# Role of Spectra in Period-Doubling Instabilities of Spiral Waves

Stephanie Dodson, Björn Sandstede
Division of Applied Mathematics
Brown University

SIAM Dynamical Systems: MS 60 May 20, 2019



This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1644760.

## Spiral Wave Patterns

#### **Cardiac Arrhythmias**





#### **Chemical Oscillations**



Dictyostelium discoideum (mold) [Ball, 1994]



Belousov-Zhabontinsky reaction [Yoneyama, 1995]

Goal: Understand stability of spiral wave patterns

## Spiral Wave Patterns

#### **Cardiac Arrhythmias**







#### **Chemical Oscillations**



Dictyostelium discoideum (mold) [Ball, 1994]



Belousov-Zhabontinsky reaction [Yoneyama, 1995]



### Goal: Understand stability of spiral wave patterns

Mechanisms responsible for period-doubling instabilities on bounded domains

## Period-Doubling Instabilities in Spiral Waves

#### **Line Defects in Chemical Oscillations**



#### Rössler System

$$u_t = 0.4\Delta u - v - w$$

$$v_t = 0.4\Delta v + u + 0.2v$$

$$w_t = 0.4\Delta w + uw - \mu_R w + 0.2$$

#### **Alternans in Cardiac Arrhythmias**



#### Karma Model

$$u_t = 1.1\Delta u + 400 \left( -u + (1.5414 - v^4) \left( 1 - \tanh(u - 3) \right) \frac{u^2}{2} \right)$$
$$v_t = 0.1\Delta v + 4 \left( \frac{1}{1 - e^{-\mu_K}} \theta_s(u - 1) - v \right)$$

$$U_t = D\Delta U + F(U)$$

## Period-Doubling Instabilities in Spiral Waves

#### **Line Defects in Chemical Oscillations**



#### Rössler System

$$u_t = 0.4\Delta u - v - w$$

$$v_t = 0.4\Delta v + u + 0.2v$$

$$w_t = 0.4\Delta w + uw - \mu_R w + 0.2$$

#### **Alternans in Cardiac Arrhythmias**



#### Karma Model

$$u_t = 1.1\Delta u + 400 \left( -u + (1.5414 - v^4) \left( 1 - \tanh(u - 3) \right) \frac{u^2}{2} \right)$$

$$v_t = 0.1\Delta v + 4 \left( \frac{1}{1 - e^{-\mu_K}} \theta_s(u - 1) - v \right)$$

$$U_t = D\Delta U + F(U)$$

## Period-Doubling Instabilities in Spiral Waves

#### **Line Defects in Chemical Oscillations**



#### **Alternans in Cardiac Arrhythmias**



#### **Outline:**

- Mathematical and spectral properties
- Drivers of instabilities
- Shape of alternans eigenfunction

## Planar Spiral Waves

#### Rigidly-rotating spirals:

- SE(2) symmetry on the plane
- Stationary solutions in rotating, polar frame

$$(r,\phi) \to (r,\psi) = (r,\phi - \omega t)$$
$$0 = D\Delta_{r,\psi}U_* + \omega\partial_{\psi}U_* + F(U_*)$$



High

Low

Asymptotic ID (periodic) wave trains

$$U_*(r,\psi) \to U_\infty(\kappa r + \psi) = U_\infty(\xi), \ r \to \infty$$
  
 $U_\infty(\xi) = U_\infty(\xi + 2\pi), \ \xi \in \mathbb{R}$ 

$$0 = \kappa^2 D \partial_{\xi\xi} U_{\infty} + \omega \partial_{\xi} U_{\infty} + F(U_{\infty})$$



**ID** Wave Train

## Anatomy of a Bounded Spiral



## Anatomy of a Bounded Spiral



#### **Boundary Sink**



## Types of Spectra

#### Linearized Operator:

$$\mathcal{L}V = D\Delta V + \omega V_{\psi} + F_U(U_*)V$$

#### **Unbounded Domain:**

- Point Spectrum (core)
- Essential Spectrum (far-field)
  - lacksquare  $(\mathcal{L} \lambda)$  not Fredholm
  - $\nu \in i\mathbb{R}$

#### **Bounded Domain:**

- Point Spectrum (core)
- Point Spectrum (boundary)
- Absolute Spectrum (far-field)

#### Spectrum:

$$\Sigma(\mathcal{L}) = \{\lambda \in \mathbb{C} : \mathcal{L} - \lambda \text{ is not boundedly invertible}\}\$$



Far-Field Eigenfunction: 
$$V(r,\psi,t)=e^{\lambda t}e^{\nu r}e^{in\psi}V_{\infty}\left(\kappa r+\psi\right)$$

 $\lambda$ : Time,  $\nu$ : Space

## Types of Spectra

#### Linearized Operator:

$$\mathcal{L}V = D\Delta V + \omega V_{\psi} + F_U(U_*)V$$

#### **Unbounded Domain:**

- Point Spectrum (core)
- Essential Spectrum (far-field)
  - $(\mathcal{L} \lambda)$  not Fredholm
  - $\nu \in i\mathbb{R}$

#### **Bounded Domain:**

- Point Spectrum (core)
- Point Spectrum (boundary)
- Absolute Spectrum (far-field)

#### Spectrum:

$$\Sigma(\mathcal{L}) = \{\lambda \in \mathbb{C} : \mathcal{L} - \lambda \text{ is not boundedly invertible}\}\$$



Far-Field Eigenfunction: 
$$V(r,\psi,t)=e^{\lambda t}e^{\nu r}e^{in\psi}V_{\infty}\left(\kappa r+\psi\right)$$

$$\lambda$$
: Time,  $\nu$ : Space

$$\Sigma$$
 (Bounded Spiral)  $\to \Sigma_{abs} \cup \Sigma$  (Core)  $\cup \Sigma$  (Boundary), as  $R \to \infty$ 

## Instabilities Caused by Point Eigenvalues

Line Defects in Rössler System





EssentialAbsolutePoint

## Instabilities Caused by Point Eigenvalues



## Instabilities Caused by Point Eigenvalues



## Unstable Point Eigenfunctions



Line defect in Rössler

Localized at boundary



Alternans in Karma

Slight growth toward boundary

## Methodology to Determine Origin of Point Eigenvalues



#### **Bounded Disk**

$$\mathcal{L}_{*,R}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_*)V$$
$$\left\{V(r,\psi) \in H^1\left([0,R] \times S^1\right) : V_r(R,\cdot) = 0\right\}$$



Far-field



Boundary conditions



Core

## Methodology to Determine Origin of Point Eigenvalues



$$\mathcal{L}_{*,R}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_*)V$$
$$\left\{V(r,\psi) \in H^1\left([0,R] \times S^1\right) : V_r(R,\cdot) = 0\right\}$$

**Bounded Disk** 



Boundary conditions

Core



#### **Non-Reflecting Boundary**

$$\mathcal{L}_{R,nr}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_{U}(U_{nr})V$$

$$\{V(r,\psi) \in H^{1}([0,R] \times S^{1}) : V_{r}(R,\psi) = \kappa V_{\psi}(R,\psi)\}$$





$$\mathcal{L}_{\text{bdry}}V = -V_t + DV_{xx} + F_U(U_{\text{bdry}})$$
$$\left\{V(x,t) \in H^1\left([-L,0] \times S^1\right) : V_x(0,\cdot) = 0\right\}$$

Far-field

Boundary conditions

## Line Defects from Boundary, Alternans from Core



## Alternans from Interaction of Point Eigenvalue and Essential Spectrum



## Alternans from Interaction of Point Eigenvalue and Essential Spectrum



Leading order spiral eigenfunction





## Alternans from Interaction of Point Eigenvalue and Essential Spectrum



#### Summary:

- Different mechanisms responsible for instabilities
- Findings on one domain may not be relevant for all others







- Spiral core
- Point eigenvalue and essential spectrum

#### **Summary:**

- Different mechanisms responsible for instabilities
- Findings on one domain may not be relevant for all others





- Spiral core
- Point eigenvalue and essential spectrum

#### **Spectra with Rank-Deficient Diffusion Matrix**



 $u_t = \Delta u + f(u, v)$ 

 $v_t = \delta \Delta v + g(u, v)$ 

Theorem:

$$\Sigma_{\rm ess}^0 \neq \lim_{\delta \to 0} \Sigma_{\rm ess}^{\delta}$$

## Geometry-Dependent Arrhythmias in Bioengineered Tissue



McNamara, H. M., **Dodson, S**., et. al. *Cell Systems* (2018).





#### **Extensions**

Alternans: Sub- or supercritical Hopf bifrucation?



Pinned Spirals



Point Spectrum

#### **Summary:**

- Different mechanisms responsible for instabilities
- Findings on one domain may not be relevant for all others





- Spiral core
- Point eigenvalue and essential spectrum

#### **Spectra with Rank-Deficient Diffusion Matrix**



$$u_t = \Delta u + f(u, v)$$
$$v_t = \delta \Delta v + g(u, v)$$

Theorem:

**Extensions** 

$$\Sigma_{\rm ess}^0 \neq \lim_{\delta \to 0} \Sigma_{\rm ess}^{\delta}$$

# Thank you!

#### **Geometry-Dependent A** Bioengineered 1....



McNamara, H. M., **Dodson, S.**, et. al. *Cell* Systems (2018).

Collaboration with Cohen Lab at Harvard

# **Questions?**

Alternans: Sub- or supercritical Hopf bifrucation?



Pinned Spirals



Point Spectrum

## **EXTRA SLIDES**

## Additional Spectral Details

#### Planar linear operator

$$\mathcal{L}_*V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_*)V, \ (r,\psi) \in [0,\infty) \times S^1$$

Linear operator for bounded disk

$$\mathcal{L}_{*,R}V = D\Delta_{r,\psi}V + \omega V_{\psi} + F_U(U_{*,R})V, \ (r,\psi) \in [0,R) \times S^1$$
$$V_r(R,\psi) = 0, \ \psi \in S^1$$

Weighted space

$$L^{2}_{\eta}(\mathbb{R}^{2}) := \left\{ u \in L^{2}_{loc} : |u|_{L^{2}_{\eta}} < \infty \right\}, \ |u|_{L^{2}_{\eta}}^{2} := \int_{\mathbb{R}^{2}} \left| u(x)e^{\eta|x|} \right|^{2} dx, \ \eta \in \mathbb{R}$$

Extended point spectrum

$$\Sigma_{\text{expt}}(\mathcal{L}_*) := \{ \lambda \in \mathbb{C} : \mathcal{L}_* - \lambda \text{ is not boundedly invertible in } L^2_{\eta}(\mathbb{R}^2) \}$$