

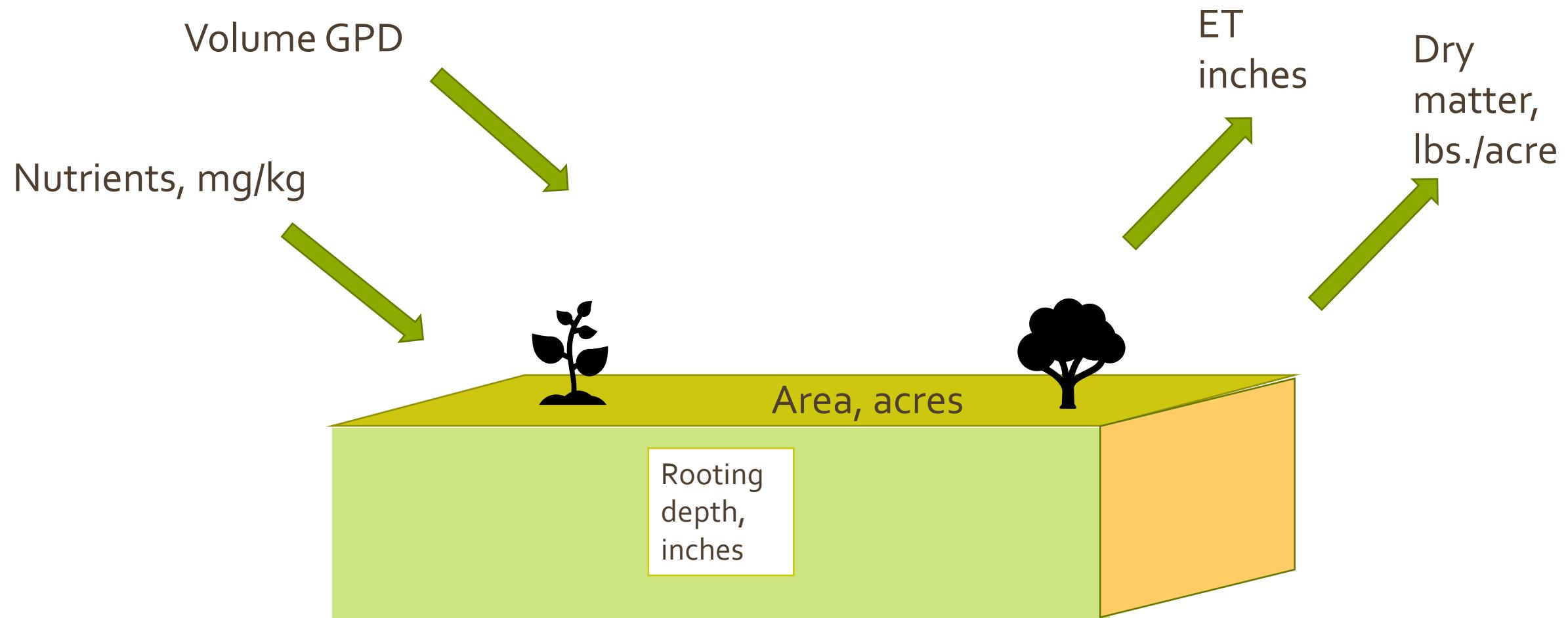
Texas Land Application Permits – Agronomy Reviews

Mara Guerin
Water Quality Assessment Team, Water Quality Division
June 4, 2025

Texas Land Application Permits (TLAPs)

- Types of TLAPs
 - Evaporation – 30 TAC 309
 - Surface irrigation – 30 TAC 309
 - Subsurface irrigation – 30 TAC 309
 - Subsurface Area Drip Dispersal System (SADDS) – 30 TAC 222

TLAP Permit Application Forms


- Domestic Wastewater Permit Application, Technical Reports – Form TCEQ-10054
 - Domestic Worksheet 3.0 – Land Application of Effluent
 - Domestic Worksheet 3.1 – Surface Land Disposal of Effluent
 - Domestic Worksheet 3.2 – Subsurface Land Disposal of Effluent
 - Domestic Worksheet 3.3 – Subsurface Area Drip Dispersal Systems (SADDS)

Water Quality Assessment Team TLAP Reviews

- Two types of technical reviews
 - Geology
 - Agronomy

Agronomy Reviews

TLAP System

Agronomy Overview

- Ensure system is designed for no discharge into ground or surface waters. All the effluent applied is to remain in the root zone and/or be utilized by the plants.
- Soil properties must be adequate to temporarily hold the proposed effluent and to prevent ponding.
- Proposed crops must uptake all nutrients applied to prevent accumulation in soil.
- Recommendations to permit writer are based on site-specific conditions, such as climactic conditions and the use of native plants.

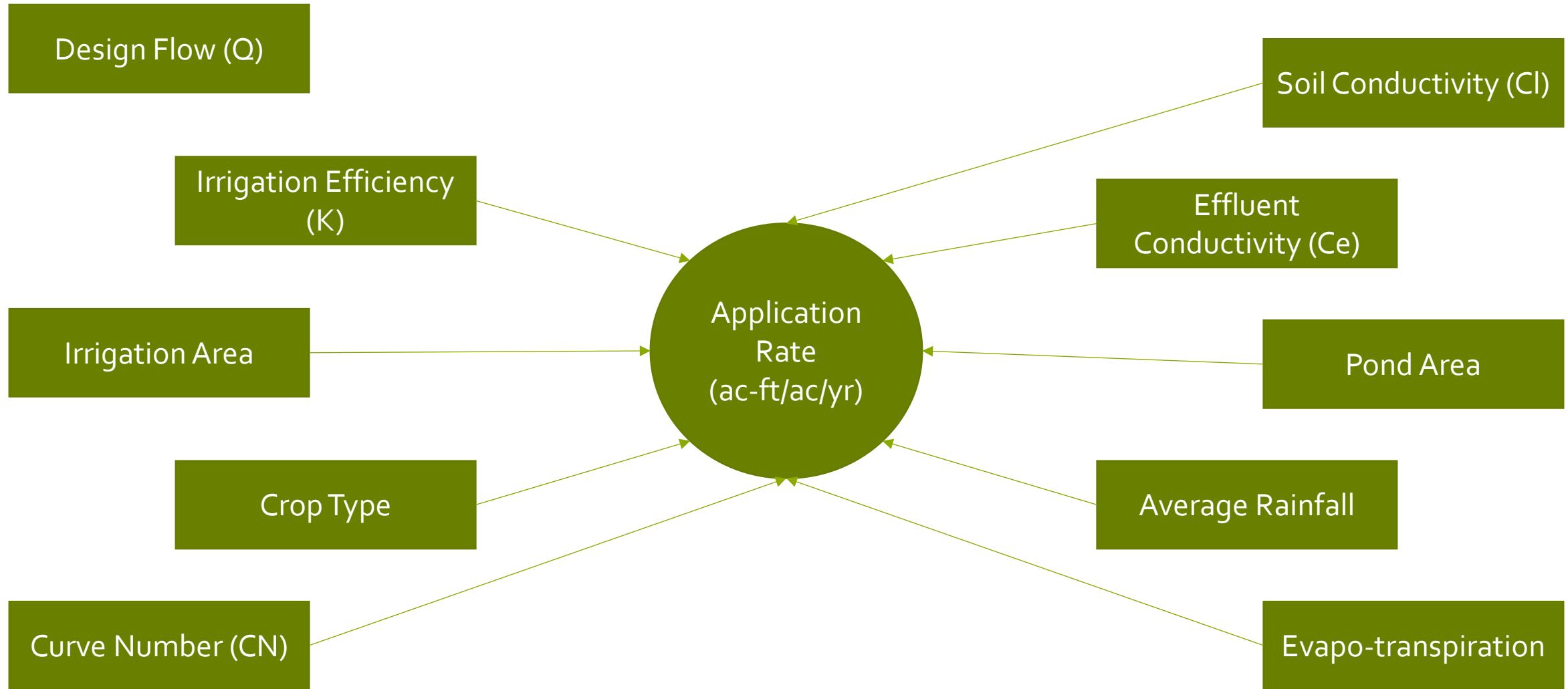
Application Completeness

- Daily application rate
- Size, slope, and location
- Cropping plan
- Natural Resource Conservation Service (NRCS) soil map of actual area
- Quality of irrigation effluent
- Soil analyses results
- Site preparation plan
- Land use – hayland, golf course, park, etc.

Cropping Plan

- Soil map with crops
- Cool and warm season plant species
- Crop yield goals
- Crop growing season
- Crop nutrient requirements – S Crops Table
- Additional fertilizer requirements
- Minimum/maximum harvest height (for grass crops)
- Supplemental watering requirements
- Crop salt tolerances
- Harvesting method/number of harvests
- Justification for not removing existing vegetation to be irrigated

NRCS Soil Map



- Map out actual application area instead of entire property.
- Identify soil depth, permeability, available water capacity, and curve number from available information on Web Soil Survey.
 - Hydrologic soil groups and soil types
- Identify whether any of the properties could have an adverse effect on potential application rate.

Soil Analyses

- Analyses of soil depths of 0-6 in., 6-18 in., 18-30 in.
 - pH
 - Electrical conductivity
 - Nitrate – nitrogen
 - Total Kjeldahl nitrogen
 - Plant – available phosphorus
 - Plant – available potassium
 - Amendment addition

Water Balance for Surface Spray Systems

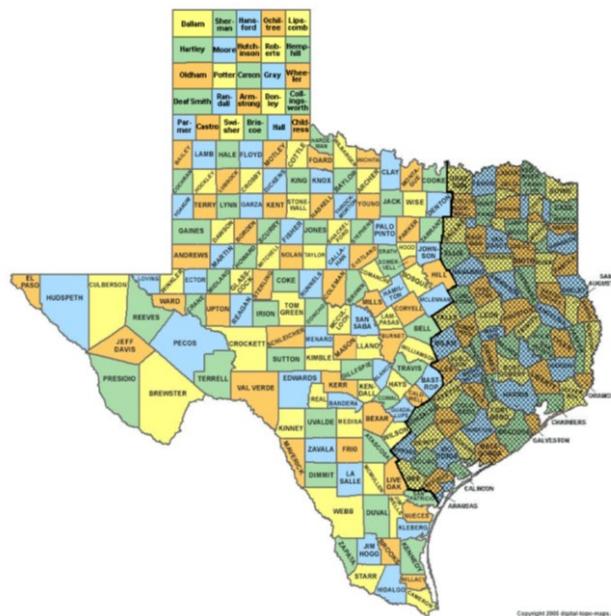
Input Values

- Curve Number (CN) - TR-55, Urban Hydrology for Small Watersheds, USDA/NRCS
- Soil Conductivity (Cl) - Provided in application through “Maximum Allowable Conductivity of Soil Solution” table in 30 TAC 309.20
- Effluent Conductivity (Ce)- Provided in application through effluent analyses
- Pond and irrigation areas – Provided in application
- Effluent Efficiency (K) - 0.85, unless the irrigation manufacturer supports a different value
- Design Flow (Q) - Provided in application
- Average rainfall – Texas Water Development Board (TWDB), Water Data for Texas website
- Evapotranspiration – Texas Board of Water Engineers Bulletin 6019 (July 1962)

Spreadsheet/model

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9a)	(9b)	(10)	(11)
Month	Avg	Avg	Avg	Evapo-	Required	Total	Effluent	Raw	Reservoir	Effluent	Reservoir
	Rain	Runoff	Infilt	trans.	Leach	Water	Needed	Net	Net Evap.	Needed	Consumption
			Rainfall			Needs	in	Evap.	(as inches	Based on	(as inches
							Root	from	on plot	Irrigation	on plot
							Zone	Reservoir	acres)	Efficiency	acres)
Units →	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches	inches
January	1.53	0.25	1.28	0.99	0.00	0.99	0.00	1.06	0.12	0.00	0.12
February	2.08	0.53	1.55	1.35	0.00	1.35	0.00	0.67	0.07	0.00	0.07
March	2.68	0.91	1.77	3.33	0.34	3.67	1.89	1.48	0.16	2.23	2.39
April	2.72	0.93	1.79	4.05	0.49	4.54	2.75	2.48	0.28	3.24	3.52
May	4.11	1.98	2.14	7.20	1.09	8.29	6.16	1.23	0.14	7.25	7.38
June	3.59	1.57	2.02	8.10	1.31	9.41	7.39	3.32	0.37	8.69	9.06
July	2.13	0.56	1.57	8.37	1.47	9.84	8.27	5.86	0.65	9.73	10.38
August	2.56	0.83	1.73	5.31	0.77	6.08	4.35	5.06	0.56	5.12	5.68
September	2.85	1.03	1.83	6.03	0.91	6.94	5.11	2.99	0.33	6.01	6.34
October	3.10	1.20	1.90	4.68	0.60	5.28	3.38	1.81	0.20	3.98	4.18
November	2.13	0.56	1.57	1.89	0.07	1.96	0.39	1.18	0.13	0.45	0.58
December	1.51	0.24	1.27	0.81	0.00	0.81	0.00	0.92	0.10	0.00	0.10
Totals	31.00	10.57	20.43	52.11	7.05	59.16	39.69	28.06	3.12	46.69	49.81

Permitted application rate


Output

- Application rate in ac-ft/ac/year
- Final application rate is the most stringent of the following:
 - Calculated volume/acreage/time
 - Nutrient limited rate
 - Water balance
 - Applicant requested rate

Subsurface systems

- Gravity drainfields
- Low pressure dosing
- Percolation systems

Figure 1: 30 TAC §222.83(a)(2)

- 30 TAC §222.839(a)(1)
 - Application rate of 0.1 gal/ft²/day unless otherwise proven by applicant.
- 30 TAC §222.839(a)(1)

Figure 2: 30 TAC 222.83(a)(2)

$$AR = ET - RAINe + LEACH$$

Where:

ET_a = $ET_c \times K_c$ – the actual water requirement of crop (in mm)

ET₀ = potential evapotranspiration (inches per month)

Kc = crop coefficient (decimal) Kc ranges from 0.5 to 1.0

RAINe = RAIN x EF%, the effective rainfall

RAIN = total rainfall (inches per month)

EF% = effective rainfall percentage is the portion of rainfall/precipitation (inches) that infiltrates into the soil. An EF% of any value other than 0.67

LEACH = leaching volume (inches per month). The leaching fraction may be determined using the electrical conductivity (millimhos/cm at 25° C) of the applied water and targeted soil salinity level (see §309.20(b)(3)(A) of this title (relating to Land Disposal of Sewage Effluent); or

Figure 3: 30 TAC §222.83(a)(2)

SMa = ET - RAINe + LEACH - AB

Where

SMa - change in available soil moisture and is calculated from the soil depth and soil water holding capacity. Soil water holding capacity is defined as the volume of water (inches) held in the soil between field capacity and permanent wilting point.

Important Special Provisions

- Effluent is not to be applied during rainfall events or when the ground is frozen or saturated.
- Land application fields are to be monitored to ensure vegetation and soils are in good condition.
- Irrigation practices are to be managed to prevent pooling of effluent.
- Crop shall be harvested at least once a year (cut and clippings removed from the field).
- SAADS-specific – must maintain a minimum root-able soil depth of 12 inches below the drip irrigation lines

Site-Specific Special Provisions

- Can include
 - Removing large rocks
 - Adding topsoil to insure adequate rooting zone
 - Best management practices
 - Specific application and rest period frequencies
 - Effluent nutrient analyses and loading calculations

Any questions?

Ask now or feel free to call the WQAT Agronomists:

Mara Guerin - 512-239-4532

Sara Holmes - 512-239-4534

Alan Barraza - 512-239-4642