

Theorem (Kalman’s rank condition (1960))

The linear control system ẏ = Ay +Bu is controllable on [0, T ] if and only if

(2) Span {AiBu;u ∈ R
m, i ∈ {0, 1, . . . , n− 1}} = R

n.



Small-time local controllability (STLC)

We assume that (ye, ue) is an equilibrium, i.e., f(ye, ue) = 0. Many possible choices for natural
definitions of local controllability. The most popular one is Small-Time Local Controllability
(STLC): the state remains close to ye, the control remains close to ue and the time is small.
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We consider the control system ẏ = f(y, u) and assume that f(ye, ue) = 0. How to check the
small-time local controllability at (ye, ue)? We use Nirenberg’s advice to depressed researchers:



The linear test

We consider the control system ẏ = f(y, u) and assume that f(ye, ue) = 0. How to check the
small-time local controllability at (ye, ue)? We use Nirenberg’s advice to depressed researchers:

Have you tried to linearize?

The linearized control system at (ye, ue) is the linear control system ẏ = Ay +Bu with

A :=
∂f

∂y
(ye, ue), B :=

∂f

∂u
(ye, ue).(1)

If the linearized control system ẏ = Ay + Bu is controllable, then ẏ = f(y, u) is small-time
locally controllable at (ye, ue).
What to do if the linearized control system at (ye, ue) is not controllable? Answer: use iterated
Lie brackets.



Lie bracket and iterated Lie brackets

Definition (Lie bracket)

[X,Y ](y) := Y ′(y)X(y) −X ′(y)Y (y).(1)

Iterated Lie brackets: [X, [X,Y ]], [[Y,X], [X, [X,Y ]]] etc. For simplicity, from now on we assume
that

f(y, u) = f0(y) +

m
∑

i=1

uifi(y) with f0(0) = 0.(2)

Drift: f0. Driftless control systems: f0 = 0. We denote by Lie {f0, f1, . . . , fm} the smallest
vector subspace E of C∞(Rn;Rn) containing f0, f1,..., fm which is stable for the Lie bracket:
if X ∈ E and Y ∈ E , then [X,Y ] ∈ E .



The Lie algebra rank condition and STLC

One says that the control system ẏ = f0(y) +
∑m

i=1
uifi(y) satisfies the Lie algebra rank

condition at 0 ∈ R
n if

{

h(0); h ∈ Lie {f0, f1, . . . , fm}
}

= R
n.(1)

One has the following theorems.

Theorem (R. Hermann (1963) and T. Nagano (1966))

If the fi’s are analytic in a neighborhood of 0 ∈ R
n and if the control system

ẏ = f0(y) +
∑m

i=1
uifi(y) is small-time locally controllable at (0, 0) ∈ R

n × R
m, then this

control system satisfies the Lie algebra rank condition at 0 ∈ R
n.

Theorem (P. Rashevski (1938), W.-L. Chow (1939))

If ẏ =
∑m

i=1
uifi(y) satisfies the Lie algebra rank condition at 0 ∈ R

n, then it is small-time
locally controllable at (0, 0) ∈ R

n × R
m.
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Stabilizability of linear controllable systems

Notations. For a matrixM ∈ R
n×n, PM denotes the characteristic polynomial ofM : PM (z) :=

det (zI −M).
Let us denote by Pn the set of polynomials of degree n in z such that the coefficients are all real
numbers and such that the coefficient of zn is 1. One has the following theorem.

Theorem (Pole shifting theorem, M. Wonham (1967))

Let us assume that the linear control system ẏ = Ay +Bu is controllable. Then

(1)
{

PA+BK ; K ∈ R
m×n

}

= Pn.

Corollary

If the linear control system ẏ = Ay +Bu is controllable, there exists a linear feedback
y 7→ u(y) = Ky such that 0 ∈ R

n is (globally) asymptotically stable for the closed loop system
ẏ = Ay +Bu(y).



Application to nonlinear controllable systems

We assume that f(0, 0) = 0. Let us consider the linearized control system ẏ = Ay + Bu of
ẏ = f(y, u) at (0, 0) ∈ R

n × R
m:

(1) A :=
∂f

∂y
(0, 0), B :=

∂f

∂u
(0, 0).

Let us assume that the linearized control system ẏ = Ay + Bu is controllable. Then, by the
pole-shifting theorem, there exists K ∈ R

m×n such that σ(A + BK) = {−1}. Let us consider
the feedback u(y) = Ky. Then, if X(y) := f(y, u(y)), X ′(0) = A+BK. Hence, by Lyapunov’s
first theorem, 0 ∈ R

n is locally asymptotically stable for the closed loop system ẏ = f(y, u(y)).
In conclusion, if the linearized control system is controllable, then

The control system ẏ = f(y, u) is small-time locally controllable at (0, 0),

The control system ẏ = f(y, u) is locally asymptotically stabilizable (at the equilibrium
(0, 0)).



An example: Cart-inverted pendulum
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Cart-inverted pendulum: The equations

Let

y1 := ξ, y2 := θ, y3 := ξ̇, y4 := θ̇, u := F,(1)

The dynamics of the cart-inverted pendulum system is ẏ = f(y, u), with y = (y1, y2, y3, y4)
tr

and

f :=

















y3
y4

mly24 sin(y2)−mg sin(y2) cos(y2)

M +m sin2(y2)
+

u

M +m sin2(y2)
−mly24 sin(y2) cos(y2) + (M +m)g sin(y2)

(M +m sin2(y2))l
−

u cos(y2)

(M +m sin2(y2))l

















.(2)



Stabilization of the cart-inverted pendulum

For the cart-inverted pendulum, the linearized control system around (0, 0) ∈ R
4 × R is ẏ =

Ay +Bu with

A =













0 0 1 0
0 0 0 1

0 −
mg

M
0 0

0
(M +m)g

Ml
0 0













, B =
1

Ml









0
0
l

−1









.(1)

One easily checks that this linearized control system satisfies the Kalman rank condition and
therefore is controllable. Hence the cart-inverted pendulum is small-time locally controllable at
(0, 0) ∈ R

4 × R and is locally asymptotically stabilizable (at the equilibrium (0, 0)).
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Obstruction to the stabilizability

In 1979, H. Sussmann gave the first example of a controllable system which cannot be stabilized
by means of continuous feedback laws.

Theorem (R. Brockett (1983))

If the control system ẏ = f(y, u) is locally asymptotically stabilizable then

(B) the image by f of every neighborhood of (0, 0) ∈ R
n ×R

m is a neighborhood of 0 ∈ R
n.



The baby stroller



The baby stroller: The dynamic equations of motion
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The baby stroller: The dynamic equations of motion

y1

y2

y3

ẏ1 = u1 cos(y3), ẏ2 = u1 sin(y3), ẏ3 = u2, n = 3, m = 2.(1)



The baby stroller system: Controllability

ẏ1 = u1 cos(y3), ẏ2 = u1 sin(y3), ẏ3 = u2, n = 3, m = 2.(1)

Note that the linearized control system around (0, 0) ∈ R
3 × R

2 is

ẏ1 = u1, ẏ2 = 0, ẏ3 = u2,(2)

which is not controllable. The baby stroller control system can be written as ẏ = u1f1(y) +
u2f2(y), with

f1(y) = (cos(y3), sin(y3), 0)
tr, f2(y) = (0, 0, 1)tr.(3)

One has

[f1, f2](y) = (sin(y3),− cos(y3), 0)
tr.(4)

Hence f1(0), f2(0) and [f1, f2](0) all together span all of R3. This implies the small-time local
controllability of the baby stroller at (0, 0) ∈ R

3 × R
2.



The baby stroller and the Brockett condition

As we just saw the baby stroller control system

ẏ1 = u1 cos(y3), ẏ2 = u1 sin(y3), ẏ3 = u2(1)

is small-time locally controllable at (0, 0) ∈ R
3 ×R

2. However the Brockett condition (B) does
not hold for the baby stroller control system: try to solve

(2) u1 cos(y3) = 0, u1 sin(y3) = δ, u2 = 0.

Hence the baby stroller control system cannot be locally asymptotically stabilized.







Control of the attitude of the satellite: Notations

η = (φ, θ, ψ)tr ∈ R
3 are the Euler angles of a frame attached to the satellite representing

rotations with respect to a fixed reference frame,

ω = (ω1, ω2, ω3)
tr ∈ R

3 is the angular velocity of the frame attached to the satellite with
respect to the reference frame, expressed in the frame attached to the satellite,

J is the inertia matrix of the satellite,

The b1, . . . , bm are m fixed independent vectors in R
3 and uibi ∈ R

3, 1 6 i 6 m, are the
torques applied to the satellite, the ui ∈ R, 1 6 i 6 m, are the controls.



Control of the attitude of the satellite

ω̇ = J−1S(ω)Jω +

m
∑

i=1

uiJ
−1bi, η̇ = A(η)ω,(1)

with S(ω)y := y ∧ ω. One has A(0) = Id. The vectors b1, . . . , bm are independent. If m = 3,
the linearized control system around the equilibrium (0, 0) ∈ R

6 × R
3 is controllable and the

control system is locally asymptotically stabilizable. We now turn to the case where m = 2. One
easily sees that (B) never holds. However, if

Span {b1, b2, S(ω)J
−1ω; ω ∈ Span {b1, b2}} = R

3,(2)

then, by a general sufficient condition for local controllability proved by H. Sussmann in 1987,
the control system (1) is small-time locally controllable at (0, 0) ∈ R

6 ×R
2. However, if m < 3,

(1) does not satisfy the Brockett condition (B).





The slider
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Equations for the slider

The slider is actuated by two propellers producing forces FL and FR. The sum of these two
forces is directly linked to the acceleration of the vehicle, whereas the difference acts on the
angular dynamics. Let us denote τ1 = FL+FR and τ2 = FR−FL, the dynamics can be written:

(1)







mξ̈1 = cos(ψ)τ1,

mξ̈2 = sin(ψ)τ1,

Iψ̈ = τ2,

where m is the slider mass and I is the moment of inertia of the slider about its center of mass.



Equations for the slider in the form ẏ = f(y, u)

Let

{

y1 = ξ1, y2 = ξ̇1, y3 = ξ2, y4 = ξ̇2,

y5 = ψ, y6 = ψ̇, u1 =
τ1

m
, u2 =

τ2

I
.

(1)

Then the dynamics of the slider can be written in the form ẏ = f(y, u) with

(2) f(y, u) := (y2, u1 cos(y5), y4, u1 sin(y5), y6, u2)
tr.



Slider: Controllability and Brockett’s condition

One has the following theorem.

Theorem

The slider control system is small-time locally controllable at the equilibrium (0, 0) ∈ R
6 × R

2

but does not satisfy the Brockett condition.

For the Brockett condition, consider the equation

(1) (y2, u1 cos(y5), y4, u1 sin(y5), y6, u2)
tr = (0, 0, 0, δ, 0, 0)tr .
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Time-varying feedback laws

Strategy to overcome the obstruction to stabilization: Use time-varying feedback laws.
Instead of u(y), use u(t, y). Note that asymptotic stability for time-varying feedback laws is also
robust (there exists again a strict Lyapunov function). Pioneer works : n = 1: E. Sontag and H.
Sussmann (1980); the baby stroller control system: C. Samson (1992).
Let us give some general results with this strategy.



Time-varying feedback laws for driftless control systems

Theorem (JMC (1992))

Assume that ẏ =
∑m

i=1
uifi(y) satisfies the Lie algebra rank condition at 0 ∈ R

n. Then, for
every T > 0, there exists u in C∞(R× R

n;Rm) such that

u(t, 0) = 0, ∀t ∈ R,(1)

u(t+ T, y) = u(t, y), ∀y ∈ R
n, ∀t ∈ R,(2)

0 is asymptotically stable for ẏ =

m
∑

i=1

ui(t, y)fi(y).(3)

Construction of explicit stabilizing time-varying feedback laws for various driftless controllable
systems (including the baby stroller): J.-B. Pomet (1992), C. Canudas de Wit and O. J. Sørdalen
(1992), ..., A. Zuyev (2016), J.-P. Guilleron, B. d’Andréa-Novel, JMC and W. Perruquetti (2016).



Sketch of proof

Sketch of the proof of the theorem. Let T > 0. Assume that there exists ū in C∞(R ×
R
n;Rm) T -periodic with time, vanishing for y = 0, and such that, if ẏ = f(y, ū(t, y)), then

(i) y(T ) = y(0),

(ii) If y(0) 6= 0, then the linearized control system around the trajectory
t ∈ [0, T ] 7→ (y(t), ū(t, y(t))) is controllable on [0, T ].

Using (i) and (ii) one easily sees that one can construct a “small" feedback v in C∞(R×R
n;Rm)

T -periodic with time and vanishing for y = 0 such that, if ẏ = f(y, (ū+ v)(t, y)) and y(0) 6= 0,
then

(1) |y(T )| < |y(0)|,

which implies that 0 is globally asymptotically stable for ẏ = f(y, (ū+ v)(t, y)).



Construction of ū

In order to get (i), one just imposes on ū the condition

ū(t, y) = −ū(T − t, y), ∀(t, y) ∈ R× R
n,(1)

which implies that y(t) = y(T − t), ∀t ∈ [0, T ], for every solution of ẏ = f(y, u(t, y)), and
therefore gives y(0) = y(T ). Finally, one proves that (ii) holds for “many" ū’s (this is the
difficult part of the proof).



T t

y

˙̄y = f(ȳ, ū(t, ȳ))
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A method to avoid Lie brackets: The return method (JMC (1992))
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ȳ(t)

y0

y1

B0 B1



A method to avoid Lie brackets: The return method (JMC (1992))

y

t
0

T
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A method to avoid Lie brackets: The return method (JMC (1992))
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The return method: An example in finite dimension

We go back to the baby stroller control system

ẏ1 = u1 cos(y3), ẏ2 = u1 sin(y3), ẏ3 = u2.(1)

For every ū : [0, T ] → R
2 such that, for every t in [0, T ], ū(T − t) = −ū(t), every solution

ȳ : [0, T ] → R
3 of

˙̄y1 = ū1 cos(ȳ3), ˙̄y2 = ū1 sin(ȳ3), ˙̄y3 = ū2,(2)

satisfies ȳ(0) = ȳ(T ). The linearized control system around (ȳ, ū) is

{

ẏ1 = −ū1y3 sin(ȳ3) + u1 cos(ȳ3), ẏ2 = ū1y3 cos(ȳ3) + u1 sin(ȳ3),
ẏ3 = u2,

(3)

which is controllable if (and only if) ū 6≡ 0. We have got the controllability of the baby stroller
system without using Lie brackets. We have only used controllability results for linear control
systems.



Return method: References

Stabilization of driftless systems in finite dimension: JMC (1992),

Euler equations of incompressible fluids: JMC (1993,1996), O. Glass (1997,2000), O.
Glass-Th. Horsin (2010, 2012, 2016),

Control of driftless systems in finite dimension: E.D. Sontag (1995),

Navier-Stokes equations: JMC (1996), JMC and A. Fursikov (1996), A. Fursikov and O.
Imanuvilov (1999), S. Guerrero, O. Imanuvilov and J.-P. Puel (2006), JMC and S.
Guerrero (2009), M. Chapouly (2009), JMC and P. Lissy (2014),

Saint-Venant equations: JMC (2002),

Vlasov Poisson: O. Glass (2003),



Return method: References (continued)

Isentropic Euler equations: O. Glass (2006),

Schrödinger equation: K. Beauchard (2005), K. Beauchard and JMC (2006),

Hyperbolic/wave equations: JMC, O. Glass and Z. Wang (2009), F. Alabau, JMC and G.
Olive (2017), C. Zhang (2017),

Ensemble controllability of Bloch equations: K. Beauchard, JMC and P. Rouchon (2010),

Parabolic systems: JMC, S. Guerrero and L. Rosier (2010), JMC and J.-Ph. Guilleron
(2017),

Uniform controllability of scalar conservation laws in the vanishing viscosity limit: M.
Léautaud (2010).



Small-Time local controllability stabilization in finite time

Theorem (JMC (1995))

“Most of the known sufficient conditions” (see JMC SICON 1995 for a precise statement) for
small-time local controllability imply the asymptotic stabilizability by means of time-varying
feedback laws if n 6∈ {1, 2, 3}.

Applications: Underactuated satellite (Explicit stabilizing feedback laws: G. Walsh, R. Mont-
gomery and S. Sastry (1994); P. Morin, C. Samson, J.-B. Pomet and Z.-P. Jiang (1995), JMC
and E.-Y. Keraï (1996); P. Morin and C. Samson (1997)), slider (Explicit stabilizing feedback
laws: B. d’Andréa-Novel, JMC and W. Perruquetti (2016)).



Tools to design feedback laws (commercial break)

JMC, Control and nonlinearity, Mathematical
Surveys and Monographs, 136, 2007, 427 p.
Pdf file freely available from my web page.
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The Saint-Venant equations

The index j is for the j-th pool.
Conservation of mass:

(1) Hjt + (HjVj)x = 0,

with, as usual, ft := ∂tf and fx := ∂xf .
Conservation of momentum:

(2) Vjt +

(

gHj +
V 2
j

2

)

x

= 0.

Flow rate: Qj = HjVj .



Boundary conditions

Underflow (sluice)

u

Overflow (spillway)

u



General 1-D hyperbolic systems

(1) yt +A(y)yx +B(y)y = 0, y ∈ R
n, x ∈ [0, 1], t ∈ [0,+∞),

• Assumptions on A

A(0) = diag (λ1, λ2, . . . , λn),(2)

λi > 0, ∀i ∈ {1, . . . ,m}, λi < 0, ∀i ∈ {m+ 1, . . . , n},(3)

λi 6= λj, ∀(i, j) ∈ {1, . . . , n}2 such that i 6= j.(4)



• Boundary conditions on y:

(1)

(

y+(t, 0)
y−(t, 1)

)

= G

(

y+(t, 1)
y−(t, 0)

)

, t ∈ [0,+∞),

where

(i) y+ ∈ R
m and y− ∈ R

n−m are defined by

y =

(

y+
y−

)

,

(ii) the map G : Rn → R
n vanishes at 0.

Remark

In the applications, part of G is fixed, part of G is our choice. This last part is the feedback law
that we have to design.



Some examples of real life applications

1 navigable rivers,

2 irrigation channels,

3 heat exchangers,

4 tubular plug flow chemical reactors,

5 gas pipe lines,

6 chromatography,

7 road traffic...



New commercial break

Progress in Nonlinear Differential Equations  
and Their Applications

Subseries in Control
88

Stability and 
Boundary 
Stabilization  
of 1-D Hyperbolic 
Systems

Georges Bastin
Jean-Michel Coron

G. Bastin and JMC, Stability and Boundary
Stabilization of 1-D Hyperbolic Systems, 2016,
PNLDE Subseries in Control, Birkhaüser.



Some results

Sufficient conditions for asymptotic stability for the Ck-norm, k ∈ N \ {0}) (Tie Hu Qin
(1985), Yan Chun Zhao (1986), Tatsien Li (1994), G. Bastin and JMC (2014), A. Hayat
(2017), A. Hayat and P. Shang (2017).

Sufficient conditions for asymptotic stability for the H l-norm, l ∈ N \ {0, 1}). This
condition is optimal for n ∈ {1, 2, 3, 4, 5} and B = 0. (JMC-G. Bastin-B. d’Andréa-Novel
(2008), G. Bastin and JMC (2016, 2017)).

The asymptotic stability for the H l-norm, l ∈ N \ {0, 1}), does not imply the asymptotic
stability for the C1-norm (JMC and Hoai-Minh Nguyen (2014)).

Real life application to the rivers La Sambre and La Meuse in Belgium (B. d’Andréa-Novel,
G. Bastin, JMC, V. Dos Santos, J. de Halleux, L. Moens and C. Prieur (2003-2017)).

However plenty of questions remain open, in particular in the case B 6= 0.
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