Role of Spectra in Period-Doubling Instabilities of Spiral Waves

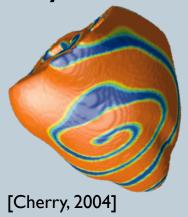
Stephanie Dodson, Björn Sandstede
Division of Applied Mathematics
Brown University

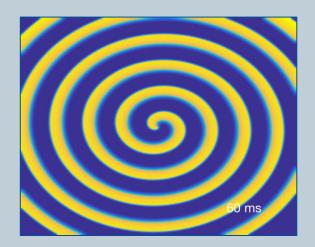
SIAM Dynamical Systems: MS 60 May 20, 2019

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1644760.

Spiral Wave Patterns

Cardiac Arrhythmias





Chemical Oscillations

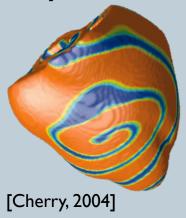
Dictyostelium discoideum (mold) [Ball, 1994]

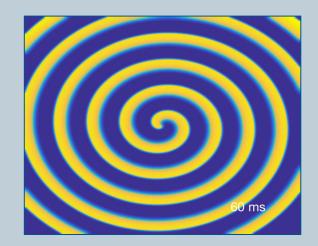
Belousov-Zhabontinsky reaction [Yoneyama, 1995]

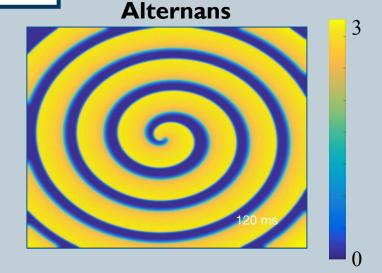
Goal: Understand stability of spiral wave patterns

Spiral Wave Patterns

Cardiac Arrhythmias



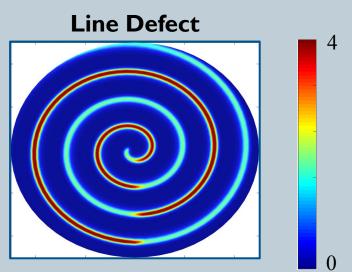




Chemical Oscillations

Dictyostelium discoideum (mold) [Ball, 1994]

Belousov-Zhabontinsky reaction [Yoneyama, 1995]

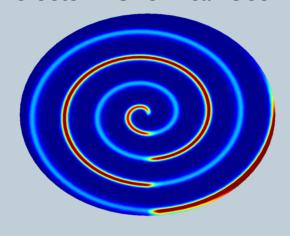


Goal: Understand stability of spiral wave patterns

Mechanisms responsible for period-doubling instabilities on bounded domains

Period-Doubling Instabilities in Spiral Waves

Line Defects in Chemical Oscillations



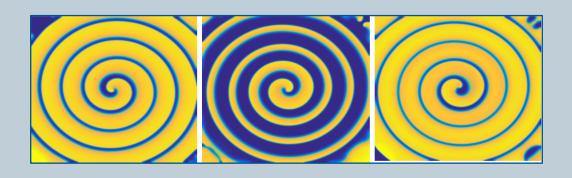
Rössler System

$$u_t = 0.4\Delta u - v - w$$

$$v_t = 0.4\Delta v + u + 0.2v$$

$$w_t = 0.4\Delta w + uw - \mu_R w + 0.2$$

Alternans in Cardiac Arrhythmias



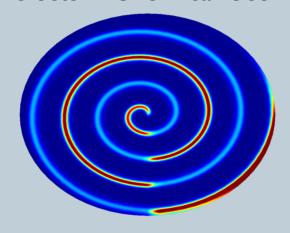
Karma Model

$$u_t = 1.1\Delta u + 400 \left(-u + (1.5414 - v^4) \left(1 - \tanh(u - 3) \right) \frac{u^2}{2} \right)$$
$$v_t = 0.1\Delta v + 4 \left(\frac{1}{1 - e^{-\mu_K}} \theta_s(u - 1) - v \right)$$

$$U_t = D\Delta U + F(U)$$

Period-Doubling Instabilities in Spiral Waves

Line Defects in Chemical Oscillations



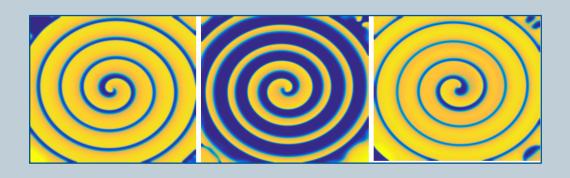
Rössler System

$$u_t = 0.4\Delta u - v - w$$

$$v_t = 0.4\Delta v + u + 0.2v$$

$$w_t = 0.4\Delta w + uw - \mu_R w + 0.2$$

Alternans in Cardiac Arrhythmias



Karma Model

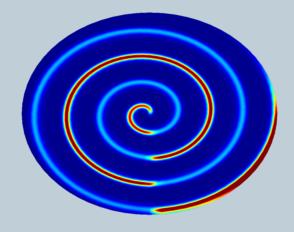
$$u_t = 1.1\Delta u + 400 \left(-u + (1.5414 - v^4) \left(1 - \tanh(u - 3) \right) \frac{u^2}{2} \right)$$

$$v_t = 0.1\Delta v + 4 \left(\frac{1}{1 - e^{-\mu_K}} \theta_s(u - 1) - v \right)$$

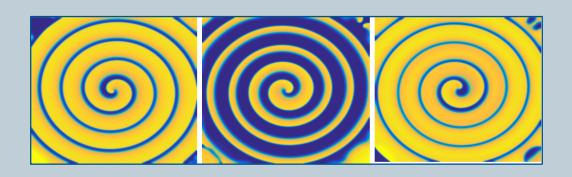
$$U_t = D\Delta U + F(U)$$

Period-Doubling Instabilities in Spiral Waves

Line Defects in Chemical Oscillations



Alternans in Cardiac Arrhythmias



Outline:

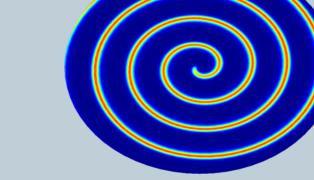
- Mathematical and spectral properties
- Drivers of instabilities
- Shape of alternans eigenfunction

Planar Spiral Waves

Rigidly-rotating spirals:

- SE(2) symmetry on the plane
- Stationary solutions in rotating, polar frame

$$(r,\phi) \to (r,\psi) = (r,\phi - \omega t)$$
$$0 = D\Delta_{r,\psi}U_* + \omega\partial_{\psi}U_* + F(U_*)$$



High

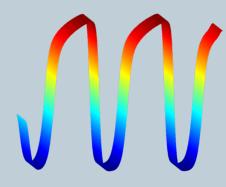
Low

Asymptotic ID (periodic) wave trains

$$U_*(r,\psi) \to U_\infty(\kappa r + \psi) = U_\infty(\xi), \ r \to \infty$$

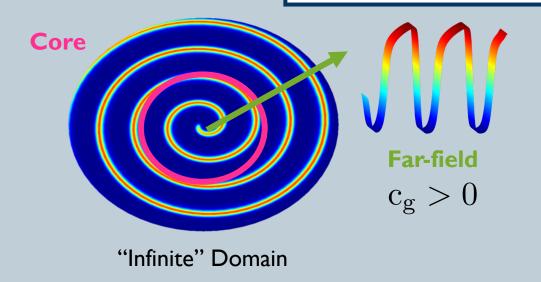
 $U_\infty(\xi) = U_\infty(\xi + 2\pi), \ \xi \in \mathbb{R}$

$$0 = \kappa^2 D \partial_{\xi\xi} U_{\infty} + \omega \partial_{\xi} U_{\infty} + F(U_{\infty})$$

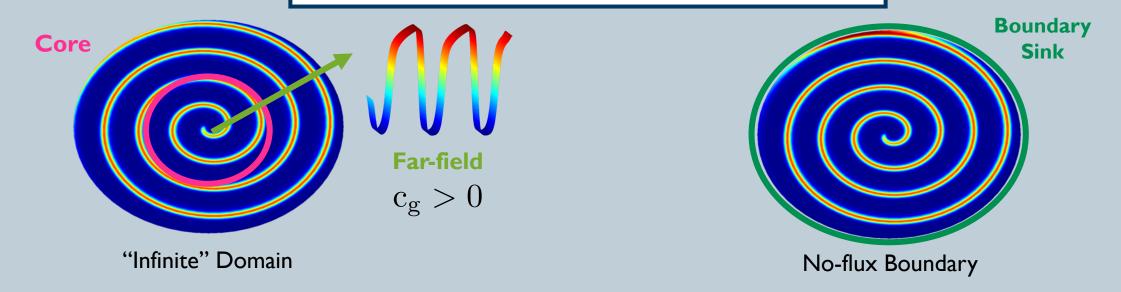


ID Wave Train

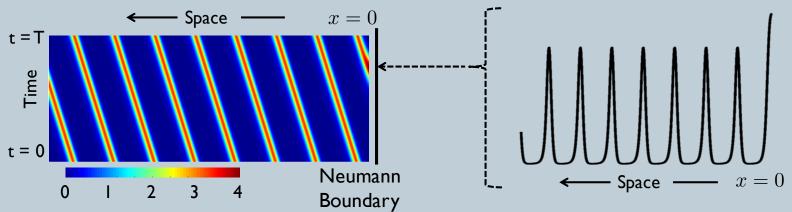
Anatomy of a Bounded Spiral



Anatomy of a Bounded Spiral



Boundary Sink



Types of Spectra

Linearized Operator:

$$\mathcal{L}V = D\Delta V + \omega V_{\psi} + F_U(U_*)V$$

Unbounded Domain:

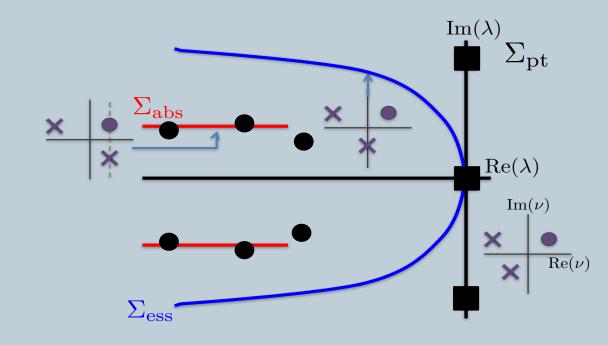
- Point Spectrum (core)
- Essential Spectrum (far-field)
 - lacksquare $(\mathcal{L} \lambda)$ not Fredholm
 - $\nu \in i\mathbb{R}$

Bounded Domain:

- Point Spectrum (core)
- Point Spectrum (boundary)
- Absolute Spectrum (far-field)

Spectrum:

$$\Sigma(\mathcal{L}) = \{\lambda \in \mathbb{C} : \mathcal{L} - \lambda \text{ is not boundedly invertible}\}\$$



Far-Field Eigenfunction:
$$V(r,\psi,t)=e^{\lambda t}e^{\nu r}e^{in\psi}V_{\infty}\left(\kappa r+\psi\right)$$

 λ : Time, ν : Space

Types of Spectra

Linearized Operator:

$$\mathcal{L}V = D\Delta V + \omega V_{\psi} + F_U(U_*)V$$

Unbounded Domain:

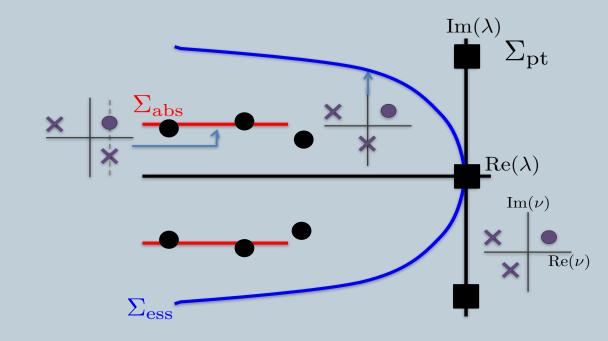
- Point Spectrum (core)
- Essential Spectrum (far-field)
 - $(\mathcal{L} \lambda)$ not Fredholm
 - $\nu \in i\mathbb{R}$

Bounded Domain:

- Point Spectrum (core)
- Point Spectrum (boundary)
- Absolute Spectrum (far-field)

Spectrum:

$$\Sigma(\mathcal{L}) = \{\lambda \in \mathbb{C} : \mathcal{L} - \lambda \text{ is not boundedly invertible}\}\$$



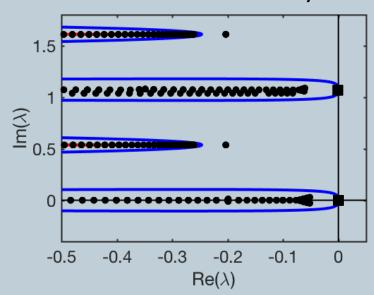
Far-Field Eigenfunction:
$$V(r,\psi,t)=e^{\lambda t}e^{\nu r}e^{in\psi}V_{\infty}\left(\kappa r+\psi\right)$$

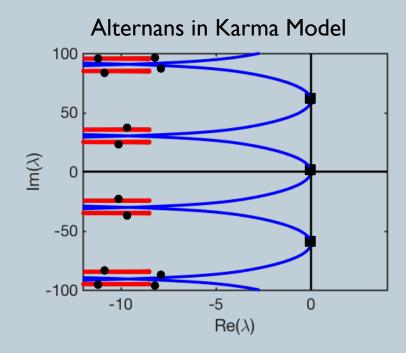
$$\lambda$$
: Time, ν : Space

$$\Sigma$$
 (Bounded Spiral) $\to \Sigma_{abs} \cup \Sigma$ (Core) $\cup \Sigma$ (Boundary), as $R \to \infty$

Instabilities Caused by Point Eigenvalues

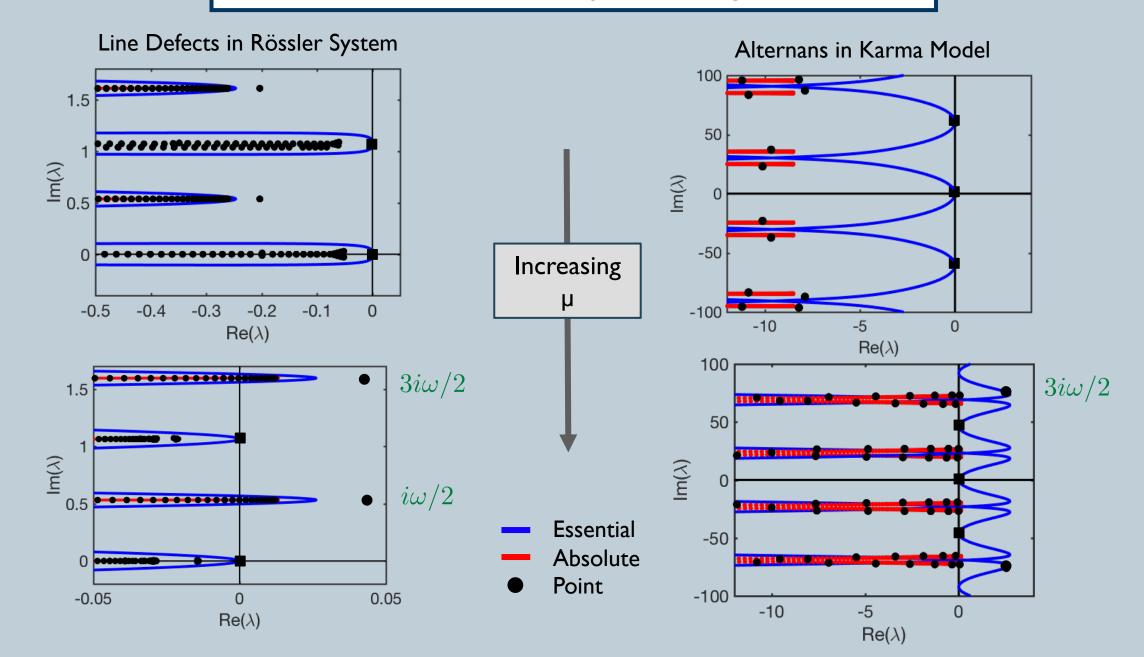
Line Defects in Rössler System



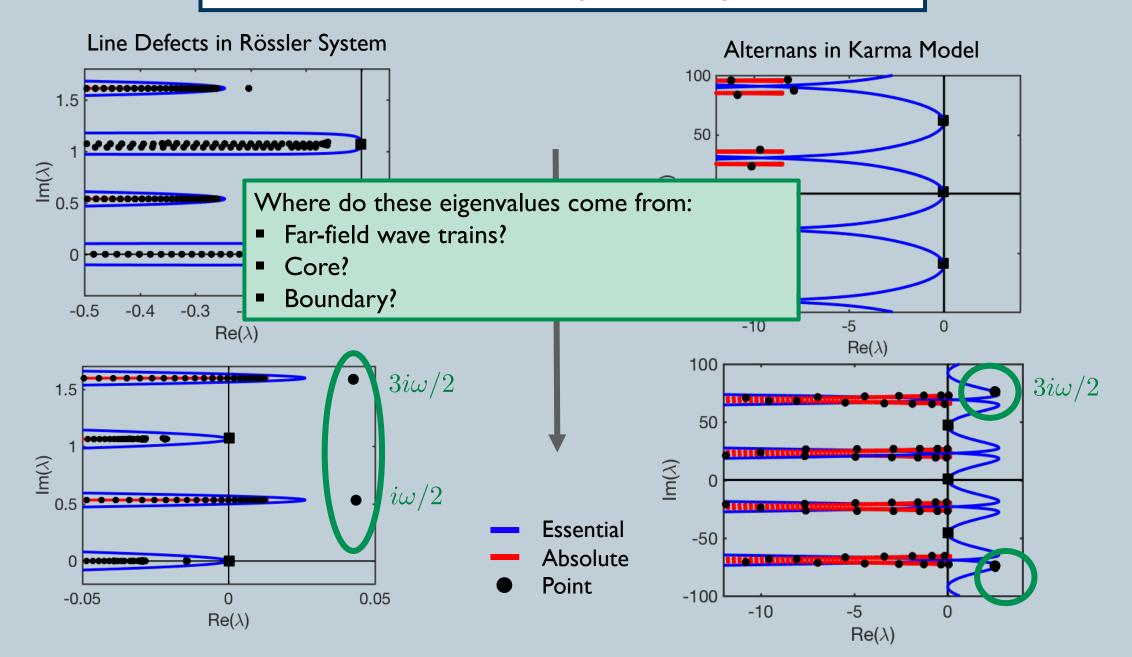


EssentialAbsolutePoint

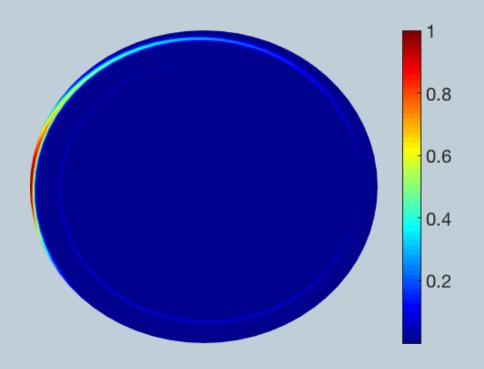
Instabilities Caused by Point Eigenvalues



Instabilities Caused by Point Eigenvalues

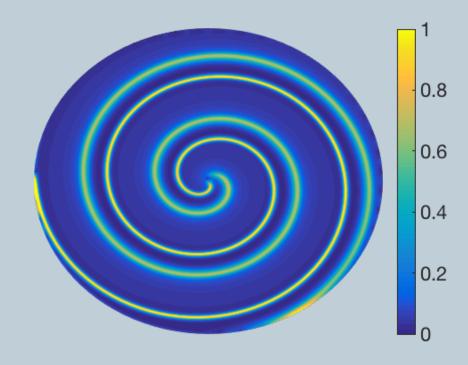


Unstable Point Eigenfunctions



Line defect in Rössler

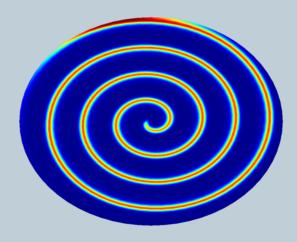
Localized at boundary



Alternans in Karma

Slight growth toward boundary

Methodology to Determine Origin of Point Eigenvalues



Bounded Disk

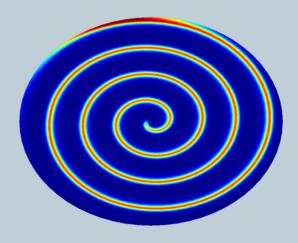
$$\mathcal{L}_{*,R}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_*)V$$
$$\left\{V(r,\psi) \in H^1\left([0,R] \times S^1\right) : V_r(R,\cdot) = 0\right\}$$

Far-field

Boundary conditions

Core

Methodology to Determine Origin of Point Eigenvalues

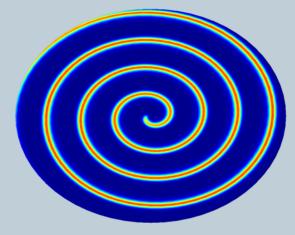


$$\mathcal{L}_{*,R}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_*)V$$
$$\left\{V(r,\psi) \in H^1\left([0,R] \times S^1\right) : V_r(R,\cdot) = 0\right\}$$

Bounded Disk

Boundary conditions

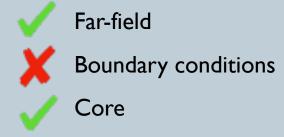
Core

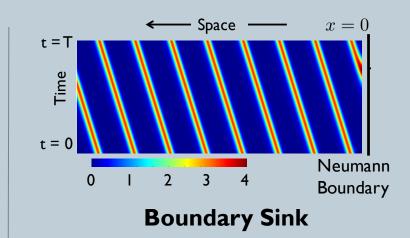


Non-Reflecting Boundary

$$\mathcal{L}_{R,nr}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_{U}(U_{nr})V$$

$$\{V(r,\psi) \in H^{1}([0,R] \times S^{1}) : V_{r}(R,\psi) = \kappa V_{\psi}(R,\psi)\}$$



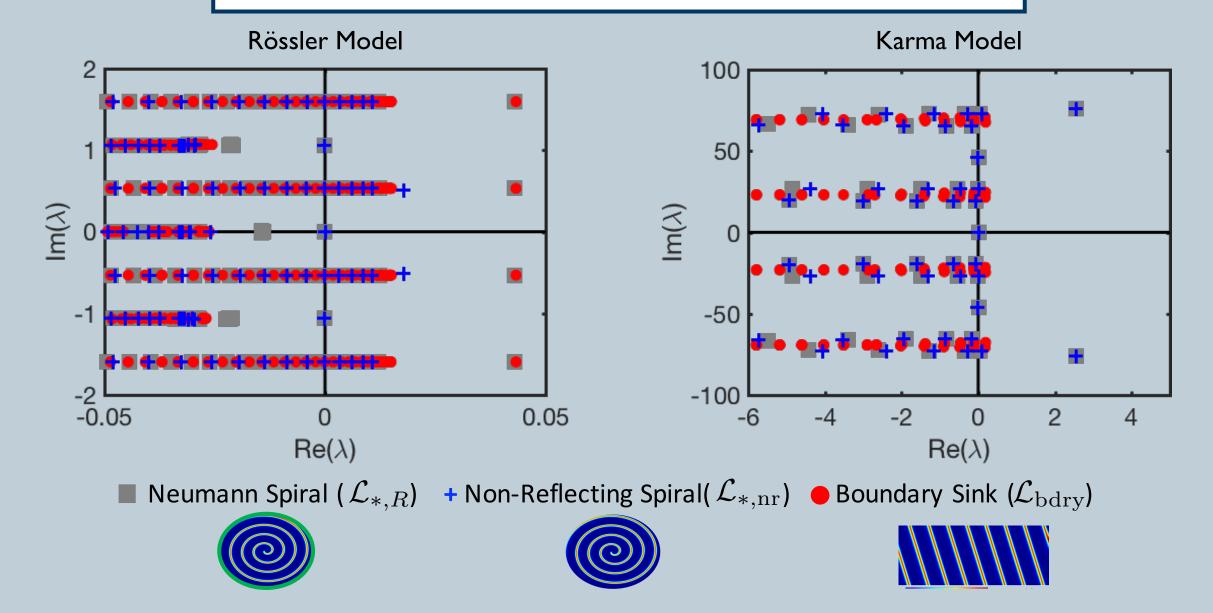


$$\mathcal{L}_{\text{bdry}}V = -V_t + DV_{xx} + F_U(U_{\text{bdry}})$$
$$\left\{V(x,t) \in H^1\left([-L,0] \times S^1\right) : V_x(0,\cdot) = 0\right\}$$

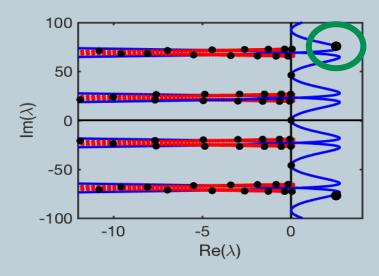
Far-field

Boundary conditions

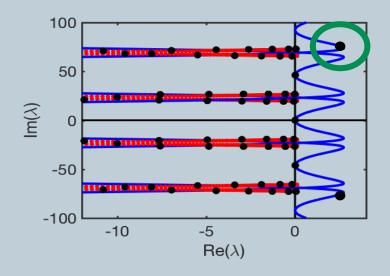
Line Defects from Boundary, Alternans from Core



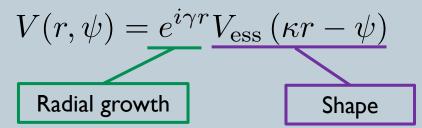
Alternans from Interaction of Point Eigenvalue and Essential Spectrum

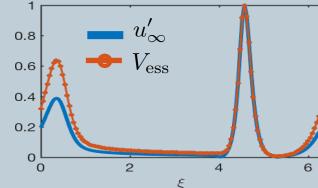


Alternans from Interaction of Point Eigenvalue and Essential Spectrum

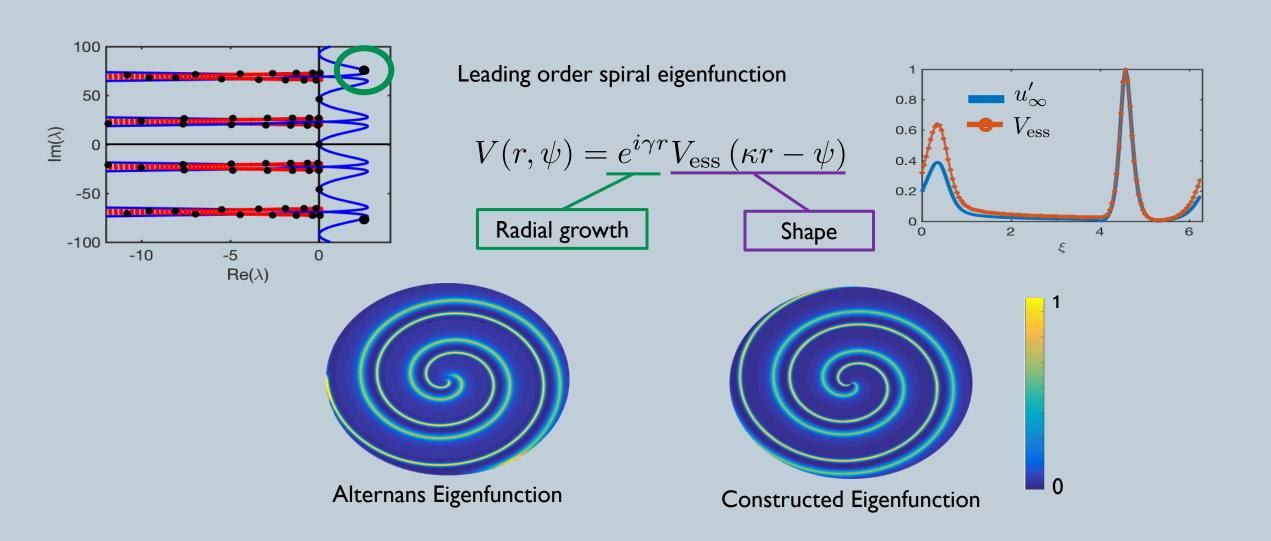


Leading order spiral eigenfunction



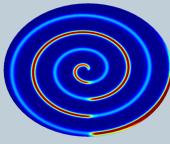


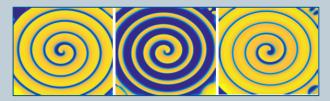
Alternans from Interaction of Point Eigenvalue and Essential Spectrum



Summary:

- Different mechanisms responsible for instabilities
- Findings on one domain may not be relevant for all others

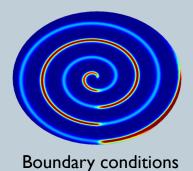


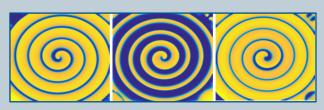


- Spiral core
- Point eigenvalue and essential spectrum

Summary:

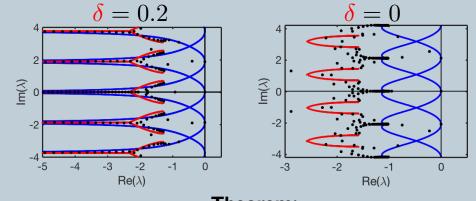
- Different mechanisms responsible for instabilities
- Findings on one domain may not be relevant for all others





- Spiral core
- Point eigenvalue and essential spectrum

Spectra with Rank-Deficient Diffusion Matrix



 $u_t = \Delta u + f(u, v)$

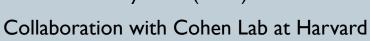
 $v_t = \delta \Delta v + g(u, v)$

Theorem:

$$\Sigma_{\rm ess}^0 \neq \lim_{\delta \to 0} \Sigma_{\rm ess}^{\delta}$$

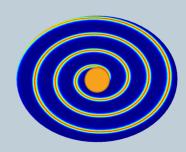
Geometry-Dependent Arrhythmias in Bioengineered Tissue

McNamara, H. M., **Dodson, S**., et. al. *Cell Systems* (2018).

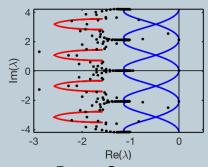


Extensions

Alternans: Sub- or supercritical Hopf bifrucation?



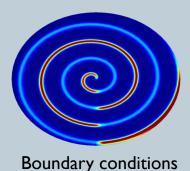
Pinned Spirals

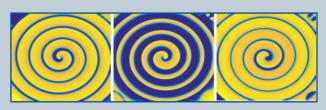


Point Spectrum

Summary:

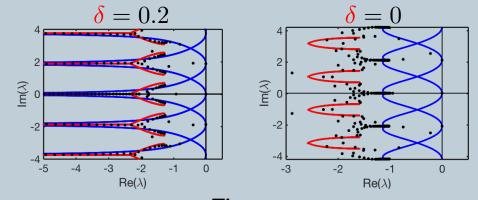
- Different mechanisms responsible for instabilities
- Findings on one domain may not be relevant for all others





- Spiral core
- Point eigenvalue and essential spectrum

Spectra with Rank-Deficient Diffusion Matrix



$$u_t = \Delta u + f(u, v)$$
$$v_t = \delta \Delta v + g(u, v)$$

Theorem:

Extensions

$$\Sigma_{\rm ess}^0 \neq \lim_{\delta \to 0} \Sigma_{\rm ess}^{\delta}$$

Thank you!

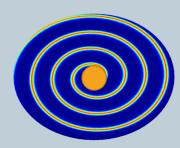
Geometry-Dependent A Bioengineered 1....

McNamara, H. M., **Dodson, S.**, et. al. *Cell* Systems (2018).

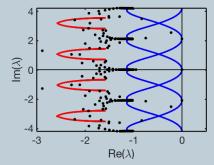
Collaboration with Cohen Lab at Harvard

Questions?

Alternans: Sub- or supercritical Hopf bifrucation?



Pinned Spirals



Point Spectrum

EXTRA SLIDES

Additional Spectral Details

Planar linear operator

$$\mathcal{L}_*V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_*)V, \ (r,\psi) \in [0,\infty) \times S^1$$

Linear operator for bounded disk

$$\mathcal{L}_{*,R}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_{*,R})V, \ (r,\psi) \in [0,R) \times S^1$$
$$V_r(R,\psi) = 0, \ \psi \in S^1$$

Weighted space

$$L^{2}_{\eta}(\mathbb{R}^{2}) := \left\{ u \in L^{2}_{loc} : |u|_{L^{2}_{\eta}} < \infty \right\}, \ |u|_{L^{2}_{\eta}}^{2} := \int_{\mathbb{R}^{2}} \left| u(x)e^{\eta|x|} \right|^{2} dx, \ \eta \in \mathbb{R}$$

Extended point spectrum

$$\Sigma_{\text{expt}}(\mathcal{L}_*) := \{ \lambda \in \mathbb{C} : \mathcal{L}_* - \lambda \text{ is not boundedly invertible in } L^2_{\eta}(\mathbb{R}^2) \}$$