

'Spatio-temporal patterns in ecology'

Spatial patterns in phytoplankton Lotte Sewalt

Pattern-formation in Semiarid Vegetation Sarah lams

Stripe Patterns in Vegetation Eric Siero

Patterns in Musselbeds

Patterns in animal communities

Coherent spatial patterns in animal communities are found

Our model ecosystem: mussel beds

Patterns do not arise from activation/inhibition or chemotaxis

Laboratory experiments

Similar patterns are observed in the lab

from Van de Koppel et al. (Science 2008)

Photo Aniek van der Berg

Movement speed of mussels depends on the local density

Laboratory experiments

Similar patterns are observed in the lab

from Van de Koppel et al. (Science 2008)

Photo Aniek van der Berg

Movement speed of mussels depends on the local density

Aim: derive model

Based on density-dependent movement derive model

m(x,t) local density of mussels; v(m) speed of mussels

Mussel pattern formation is a fast process: independent of birth or death

So, total mass of mussels conserved

$$\int_{domain} m(s,t) ds = \int_{domain} m(s,0) ds = \text{ constant}$$

and, generic conservation equation is satisfied

$$\frac{\partial m}{\partial t} = -\nabla \cdot J = -\nabla \cdot (J_v + J_{nl})$$

J net flux of mussels

 J_v flux related to speed v

 J_{nl} flux related to nonlocal interactions

The model

Population of organisms performing random walk in 2 dimensions with speed v(m) and turning rate $\tau(m)$ [Schnitzer]

$$J_{v} = -\frac{v(m)}{2\tau(m)} \nabla \left(v(m)m\right)$$

Long range interactions

$$J_{nl} = \kappa \nabla(\Delta m)$$

for some $\kappa > 0$

Then

$$\frac{\partial m}{\partial t} = \nabla \left[f(m) \nabla m - \kappa \nabla (\Delta m) \right],$$

with

$$f(m) = \frac{v}{2\tau} \left(v + m \frac{dv}{dm} \right)$$

Surprise: a Cahn-Hilliard equation

The model can be written as the Cahn-Hilliard equation

$$\frac{\partial m}{\partial t} = \nabla^2 \left[F(m) - \kappa \nabla^2 m \right], \text{ for some } \kappa > 0$$

with

$$F'(m) = f(m) = \frac{v}{2\tau} \left(v + m \frac{dv}{dm} \right)$$

The CH was proposed in 1958 to model phase separation in binary alloys

Phase separation

The Cahn-Hilliard equation $\frac{\partial m}{\partial t} = \nabla^2 \left[F(m) - \kappa \nabla^2 m \right]$ was proposed in 1958 to model phase separation in binary alloys

CH can be derived from energy functional

$$E(m) = \int_{\Omega} F(m) + \frac{1}{2} \kappa |\nabla m|^2 dx$$

In the standard setting, W(m) is a symmetric double-well potential (W' = F)In standard setting, W(m) is a

symmetric double-well

potential
$$(W' = F)$$

$$\text{potential} \ \, \big(W'=F\big) \\ W(m) = \frac{1}{4}(m^2-1)^2,$$

$$F(m) = W'(m) = m^3 - m.$$

Phase separation

The Cahn-Hilliard equation $\frac{\partial m}{\partial t} = \nabla^2 \left[F(m) - \kappa \nabla^2 m \right]$ was proposed in 1958 to model phase separation in binary alloys CH can be derived from energy functional

$$E(m) = \int_{\Omega} F(m) + \frac{1}{2} \kappa |\nabla m|^2 dx$$

In the standard setting, W(m) is a symmetric double-well potential (W'=F)

In standard setting, W(m) is a

symmetric double-well

potential
$$(W' = F)$$

potential
$$(W' = F)$$

 $W(m) = \frac{1}{4}(m^2 - 1)^2$,

$$F(m) = W'(m) = m^3 - m.$$

Generates patterns consisting of

2 phases
$$m_+ = +1$$
 and $m_- = -1$
= minima of $W(m)$ ($W' = F$)

More general: CH-type patterns are formed when W has 2 minima

Back to mussels

In mussels the CH equation does not come from energy conservation

$$\frac{\partial m}{\partial t} = \nabla^2 \left[F(m) - \kappa \nabla^2 m \right],$$

with

$$F'(m) = f(m) = \frac{v}{2\tau} \left(v + m \frac{dv}{dm} \right) = W''(m)$$

Patterns when f has **one negative minimum**

Fit data:

$$v(m) = am^2 + bm + c,$$

a, b and c can be obtained from data

Comparison

Increasing total mass of mussels in domain

Coarsening: wavelength of pattern grows in time

Experiments versus model

Discussion

NAS

Phase separation explains a new class of selforganized spatial patterns in ecological systems

Quan-Xing Liu^{a,b,1}, Arjen Doelman^c, Vivi Rottschäfer^c, Monique de Jager^a, Peter M. J. Herman^a, Max Rietkerk^d, and Johan van de Koppel^{a,e}

^aDepartment of Spatial Ecology, Royal Netherlands Institute for Sea Research, 4400 AC Yerseke, The Netherlands; ^bAquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands; ^cMathematical Institute, Leiden University, 2300 RA Leiden, The Netherlands; ^dDepartment of Environmental Sciences, Copernicus Institute, Utrecht University, 3508 TC Utrecht, The Netherlands; and ^cCommunity and Conservation Ecology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC Groningen, The Netherlands

Model can also be used for other animal populations;
 density dependent movement also observed in grazing herds (elk)

Future/Discussion

- Long term dynamics (Turing patterns): add growth and mortality
- Couple to variation and availability of food resources

Future/Discussion

- Long term dynamics (Turing patterns): add growth and mortality
- Couple to variation and availability of food resources

 Model assumes Brownian motion but animals perform a Lévy walk when their density is low

