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Spiral Wave Patterns
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Chemical Oscillations
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Dictyostelium discoideum (mold)
[Ball, 1994]
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Goal: Understand stability of spiral wave patterns
Mechanisms responsible for period-doubling instabilities on bounded domains



Period-Doubling Instabil it ies in Spiral Waves
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Line Defects in Chemical Oscillations Alternans in Cardiac Arrhythmias
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Period-Doubling Instabil it ies in Spiral Waves

Outline:

§ Mathematical and spectral properties

§ Drivers of instabilities

§ Shape of alternans eigenfunction



Planar Spiral Waves

Rigidly-rotating spirals:
§ SE(2) symmetry on the plane
§ Stationary solutions in rotating, polar frame

(r,�) ! (r, ) = (r,�� !t)

0 = D�r, U⇤ + !@ U⇤ + F (U⇤)

§ Asymptotic 1D (periodic) wave trains

U⇤(r, ) ! U1(r +  ) = U1(⇠), r ! 1
U1(⇠) = U1(⇠ + 2⇡), ⇠ 2 R

0 = 2D@⇠⇠U1 + !@⇠U1 + F (U1)
1D Wave Train
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Anatomy of a Bounded Spiral

“Infinite” Domain

Far-field

Core

cg > 0



“Infinite” Domain

Far-field

Core

No-flux Boundary

Boundary 
Sink

Boundary Sink

Anatomy of a Bounded Spiral

Neumann 
Boundary

t = 0

t = T
Space

T
im

e

x = 0

40 1 2 3 Space x = 0

cg > 0



LV = D�V + !V + FU (U⇤)V

Linearized Operator:

⌃ (L) = {� 2 C : L� � is not boundedly invertible}
Spectrum:

Unbounded Domain:
§ Point Spectrum (core)
§ Essential Spectrum (far-field)

§ not Fredholm
§ .

Bounded Domain:
§ Point Spectrum (core)
§ Point Spectrum (boundary)
§ Absolute Spectrum (far-field)
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[Sandstede, Scheel 2000]

Types of Spectra
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Instabi l i t ies Caused by Point Eigenvalues

Line Defects in Rössler System Alternans in Karma Model

Essential
Absolute
Point



Line Defects in Rössler System Alternans in Karma Model
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Line Defects in Rössler System Alternans in Karma Model

i!/2
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Where do these eigenvalues come from:
§ Far-field wave trains?
§ Core?
§ Boundary?

Essential
Absolute
Point

Instabi l i t ies Caused by Point Eigenvalues



Unstable Point Eigenfunctions

Line defect in Rössler
§ Localized at boundary

Alternans in Karma
§ Slight growth toward boundary



Methodology to Determine Origin of Point Eigenvalues

Bounded Disk
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Methodology to Determine Origin of Point Eigenvalues

Bounded Disk Non-Reflecting Boundary Boundary Sink 
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Line Defects from Boundary, Alternans from Core

Rössler Model Karma Model
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Alternans from Interact ion of Point Eigenvalue and Essentia l  Spectrum



Leading order spiral eigenfunction

V (r, ) = ei�rVess (r �  )
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Alternans from Interact ion of Point Eigenvalue and Essentia l  Spectrum



Leading order spiral eigenfunction
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Summary: 
§ Different mechanisms responsible for instabilities
§ Findings on one domain may not be relevant for all 

others
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Boundary conditions

§ Spiral core
§ Point eigenvalue and essential 

spectrum
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Geometry-Dependent Arrhythmias in 
Bioengineered Tissue

Spectra with Rank-Deficient Diffusion Matrix

ut = �u + f(u, v)

vt = ��v + g(u, v)
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Theorem:

McNamara, H. M., Dodson, S., et. al. Cell 
Systems (2018).

Collaboration with Cohen Lab at Harvard

Boundary conditions

§ Spiral core
§ Point eigenvalue and essential 

spectrum

Extensions

• Alternans: Sub- or supercritical Hopf bifrucation?

Pinned Spirals Point Spectrum
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Thank you!
Questions?



EXTRA SLIDES



Additional Spectral Detai ls

Extended point spectrum
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L⇤V = D�r, V + !V + FU (U⇤)V, (r, ) 2 [0,1)⇥ S1

Planar linear operator

L⇤,RV = D�r, V + !V + FU (U⇤,R)V, (r, ) 2 [0, R)⇥ S1

Vr(R, ) = 0,  2 S1

Linear operator for bounded disk


