Validated Saddle-Node Bifurcations and Applications to Lattice Dynamical Systems

Evelyn Sander

Introduction to the Discrete Allen-Cahn Equation

Allen-Cahn Equation: fundamental model for interface motion during solidification in two-phase materials

$$
u_{t}=\Delta u+\lambda f(u), u_{x}(t, 0)=u_{x}(t, 1)=0
$$

It cannot explain the pinning of fronts, i.e., fronts which get stuck and stop moving as time increases

Spatially discrete Allen-Cahn Equation Cahn, Chow, Grant, Mallet-Paret, Van Vleck 1995-6

Somewhat intractable, requires special nonlinearities
Our work: develop bifurcation tools for computer validation, rigorously prove statements about the nature of solutions.

Parameters and Equilibria

Spatially Discrete Allen-Cahn

$$
\dot{u}_{k}=u_{k+1}-2 u_{k}+u_{k-1}+\lambda f\left(u_{k}\right)
$$

Boundary Conditions: $u_{0}=u_{1}, u_{n+1}=u_{n}$
Our Nonlinearity: $f(u)=\left(1-u^{2}\right)(u-\mu)$
Parameters:

- Fixed mass $\mu \in(-1,1)$ (mostly $\mu=0$)
- Bifurcation parameter $\lambda, 1 / \sqrt{\lambda}=$ interaction length

Mosaic solutions: For large λ

- exactly 3^{n} equilibria $u_{k} \approx 0, \pm 1$ - cause pinning
- 2^{n} equilibria are stable, $u_{k} \approx \pm 1$

Mosaic solutions for $n=10$

Binary notation: Denote each stable mosaic solution in binary e.g. $7=1 \cdot 2^{0}+1 \cdot 2^{1}+1 \cdot 2^{2}$ shown for $\lambda=300$ blue

Grain: Consecutive set with no change in sign. Solution 7 has minimum grain size 3 and number of grains 2 .

Mosaic solutions for $n=10$

Bifurcation: Since there are no stable equilibria for $\lambda \approx 0$

Mosaic solutions for $n=10$

Bifurcation: Since there are no stable equilibria for $\lambda \approx 0$
Validation: 960 saddle-node bifurcations (out of 1022)
We can actually validate the entire branch $\lambda \rightarrow \infty$
Many of the rest are pitchfork bifurcations, not necessarily at the bifurcation point, but we cannot validate the entire branch

Mosaic solutions for $n=10$

Color coding: At bifurcation Unstable equilibrium at $\lambda=300$

Robustness of Grains for $n=10$

Grant showed that for a different special nonlinearity, grain size is related to robustness

Color indicates grain size

Validation of Robustness of Grains for $n=10$

Theorem (Grain size and robustness)

Let u denote a stable mosaic solution of the discrete Allen-Cahn Equation with $\mu=0$ and $n=10$, and let $\lambda_{0}(u)$ denote the parameter value of the associated saddle-node bifurcation.

- If $\lambda_{0}<3$, then the size of the smallest grain is greater than 1 and the number of grains is equal to 2 or 3 .
- If $\lambda_{0}>3.5$, then the size of the smallest grain is equal to 1 and the number of grains is at least 3 .

In addition to this theorem, we make a number of observations on robustness questions.

Validation Corrects Numerical Errors: Branch 40

What AUTO thinks it sees

What multiple validations prove

What validation proves

What it really does

Validation Corrects Numerical Errors: Branch 144

What AUTO thinks it sees

What multiple validations prove

What validation proves

What it really does

Mosaic Solutions for $n=100$

Our validation method is extremely flexible - with almost no changes, we can validate for a 100-dimensional system with a new nonlinearity: $f(u)=\sin (\pi u) / \pi$.

The constructive implicit function theorem

In Banach spaces, we seek a zero set of $G: P \times X \rightarrow Y$.
Assume
(1) $\left\|G\left(\alpha^{*}, x^{*}\right)\right\|$ small (cf. equal to zero)
(2) $\left\|D_{x} G\left(\alpha^{*}, x^{*}\right)\right\|$ bounded by a known value (cf. exists)
(3) A Lipschitz condition on $D_{x} G$
(4) A Lipschitz condition on $D_{\alpha} G$
then inside an explicit ($\delta_{\alpha}, \delta_{x}$) box there is a unique smooth $x(\alpha)$ such that

Proof via the contraction mapping principle

Extended to Multiple Boxes

In order to perform continuation efficiently, we have extended to parallelograms, and to a chain, validating the whole curve.

We apply it to continue at saddle-node bifurcation points.

But How Can We Validate the Entire Branch?(1)

Our numerical validation also can be used analytically
For $\mu=0, u^{*} \in\{-1,0,1\}^{n}$ fixed.
Consider a 0.1-neighborhood of u^{*}.

$$
\begin{gathered}
G(u)=\frac{1}{\lambda} A u+f(u), f(u)=\operatorname{diag}\left(u-u^{3}\right) \\
A=\left[\begin{array}{ccccc}
-1 & 1 & 0 & \cdots & 0 \\
1 & -2 & 1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & 1 & -2 & 1 \\
0 & \cdots & 0 & 1 & -1
\end{array}\right] \text { implies }\|A\| \leq 4
\end{gathered}
$$

But How Can We Validate the Entire Branch?(2)

Small residual for G :

$$
G(u)=\frac{1}{\lambda} A u+f(u)
$$

$\|A\| \leq 4$ and $f\left(u^{*}\right)=0$, and therefore

$$
\left\|G\left(u^{*}\right)\right\| \leq \frac{4}{\lambda}
$$

But How Can We Validate the Entire Branch?(2)

Linear operator bound Assume that A is a bounded linear operator, and B is one-to-one and onto. If

$$
\|I-B A\| \leq \rho_{1}<1 \quad \text { and } \quad\|B\| \leq \rho_{2}
$$

then A^{-1} exists and

$$
\left\|A^{-1}\right\| \leq \frac{\rho_{2}}{1-\rho_{1}}
$$

But How Can We Validate the Entire Branch?(3)

Inverse bound on derivative:

$$
\begin{gathered}
D_{u} G\left(u^{*}\right)=\frac{1}{\lambda} A+\operatorname{diag}\left(f^{\prime}\left(u^{*}\right)\right):=\frac{1}{\lambda} A+B^{-1} \\
f^{\prime}(u)=1-3 u^{2} \text { implies }\|B\| \leq 1 \\
\left\|I-B D_{u} G\left(u^{*}\right)\right\|=\left\|I-\frac{1}{\lambda} B A-B \operatorname{diag}\left(f^{\prime}\left(u^{*}\right)\right)\right\|=\left\|\frac{B A}{\lambda}\right\| \leq \frac{4}{\lambda}
\end{gathered}
$$

Using the linear operator bound

$$
\left\|\left(D_{u} G\left(u^{*}\right)\right)^{-1}\right\|<\frac{1}{1-4 / \lambda}
$$

But How Can We Validate the Entire Branch?(4)

Lipschitz derivative:

$$
\begin{aligned}
\left\|D_{u} G(u)-D_{u} G\left(u^{*}\right)\right\| & \leq \max _{|\xi| \leq\left\|u^{*}\right\|+0.1}\left|f^{\prime \prime}(\xi)\right|\left\|u-u^{*}\right\| \\
& \leq 6(1+0.1)\left\|u-u^{*}\right\|
\end{aligned}
$$

But How Can We Validate the Entire Branch?(5)

Specific bounds in constructive implicit function theorem:

$$
\frac{105.6 \lambda}{(\lambda-4)^{2}}<1 \quad \text { and } \quad \frac{8}{\lambda-4}<0.1
$$

which hold for all $\lambda>113.459$

This gives a uniqueness radius of ≈ 0.075
For all $\lambda>114$, there is a unique mosaic solution within 0.075 of u^{*}, and no bifurcations can occur.

Summary

- Constructive implicit function theorem allows us to design a flexible validation technique for validating branches of solutions with saddle-node bifurcation
- For the discrete Allen-Cahn model, this provides a flexible method that can be adapted to related situations with little fuss. We produced results that could not have been done analytically, and detected errors from naive numerical methods.
- E.S. and Thomas Wanner, Validated Bifurcation Methods and Applications to Lattice Dynamical Systems, SIADS, 15-3 (2016) 1690-1733, DOI: 10.1137/16M1061011.
- Developed techniques for equivariant pitchfork bifurcations. J-P Lessard, E.S., and T. Wanner, Rigorous continuation of bifurcation points in the diblock copolymer equation, submitted.

