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Introduction to the Discrete Allen-Cahn Equation

Allen-Cahn Equation: fundamental model for interface motion
during solidification in two-phase materials

ut = ∆u + λf (u), ux(t, 0) = ux(t, 1) = 0

It cannot explain the pinning of fronts, i.e., fronts which get
stuck and stop moving as time increases

Spatially discrete Allen-Cahn Equation
Cahn, Chow, Grant, Mallet-Paret, Van Vleck 1995-6

Somewhat intractable, requires special nonlinearities

Our work: develop bifurcation tools for computer validation,
rigorously prove statements about the nature of solutions.



Parameters and Equilibria

Spatially Discrete Allen-Cahn

u̇k = uk+1 − 2uk + uk−1 + λf (uk)

Boundary Conditions: u0 = u1 , un+1 = un

Our Nonlinearity: f (u) =
(
1− u2

)
(u − µ)

Parameters:

Fixed mass µ ∈ (−1, 1) (mostly µ = 0)

Bifurcation parameter λ, 1/
√
λ = interaction length

Mosaic solutions: For large λ

exactly 3n equilibria uk ≈ 0,±1 – cause pinning

2n equilibria are stable, uk ≈ ±1



Mosaic solutions for n = 10

Binary notation: Denote each stable mosaic solution in binary
e.g. 7 = 1 · 20 + 1 · 21 + 1 · 22 shown for λ = 300 blue

Grain: Consecutive set with no change in sign. Solution 7 has
minimum grain size 3 and number of grains 2.
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Mosaic solutions for n = 10

Bifurcation: Since there are no stable equilibria for λ ≈ 0
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Mosaic solutions for n = 10

Bifurcation: Since there are no stable equilibria for λ ≈ 0

Validation: 960 saddle-node bifurcations (out of 1022)

We can actually validate the entire branch λ→∞

Many of the rest are pitchfork bifurcations, not necessarily at
the bifurcation point, but we cannot validate the entire branch
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Mosaic solutions for n = 10

Color coding: At bifurcation Unstable equilibrium at λ = 300
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Robustness of Grains for n = 10

Grant showed that for a different special nonlinearity,
grain size is related to robustness

Color indicates grain size
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Validation of Robustness of Grains for n = 10

Theorem (Grain size and robustness)

Let u denote a stable mosaic solution of the discrete
Allen-Cahn Equation with µ = 0 and n = 10, and let λ0(u)
denote the parameter value of the associated saddle-node
bifurcation.

If λ0 < 3, then the size of the smallest grain is greater
than 1 and the number of grains is equal to 2 or 3.

If λ0 > 3.5, then the size of the smallest grain is equal to
1 and the number of grains is at least 3.

In addition to this theorem, we make a number of observations
on robustness questions.



Validation Corrects Numerical Errors: Branch 40
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Validation Corrects Numerical Errors: Branch 144

7.5 8 8.5 9 9.5
λ

2.74

2.75

2.76

2.77

2.78

2.79

2.8

2.81

2.82

||u
|| 2

7.5 8 8.5 9 9.5
λ

2.74

2.75

2.76

2.77

2.78

2.79

2.8

2.81

2.82

||u
|| 2

What AUTO thinks it sees What validation proves

7.5 8 8.5 9 9.5
λ

2.74

2.75

2.76

2.77

2.78

2.79

2.8

2.81

2.82

||u
|| 2

7.428 7.429 7.43 7.431 7.432
λ

2.7678

2.768

2.7682

2.7684

2.7686

2.7688

2.769

What multiple validations prove What it really does



Mosaic Solutions for n = 100

Our validation method is extremely flexible – with almost no
changes, we can validate for a 100-dimensional system with a
new nonlinearity: f (u) = sin(πu)/π.
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The constructive implicit function theorem

In Banach spaces, we seek a zero set of G : P × X → Y .
Assume

1 ‖G (α∗, x∗)‖ small (cf. equal to zero)
2 ‖DxG (α∗, x∗)‖ bounded by a known value (cf. exists)
3 A Lipschitz condition on DxG
4 A Lipschitz condition on DαG

then inside an explicit (δα, δx) box there is a unique smooth
x(α) such that

G (α, x(α)) = 0.

x

α

x(  )

α *α
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α
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Proof via the contraction mapping principle



Extended to Multiple Boxes

In order to perform continuation efficiently, we have extended
to parallelograms, and to a chain, validating the whole curve.
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We apply it to continue at saddle-node bifurcation points.
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But How Can We Validate the Entire Branch?(1)

Our numerical validation also can be used analytically

For µ = 0, u∗ ∈ {−1, 0, 1}n fixed.
Consider a 0.1-neighborhood of u∗.

G (u) =
1

λ
Au + f (u) , f (u) = diag(u − u3)

A =



−1 1 0 · · · 0

1 −2 1
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1 −2 1

0 · · · 0 1 −1


implies ‖A‖ ≤ 4



But How Can We Validate the Entire Branch?(2)

Small residual for G :

G (u) =
1

λ
Au + f (u)

‖A‖ ≤ 4 and f (u∗) = 0, and therefore

‖G (u∗)‖ ≤ 4

λ



But How Can We Validate the Entire Branch?(2)

Linear operator bound Assume that A is a bounded linear
operator, and B is one-to-one and onto. If

‖I − BA‖ ≤ ρ1 < 1 and ‖B‖ ≤ ρ2

then A−1 exists and

‖A−1‖ ≤ ρ2
1− ρ1



But How Can We Validate the Entire Branch?(3)

Inverse bound on derivative:

DuG (u∗) =
1

λ
A + diag(f ′(u∗)) :=

1

λ
A + B−1

f ′(u) = 1− 3u2 implies ‖B‖ ≤ 1

‖I − B DuG (u∗)‖ =

∥∥∥∥I − 1

λ
BA− B diag(f ′(u∗))

∥∥∥∥ =

∥∥∥∥BAλ
∥∥∥∥ ≤ 4

λ

Using the linear operator bound

‖(DuG (u∗))−1‖ < 1

1− 4/λ



But How Can We Validate the Entire Branch?(4)

Lipschitz derivative:

‖DuG (u)− DuG (u∗)‖ ≤ max
|ξ|≤‖u∗‖+0.1

|f ′′(ξ)| ‖u − u∗‖

≤ 6(1 + 0.1) ‖u − u∗‖



But How Can We Validate the Entire Branch?(5)

Specific bounds in constructive implicit function theorem:

105.6λ

(λ− 4)2
< 1 and

8

λ− 4
< 0.1,

which hold for all λ > 113.459

This gives a uniqueness radius of ≈ 0.075

For all λ > 114, there is a unique mosaic solution within 0.075
of u∗, and no bifurcations can occur.



Summary

Constructive implicit function theorem allows us to design
a flexible validation technique for validating branches of
solutions with saddle-node bifurcation

For the discrete Allen-Cahn model, this provides a flexible
method that can be adapted to related situations with
little fuss. We produced results that could not have been
done analytically, and detected errors from naive
numerical methods.

E.S. and Thomas Wanner, Validated Bifurcation Methods
and Applications to Lattice Dynamical Systems, SIADS,
15-3 (2016) 1690-1733, DOI: 10.1137/16M1061011.

Developed techniques for equivariant pitchfork
bifurcations. J-P Lessard, E.S., and T. Wanner, Rigorous
continuation of bifurcation points in the diblock
copolymer equation, submitted.


