

Assessing Secondary Contaminants and Discolored Water in Drinking Water

David Simons, P.E., Office of Water, Water Supply Division

Why All the Excitement about Secondary Contaminants?

What They Are:

- Aluminum
- Chloride
- Color
- Copper
- Corrosivity
- Fluoride
- Foaming agents
- Hydrogen sulfide
- Iron
- Manganese
- Odor
- pH
- Silver
- Sulfate
- Total Dissolved Solids
- Zinc

Why All the Excitement about Secondary Contaminants? ₂

Common Questions:

- The Secondary Constituent Levels (SCLs) aren't health-based, right?
- What's wrong with drinking water that is over the SCLs?
- Does TCEQ enforce the SCLs?

Why All the Excitement about Secondary Contaminants? ₃

- TCEQ is obligated by law to monitor the SCLs.
- The federal rules have this to say about secondaries (40 CFR § 143.1):

“...The regulations in this subpart control contaminants in drinking water that primarily affect the aesthetic qualities relating to the public acceptance of drinking water...”

- The public generally doesn't trust or accept water in which they can taste, smell, or see secondary contaminants.

Why All the Excitement about Secondary Contaminants? 4

- Trends over the last 10 years
 - Significant increase in issuances of violations
 - Increasing legislative interest in response to constituent complaints

What Can Be Done about Secondary Contaminants?

- Let's focus on the most common* secondary contaminant issues:
 1. Total Dissolved Solids (TDS) > 1,000 mg/L (Saltiness)
 2. Color – usually from iron and/or manganese

*Common to public water systems in Texas

Part 1: Total Dissolved Solids

- How do concentrations $> 1,000 \text{ mg/L}$ occur?
 - Groundwater
 - Aquifer chemistry
 - Depth
 - Saltwater intrusion
 - Surface water
 - Characteristics of formations where runoff occurs
 - Evaporation
 - Human activities
- Treatment of high TDS water increasing

How is TDS treated?

- Reverse Osmosis (RO)
 - Dissolved salt particles are so small that these are the only membranes that can exclude them.
- Downsides to RO
 - Disposal of a concentrated waste stream
 - Cost

<https://www.membracon.co.uk/wp-content/uploads/2023/04/Reverse-Osmosis-Membrane.jpeg>

Part 2: Color from Iron and Manganese

Iron Chemistry

Iron:

- Elemental Symbol: Fe (Latin: ferrum)
- Atomic Mass: 55.845
- Most Common Oxidation States (Valences) in Drinking Water: +2 and +3
- Most common element on earth by mass

Manganese Chemistry

Manganese:

- Elemental Symbol: Mn
- Atomic Mass: 54.938
- Most Common Oxidation States (Valences) in Drinking Water: +2, +3 and +4
- Not found as a free element in nature but in minerals in combination with iron

Oxidation Reactions

Oxidation States

Iron (Fe):

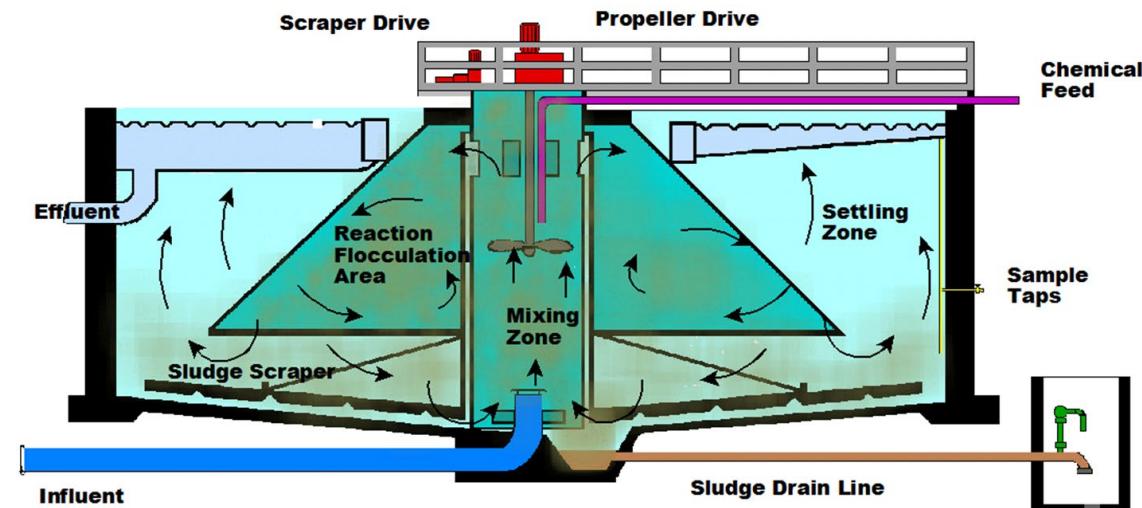
- Fe^{+2} Ferrous (soluble, colorless)
- Fe^{+3} Ferric (insoluble) – ferric oxides (Fe_2O_3)

Manganese (Mn):

- Mn^{+2} Manganese (soluble, colorless)
- Mn^{+3} Manganese (insoluble)
- Mn^{+4} (insoluble) – manganese dioxide (MnO_2)

What's So Tricky about Fe and Mn?

- The insoluble forms of Fe (Fe^{+3}) and Mn (Mn^{+3} and Mn^{+4}) cause color at sufficiently high concentrations
 - Generally, around the SCL concentrations
 - Iron SCL = 0.3 mg/L
 - Mn SCL = 0.05 mg/L
 - However, concentrations lower than the SCL can cause color.



What's So Tricky about Fe and Mn? ₂

- It is difficult to maintain Fe and Mn in their soluble (clear) forms.
- Water systems are required to apply and maintain a disinfectant (oxidant) concentration in plants and through distribution.

Common Fe and Mn Treatment Strategies

- Removal (Gold Standard)
 1. Pretreatment
 2. Coagulation
 3. Flocculation
 4. Sedimentation
 5. Filtration

Removal

- For removal, soluble iron and manganese must be changed to their insoluble forms.

For example:

- Soluble (Fe^{2+}) to Insoluble (Fe^{3+})
- Soluble (Mn^{2+}) to Insoluble (Mn^{4+})
- This may be done using pretreatment (chemical and non-chemical means)

Chemical/Non-Chemical Pretreatment

Chemical Oxidants:

- Chlorine
- Permanganates (Sodium/Potassium)
- Chlorine dioxide
- Ozone

Chemicals for pH Adjustment

- Caustic
- Lime

Non-Chemical:

- Aeration

Chemical Oxidants

Chemical oxidants can be used to either:

- Oxidize soluble iron and manganese to their insoluble forms;
- Recharge/restore adsorption properties of filter media (e.g. KMnO_4 for greensand and chlorine for microsand); or
- Both

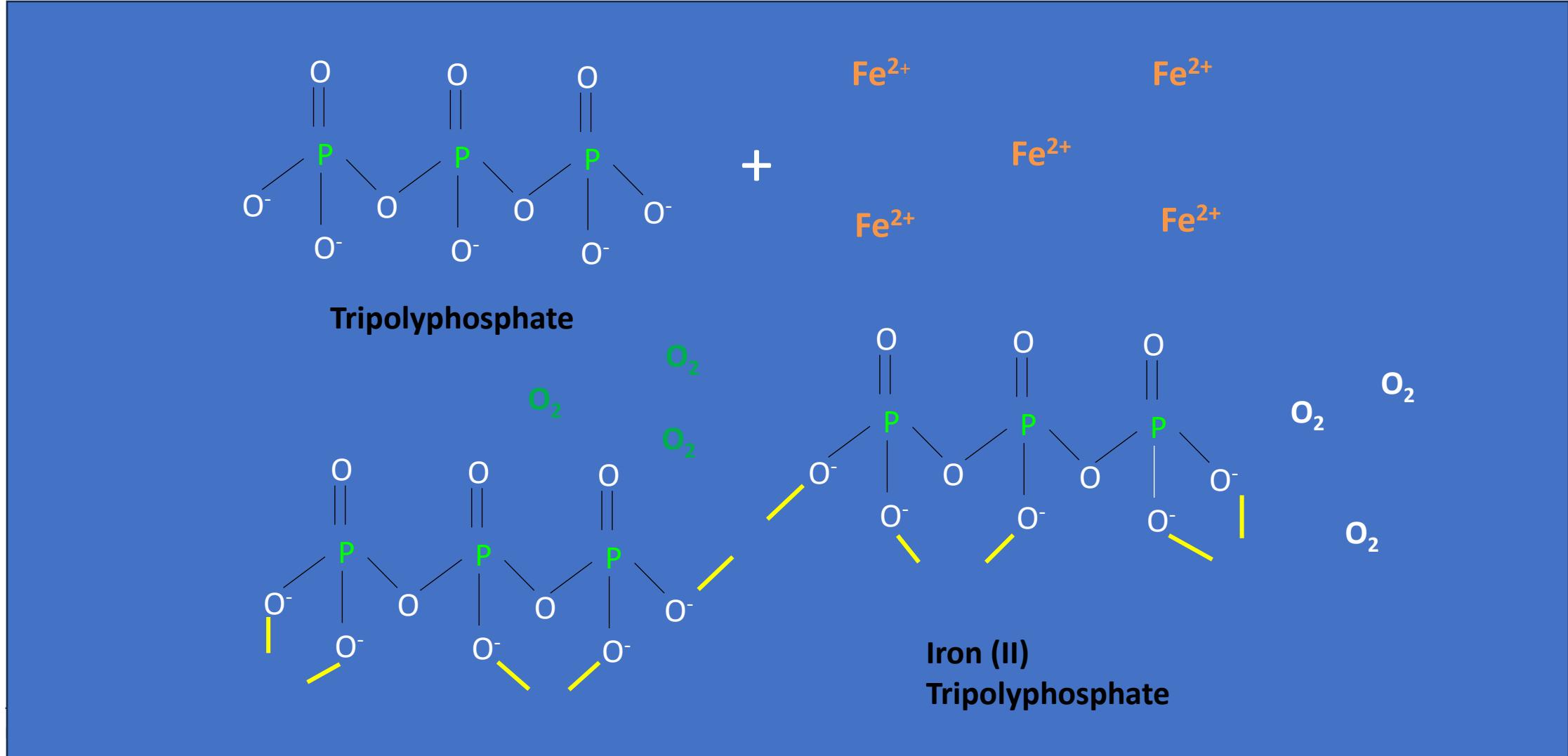
pH Adjustment

pH adjustment can be used to:

- Improve coagulation
- Optimize oxidation of iron (lower pH) and manganese (higher pH)
- Achieve optimum pH for coagulants and organic polymers
- Achieve optimum pH for hydrogen sulfide removal and oxidation of iron and manganese
- Facilitate softening

Aeration

Aeration can be used to:


- Oxidize soluble iron (not so practical for oxidizing soluble manganese)
- Help remove demand such as hydrogen sulfide
- Increase pH by removing carbon dioxide

Removal: Bottom Line

- Relatively costly
- Reliable

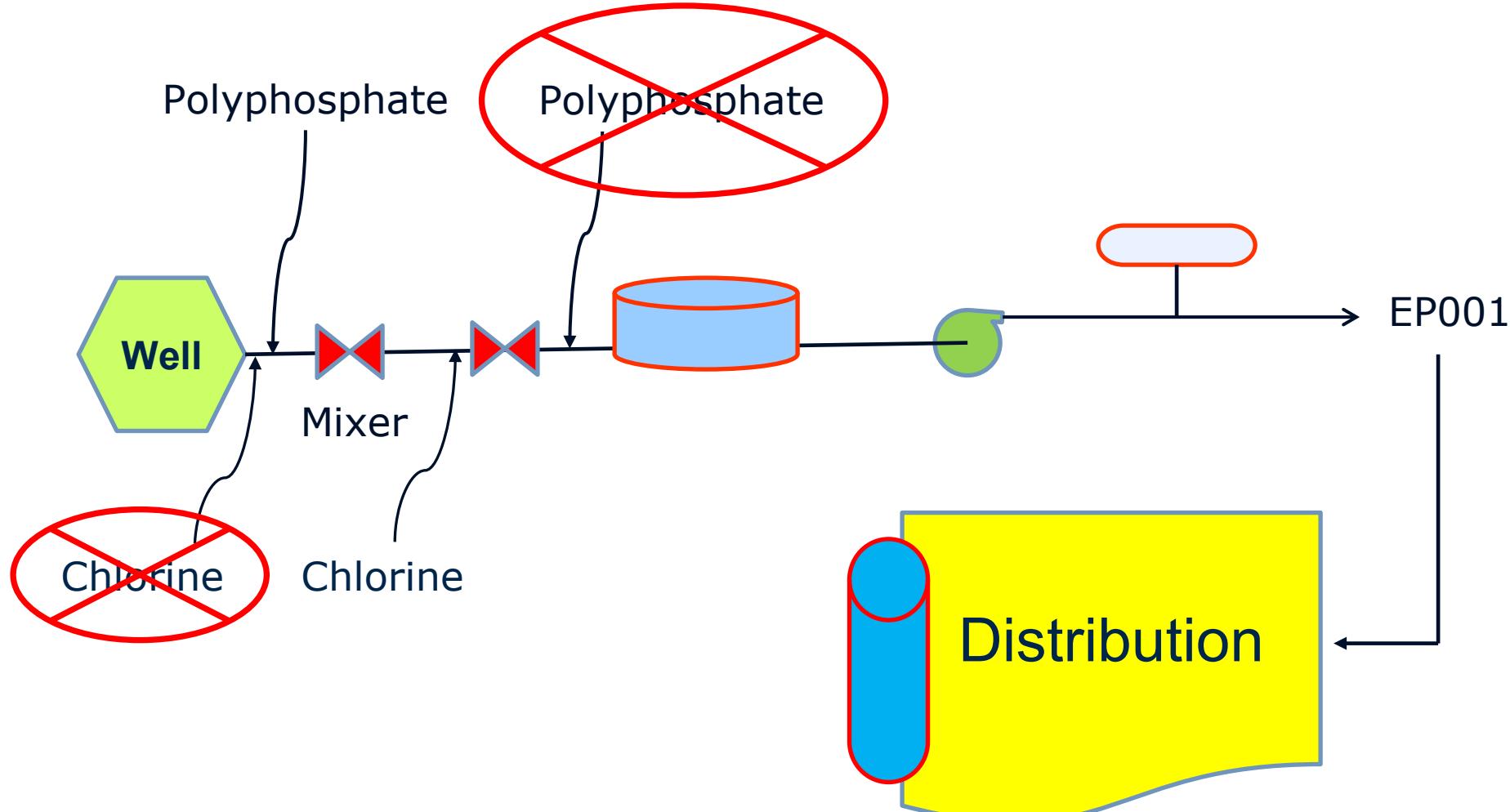
Common Fe and Mn Treatment Strategies

Sequestration with Polyphosphate

Sequestration: Chemical Effectiveness

Depends on many factors:

- Adequate mixing
 - Need adequate chemical dispersion before adding oxidant
- Location of feeding point
 - Should be as close to the raw source as possibly and always before the chlorine feed
- Temperature
 - Water temperatures above 120°F can lead to the dissociation of sequestering complexes (e.g. water heaters)


Sequestration: Chemical Effectiveness ₂

- pH
 - Each sequestering agent has an optimum pH range and it's highly recommended to follow it.
- Water age
 - Sequestering agents are usually reliable for approximately 3 to 5 days depending on temperature.

Sequestration: Chemical Effectiveness 3

- Hardness (Calcium Ca^{2+} and Magnesium Mg^{2+})
 - Moderate to high water hardness significantly limits the effectiveness of polyphosphates.
- Dosage control (normally 1-3 ppm) unless high hardness
- Concentration of iron and manganese (when combined concentrations are above 1 ppm, sequestering not usually effective).

Where to Feed Sequestering Agent?

Sequestration: Bottom Line

- Many complicating factors
- No guarantee of success
- It's popular because it's cheaper than removal
 - WHEN IT WORKS
- Removal is more reliable (Gold Standard)

Fe and Mn: Other Important Topics (But We Don't Have Time to Cover)

- Assessing treatment effectiveness
 - Special sampling techniques required to determine what fractions are soluble and insoluble.
 - Critical sampling points
- Troubleshooting

Questions?

David Simons, P.E.

- david.simons@tceq.texas.gov
- 512-239-3154

Join us at the Public Drinking Water (PDW)
Conference on in August 2025!

- Email me to suggest potential topics.