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Introduction to the Discrete Allen-Cahn Equation

Allen-Cahn Equation: fundamental model for interface motion
during solidification in two-phase materials

ur = Au + M (u),

It cannot explain the pinning of fronts, i.e., fronts which get
stuck and stop moving as time increases

Spatially discrete Allen-Cahn Equation
Cahn, Chow, Grant, Mallet-Paret, Van Vleck 1995-6

Somewhat intractable, requires special nonlinearities

Our work: develop bifurcation tools for ,
rigorously prove statements about the nature of solutions.



Parameters and Equilibria

Spatially Discrete Allen-Cahn

Ug = Ugg1 — 2uUk + Ug—1 + A (uk)
Boundary Conditions:
Our Nonlinearity: f(u) = (1 — uv?) (u— p)

Parameters:
e Fixed mass € (—1,1) (mostly u = 0)
e Bifurcation parameter \, 1/v/\ = interaction length

Mosaic solutions: For large A
@ exactly 3" equilibria uy =~ 0,+1 — cause pinning

@ 2" equilibria are stable, uy ~ +1



Mosaic solutions for n = 10

Binary notation: Denote each stable mosaic solution in binary
eg. 7=1-2041-2% 4 1.22 shown for A\ = 300 blue

Grain: Consecutive set with no change in sign. Solution 7 has
minimum grain size 3 and number of grains 2.
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Mosaic solutions for n = 10

Bifurcation: Since there are no stable equilibria for A ~ 0
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Mosaic solutions for n = 10

Bifurcation: Since there are no stable equilibria for A ~ 0
Validation: 960 saddle-node bifurcations (out of 1022)
We can actually validate the entire branch A — oo

Many of the rest are pitchfork bifurcations, not necessarily at
the bifurcation point, but we cannot validate the entire branch
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Mosaic solutions for n = 10

Color coding: At bifurcation
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Robustness of Grains for n = 10

Grant showed that for a different special nonlinearity,
grain size is related to robustness

Color indicates grain size
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Validation of Robustness of Grains for n = 10

Theorem (Grain size and robustness)

Let u denote a stable mosaic solution of the discrete
Allen-Cahn Equation with =0 and n = 10, and let \o(u)
denote the parameter value of the associated saddle-node
bifurcation.

@ If \g < 3, then the size of the smallest grain is greater
than 1 and the number of grains is equal to 2 or 3.

@ If A\g > 3.5, then the size of the smallest grain is equal to
1 and the number of grains is at least 3.

In addition to this theorem, we make a number of observations
on robustness questions.



Validation Corrects Numerical Errors: Branch 40
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Validation Corrects Numerical Errors: Branch 144
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Mosaic Solutions for n = 100

Our validation method is extremely flexible — with almost no
changes, we can validate for a 100-dimensional system with a
new nonlinearity: f(u) = sin(7u)/m.
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The constructive implicit function theorem

In Banach spaces, we seek a zeroset of G: P x X — Y.
Assume

Q@ ||G(a*, x*)|| small (cf. equal to zero)

@ ||DxG(a*, x*)|| bounded by a known value (cf. exists)

© A Lipschitz condition on D, G

@ A Lipschitz condition on D, G
then inside an explicit (Jq,0x) box there is a unique smooth
x () such that

G(a, x(a)) = 0.

dq

x(ar)

a a’

Proof via the contraction mapping principle



Extended to Multiple Boxes

In order to perform continuation efficiently, we have extended
to parallelograms, and to a chain, validating the whole curve.
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We apply it to continue at saddle-node bifurcation points.
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But How Can We Validate the Entire Branch?(1)

Our numerical validation also can be used analytically

For pn =0, uv* € {-1,0,1}" fixed.
Consider a 0.1-neighborhood of u*.

G(u) = %Au b (), F(u) = diag(u— %)

A=1 o0 . . . 0o | implies [|[A] <4




But How Can We Validate the Entire Branch?(2)

Small residual for G:

1

G(u) = XAU + f(u)
Al <4 and f(u*) = 0, and therefore
4
G| < —
6wl < 5



But How Can We Validate the Entire Branch?(2)

Linear operator bound Assume that A is a bounded linear
operator, and B is one-to-one and onto. If

Il=BAl<p <1  and 1B < p2

then A~1 exists and

1A~ < 22—
1

—P1



But How Can We Validate the Entire Branch?(3)

Inverse bound on derivative:

1 1
DyG(u") = YA+ diag(f'(u*)) = A+ B!

f'(u) = 1 — 3u? implies ||B|| < 1

I — B D,G(u")|| = H/ABA B diag(f'(u H H H_A

Using the linear operator bound

1

IPuG () < 775




But How Can We Validate the Entire Branch?(4)

Lipschitz derivative:

1Dy G (u) = Dy G(u)]|

IN

N u = w7

max
€]<[[u*[|+0.1

< 6(140.1)lu— o



But How Can We Validate the Entire Branch?(5)

Specific bounds in constructive implicit function theorem:

105.
()\0564;\2<1 and %<017

which hold for all A > 113.459

This gives a uniqueness radius of ~ 0.075

For all A > 114, there is a unique mosaic solution within 0.075
of u*, and no bifurcations can occur.



Summary

@ Constructive implicit function theorem allows us to design
a flexible validation technique for validating branches of
solutions with saddle-node bifurcation

@ For the discrete Allen-Cahn model, this provides a flexible
method that can be adapted to related situations with
little fuss. We produced results that could not have been
done analytically, and detected errors from naive
numerical methods.

e E.S. and Thomas Wanner, Validated Bifurcation Methods
and Applications to Lattice Dynamical Systems, SIADS,
15-3 (2016) 1690-1733, DOI: 10.1137/16M1061011.

@ Developed techniques for equivariant pitchfork
bifurcations. J-P Lessard, E.S., and T. Wanner, Rigorous
continuation of bifurcation points in the diblock
copolymer equation, submitted.



