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Introduction to TP-PAT

Photoacoustic Tomography (PAT)
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Figure 1: Photoacoustic Tomography (PAT) combines diffuse optical
tomography with ultrasound imaging using the photoacoustic effect. The
object to be probed is illuminated by a short pulse of NIR light and absorbs
energy which is converted into an ultrasound pressure field. The waves
propagate outwards and are detected by ultrasonic devices.

Kui Ren (UT Austin) Two-photon Quantitative PAT May 26, 2016 4 / 39



Introduction to TP-PAT

PAT: Diffusion of Photons as in OT

The density of photons u(x) solves the diffusion equation:

−∇ · γ(x)∇u(x) + σ(x)u(x) = 0 in Ω

u = g(x) on ∂Ω

The initial pressure field generated though photoacoustic effect at
x ∈ Ω is given by:

H(x) = Γ(x)σ(x)u(x)

The Grüneisen coefficient Γ measures the efficiency of the
photoacoustic effect in the medium.
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Introduction to TP-PAT

PAT: Acoustic Field

The acoustic wave equation for the pressure field:

1
c2(x)

∂2p
∂t2 −∆p = 0, in R+ × Rd

p(0,x) = H ≡ Γ(x)σ(x)u(x), in Rd

∂p
∂t

(0,x) = 0, in Rd

It turns out that change of optical properties has very small impact
on ultrasound wave speed c(x). Thus the coupling between the
diffusion and acoustic process is only through the initial pressure
field.

The ultrasound wave speed field c(x) is usually assumed known.
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Introduction to TP-PAT

PAT: Data and Reconstruction

Measured data: We measure p(t ,x)|(0,tmax)×Σ for tmax large and
Σ ⊂ ∂Ω.

Objective: To reconstruct Γ, σ(x) and γ(x) from measured data.

Two-step Reconstruction:
Step I: to reconstruct the initial pressure field H from measured
acoustic data by solving an inverse source problem to the acoustic
wave equation (by for instance time reversal); This is a relatively
“stable” process.

Step II: to reconstruct Γ, σ and γ from the internal data H by solving
the inverse coefficient problem to the diffusion equation. This is
also a “stable” process.
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Introduction to TP-PAT

Photoacoustic Tomography (PAT)

Figure 2: Two physical process in PAT: diffusion of NIR radiation and
propagation of ultrasound. Time scale separation between the two processes
due to the fact that photons travel much faster than ultrasound signals.
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Introduction to TP-PAT

PAT: Acoustic Reconstructions

The case c = 1 has been studied by many authors: Agranovsky,
Ambartsoumian, Ammari, Anastasio, Arridge, Finch, Haltmeier,
Kuchment, Kunyansky, Nguyen, Patch, Quinto, Rakesh, Scherzer,
Wang, and many more.

The case of c = c(x) is much more complicated, and has been
studied in: Acosta-Montalto IP 15, Hristova-Kuchment-Nguyen IP
08, Hristova IP 09, Qian-Stefanov-Uhlmann-Zhao SIAM 11,
Stefanov-Uhlmann IP 09, Stefanov-Uhlmann TAMS 12,
Stefanov-Yang IP 15, Tittelfitz IP12 (elastic media), and more.

Acoustic attenuation effects can also be considered:
Ammari-Bretin-Jugnon-Wahab-LNM11, Haltmeier etal SPIE07,
Kowar-Scherzer-LNM12, La Riviére-Zhang-Anastasio OL06,
Patch-Greenleaf 06, Treeby-Zhang-Cox IP10.
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Introduction to TP-PAT

PAT: Optical Reconstructions

There were many computational results on optical reconstructions
in PAT in the earlier years: Cox-Arridge-Köstli-Beard AO 06,
Laufer-Cox-Zhang-Beard AO 10, Zemp AO 10, etc.

The first systematic mathematical analysis of optical
reconstruction in PAT was done by in Bal-Uhlmann IP 10 where
Γ = 1 is assumed. There have been many subsequent studies:
Alessandrini et al arXiv 15, Ammari-Bossy-Jugnon-Kang, SIAM
Rev 10, Bal-Uhlmann CPAM 13, Bal-R. CM 11, Gao-Osher-Zhao
LNM12, R.-Gao-Zhao SIIMS 13, Naetar-Scherzer SIIMS 15,
Pulkkinen-Cox-Arridge-Kaipio-Tarvainen IP 14, R.-Zhao SIIMS 13,
Shao-Cox-Zemp AO 11, Triki IP 10, etc.
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Introduction to TP-PAT

PAT: Optical Reconstructions

It was shown in Bal-R. IP 11 that only two of the three coefficients
(Γ, σ, γ) can be reconstructed uniquely when data from only a
single optical wavelength are used. Multi-wavelength data indeed
allow the reconstruction of (Γ, σ, γ) in simplified settings as shown
in Bal-R. IP 12.

The same inverse problem in the transport regime has been
studied in Bal-Jollivet-Jugnon IP 10, Cox-Tarvainen-Arridge CM
11, Mamonov-R. CMS 14, R.-Zhang-Zhong IP15,
Saratoon-Tarvainen-Cox-Arridge, IP 13 etc.
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Introduction to TP-PAT

PAT with Two-photon Absorption

The principle of two-photon PAT (TP-PAT) is the same as that of
the regular PAT, except that the photoacoustic signals in TP-PAT
are induced via two-photon absorption in addition to the usual
single-photon absorption.

Here by two-photon absorption we mean the phenomenon that an
electron transfers to an excited state after simultaneously
absorbing two photons whose total energy exceed the electronic
energy band gap.
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Introduction to TP-PAT

PAT with Two-photon Absorption

The main motivation for developing two-photon PAT is that the
two-photon optical absorption can often be tuned to be associated
with specific molecular signatures, such as in stimulated Raman
PAM, to achieve label-free molecular imaging. Therefore, TP-PAT
is molecular imaging modality that aims at visualizing particular
cellular functions and molecular processes inside biological
tissues.

Several groups have experimentally studied TP-PAT: Y.-H. Lai et al
OE 14, G. Langer et al OE 13, V. Ntziachristos et al OL 14, B.
Urban et al JBO 14, P. Winter et al Optica 14, Y. Yamaoka et al OE
11, Yelleswarapu-Kothapalli OE 10. Reconstructions are so far
limited in the acoustic step.

Kui Ren (UT Austin) Two-photon Quantitative PAT May 26, 2016 13 / 39



Introduction to TP-PAT

PAT with Two-photon Absorption

The density of NIR inside the medium, say Ω, solves the following
nonlinear diffusion equation:

−∇ · γ(x)∇u(x) + σ(x)u(x) + µ(x)|u|u(x) = 0, in Ω

u(x) = g(x), on ∂Ω

where the coefficients σ(x) and µ(x) denote the single-photon and
the two-photon absorption coefficients respectively, and γ(x) is
diffusion coefficient, and g is the incoming photon source.

The initial pressure field that is generated in TP-PAT is given by

H(x) = Γ(x)
[
σ(x)u(x) + µ(x)u2(x)

]
, x ∈ Ω.
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The Forward Model

The Forward Model

Recall that the semilinear diffusion model for TP-PAT

−∇ · γ(x)∇u(x) + σ(x)u(x) + µ(x)|u|u(x) = 0, in Ω

u(x) = g(x), on ∂Ω

To establish simiar uniqueness and stability results as in the
regular PAT case, we want the solution to this diffusion equation
to: i) be bounded; ii) be positive for positive g; and iii) have
(strong) comparison principle.

If we have i) - iii), we can show that g ≥ ε > 0 =⇒ u ≥ ε′ > 0.
This is a critical result.
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The Forward Model

The Forward Model

To simplify the notations, let:

Lu = ∇ · (γ∇u),

Qu = ∇ · (γ∇u)− σu − µ|u|u.

We assume:

The domain Ω is smooth enough and satisfies exterior cone
condition;
The boundary source g ∈ C0(∂Ω) or better when needed;
The coefficients:

0 < θ ≤ Γ, γ, σ, µ ≤ Θ <∞.

It is clear that the linear differential operator −L is uniformly elliptic.
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The Forward Model

The Forward Model

Let A = {w ∈W 1,2(Ω)|w = g on ∂Ω}, we define the following
Lagrangian for any w ∈ A,

I[w ] =

∫
Ω

L(Dw ,w ,x)dx =

∫
Ω

1
2
γ|∇w |2 +

1
2
σw2 +

1
3
µ|w |w2dx,

w = g on ∂Ω.

It is straightforward to verify that I[w ] is strictly convex and the following
growing conditions,

|L(p, z,x)| ≤ C(|p|2 + |z|3 + 1),

|DpL(p, z,x)| ≤ C(|p|+ 1),

|DzL(p, z,x)| ≤ C(|z|2 + 1),

for all p ∈ Rn, z ∈ R, x ∈ Ω.
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The Forward Model

The Forward Model

Define the weak solution u ∈W 1,2(Ω) to the diffusion equation in the
sense: ∫

Ω
γ∇u · ∇v + σuv + µ|u|uvdx = 0, ∀v ∈W 1,2

0 (Ω), .

There exist a unique u ∈ A satisfies

I[u] = min
w∈A

I[w ],

and u is the unique weak solution to the semilinear diffusion equation.
By Sobolev embedding, when n = 2,3, there exists q > n, such that
u ∈ Lq(Ω).
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The Forward Model

The Forward Model

We note that u can also be viewed as a solution to the equation

−∇ · (γ∇u) = f (u,x) in Ω,

u = g on ∂Ω,

where f (u,x) = −σ(x)u − µ(x)|u|u. By our assumption on the
coefficients, f ∈ Lq/2, thus we conclude u ∈ Cα(Ω) for some 0 < α < 1,
where α = α(n,Θ/θ). Moreover, if g ∈ C0(∂Ω), then u ∈ C0(Ω̄). If we
imposed further that the coefficients of (16) are in Cα(Ω), then we may
conclude u ∈ C2,α(Ω).
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The Forward Model

The Forward Model

Proposition
Assume that the coefficients of the diffusion equation satisfy the
assumptions we have. Then there exists a unique weak solution such
that u ∈ Cα(Ω) ∩ C0(Ω̄). If we require further that the coefficients are
Cα(Ω), then u ∈ C2,α(Ω) ∩ C0(Ω̄).
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The Forward Model

The Forward Model

We need the following comparison principle to get positivity of
solutions.

Proposition

Let L be defined as before, and f (z,x) be continuously differentiable
with respect to z variable in R× Ω̄ such that 0 ≤ fz(z,x) ≤ h(|z|) for
some h non-decreasing function on R+ → R+. Let Qu = (L − f )u. If
u, v ∈W 1,2(Ω) ∩ C0(Ω̄) satisfy Qu ≥ 0 in Ω, Qv ≤ 0 in Ω and u ≤ v on
∂Ω, then u ≤ v in Ω.

Kui Ren (UT Austin) Two-photon Quantitative PAT May 26, 2016 22 / 39



The Forward Model

The Forward Model

We can then easily show:

Corollary

If u ∈W1,2(˙) ∩ C0(Ω̄) is a solution to the diffusion equation with
boundary condition u = g ≥ 0 on ∂Ω, then u ≥ 0 in Ω.

In fact, the following strong comparison principle can be established:

Proposition

Let L be defined as before, and f (z,x) be continuously differentiable
with respect to z variable in R× Ω̄ such that 0 ≤ fz(z,x) ≤ h(|z|) for
some h non-decreasing function on R+ → R+. Let Qu = (L − f )u. If
u, v ∈W 1,2(Ω) ∩ C0(Ω̄) satisfy Qu ≥ 0 in Ω, Qv ≤ 0 in Ω and u ≤ v on
∂Ω, then either u ≡ v or u < v in Ω.
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The Forward Model

The Forward Model

It is straight forward to get the following result on the separation of
solutions.

Lemma
Let u1 and u2 be solutions with boundary conditions g1 and g2. Then
g1 > g2 implies u1 > u2 in Ω.

We also have the following boundedness of solutions.

Proposition
We have supΩ̄ u ≤ sup∂Ω g.
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The Inverse Problem

The Case of a Single Coefficient

It is trivial to see that we can uniquely and stably reconstruct either σ
or µ (assuming all other coefficients are known) with one
(well-selected) data set.

Theorem

Let H and H̃ be data with coefficient µ and µ̃ respectively with
boundary condition g > 0 satisfying certain requirements. Then

H = H̃ =⇒ µ = µ̃.

Moreover,

‖µ̃− µ‖L∞(Ω) ≤ C
∥∥∥∥H̃ − H

∥∥∥∥
L∞(Ω)

.

for some constant C depending on g and other coefficients.
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The Inverse Problem

The Case of a Single Coefficient
A trivial proof.
It is easy to verify

−∇ · (γ∇u) = −H
Γ

in Ω,

u = g on ∂Ω.

This gives us u. We then reconstruct µ as

µ =
H

Γu|u|
− σ

|u|
.

We see here why we need all the properties on u that we have
discussed.
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The Inverse Problem

The Case of a Single Coefficient
A trivial proof (continued).

The stability result follows from the fact that w = ũ − u solves

−∇ · γ∇w = −1
Γ

(H̃ − H) in Ω,

w = 0 on ∂Ω.

This implies

sup
Ω
|ũ − u| ≤ C

∥∥∥∥H̃ − H
∥∥∥∥

L∞(Ω)

,

which can then be combined with

|µ̃− µ| = |( H̃
Γũ|ũ|

− σ

|ũ|
)− (

H
Γu|u|

− σ

|u|
)|

to get the stability estimate.
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The Inverse Problem

The Case of Two Coefficients

In fact, we can generalize the previous idea to have the following result
on reconstructing (σ, µ) with two data sets.

Theorem

Let (H1,H2) and (H̃1, H̃2) be data corresponding to (σ, µ) and (σ̃, µ̃)

respectively, with boundary sources (g1,g2) satisfying certain
requirements. Then

(H̃1, H̃2) = (H1,H2) =⇒ (σ̃, µ̃) = (σ, µ).

Moreover, we have

‖σ̃−σ‖L∞(Ω) +‖µ̃−µ‖L∞(Ω) ≤ C

(∥∥∥∥H̃1 − H1

∥∥∥∥
L∞(Ω)

+

∥∥∥∥H̃2 − H2

∥∥∥∥
L∞(Ω)

)

Kui Ren (UT Austin) Two-photon Quantitative PAT May 26, 2016 29 / 39



The Inverse Problem

The Case of Three Coefficients (γ, σ, µ)

It turns out that the idea of vector field introduced in Bal-Uhlmann
IP 10 and Bal-R. IP 11 can NOT be used here to deal with the
case of reconstructing more than the two absorption coefficients
due to the nonlinearity of the diffusion equation here.

The only tool we know so far is the Douglis-Nirenberg theory for
elliptic systems that were introduced for the analysis of hybrid
inverse problems in Bal CM 13; see also Widlak-Scherzer IP 15
for an application in elastography.

The main idea is use redundant data to construct an elliptic
system (in the sense of Douglis-Nirenberg) for the unknown
coefficients as well as the solution to the PDEs.

It turns out that the machinary works for our nonlinear diffusion
model.
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The Inverse Problem

The Case of Three Coefficients (γ, σ, µ)

Let us assume that we have J set of data {Hj}Jj=1. We linearize that
data and the diffusion equation to have, 1 ≤ j ≤ J:

−∇ · (δγ∇uj)−∇ · (γ∇δuj) = −δHj in Ω,

δσuj + σδuj + δµ|uj |uj + 2µ|uj |δuj = δHj in Ω.

Let v = (δγ, δσ, δµ, δu1, . . . , δuJ), and S = (−δH1, δH1, . . . ,−δHJ , δHJ).
Then we can write the above system as

A(x ,D)v = S,

where A(x ,D) is a matrix differential operator.
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The Inverse Problem

The Case of Three Coefficients (γ, σ, µ)

Let A0(x ,D) be the principal part of A(x ,D), then for ξ ∈ Sn−1,

A0(x , iξ) =


−iF1 · ξ 0 0 γ|ξ|2 . . . 0

0 u1 |u1|u1 σ + 2µ|u1| . . . 0
...

...
...

...
...

...
−iFJ · ξ 0 0 0 . . . D|ξ|2

0 uJ |uJ |uJ 0 . . . σ + 2µ|uJ |


where Fj = ∇uj . The associated Douglis-Nirenberg numbers are
(si)

2J
i=1 = (1,−1, . . . ,1,−1) and (tj)J+3

j=1 = (0,1,1,1, . . . ,1). When
A0(x , iξ) is of full-rank for all ξ ∈ Sn−1 and x ∈ Ω̄, we say that A is
elliptic. Since γ > 0, the requirement can be reduced to that for all
x ∈ Ω̄, uj 6= 0 and |ui | 6= |uj | if i 6= j .
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The Inverse Problem

The Case of Three Coefficients (γ, σ, µ)

Let us augment the system with boundary conditions to have

Av = S in Ω,

Bv = φ on ∂Ω,

where B(x ,D) is a matrix differential operator. Let B0(x ,D) be the
principal part of B.
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The Inverse Problem

The Case of Three Coefficients (γ, σ, µ)

Fix y ∈ ∂Ω, and let ν be the inward unit normal vector at y. Let ζ be
any non-zero tangential vector to Ω at y. We consider on the half line
y + zν, z > 0 the system of ordinary equations

A0(y, iζ + ν
d
dz

)ũ(z) = 0 z > 0,

B0(y, iζ + ν
d
dz

)ũ(z) = 0 z = 0.

If for any y ∈ ∂Ω, the only solution to the above system such that
ũ(z)→ 0 as z →∞ is u ≡ 0, then (A,B) satisfies the Lopatinskii
criterion.

A redundant elliptic system of equations can be solved up to possibly a
finite dimensional subspace when it satisfies the Lopatinskii criterion.
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The Inverse Problem

The Case of Three Coefficients (γ, σ, µ)

Indeed, we can show that the boundary condition

(δγ, δσ, δµ) = (φ1, φ2, φ3) on ∂Ω

satisfies the Lopatinskii criterion for a set of well chosen uj (which we
control by adjusting gj ).
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The Inverse Problem

The Case of Three Coefficients (γ, σ, µ)

If we impose that (S, φ) is in the space

R(l) = H l−s1(Ω)× . . .× H l−s2J (Ω)× H l−σ1− 1
2 (∂Ω)× . . .H l−σ3− 1

2 (∂Ω),

for some l > n + 1
2 , we can have the following regularity result.

Theorem
Given J = n, there exists {gj}nj=1 such that the system for
v = (δγ, δσ, δµ, δu1, . . . , δuJ) augmented with Dirichlet BC is elliptic.
Moreover, we have the following estimate

J+3∑
j=1

‖vj‖H l+tj (Ω)
≤ C

( 2J∑
j=1

‖Sj‖H l−sj (Ω)
+

3∑
j=1

‖φj‖
H l−σj−

1
2 (∂Ω)

)
+C2

∑
tj>0

‖vj‖L2(Ω),

for all l > n + 1
2 , provided that (γ, σ, µ, {uj}) are sufficiently smooth.
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The Inverse Problem

The Case of Three Coefficients (Γ, σ, µ)

The same result can be proved for the reconstruction of (Γ, σ, µ).

However, we can NOT prove the same result for the case of
reconstructing all four coefficients (Γ, σ, µ, γ).
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The Inverse Problem

Numerical Reconstructions with Synthetic Data

Figure 3: Simultaneously recovered (σ, µ) using direct algorithm, from left to
right are using synthetic data with η = 0,1,2,5.
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The Inverse Problem

Numerical Reconstructions with Synthetic Data

Figure 4: Simultaneously recovered (σ, µ) using optimization algorithm, from
left to right are using synthetic data with η = 0,1,2,5.
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