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Background:Tikhonov Regularization for lll-Posed Problems

lll-Posed Equations in the presence of noise

Ax=~b AeR™"
b = byue +7, noise n ~ N(0,Cy)

Tikhonov Regularization:

x()) = argmin{|| Ax — b|[3, + 2| L(x — x0)[13}

xcRn

Mapping L defines basis for x
Prior xg
Weighting Wy, = C;%, |lyllw,, = y' Wyy. Whitens noise in b.

Requires automatic estimation of \




Regularization Parameter Estimation using the SVD: Examples (m = n)

For L invertible, and SVD W,l,/ AL = UzVT, 3 = diag(o;).
Find \°P* from e.g.
Unbiased Predictive Risk Minimize functional

n

\2 -
U(\):Z(cr?Jr\‘Z) (u; b) +ZZ 02+ \2

=1

Morozov Discrepancy Principle Given parameter v, solve

n

L 2
M\ =) (02 :\2) (u/'b)? —vn =0

=1

GCV : Minimize rational function

n \2 2 = n \2 —2
o (5 (o) ()

Not practical for large scale problems




Regularization of the LSQR solution: Questions

(i) Determine optimal ¢ The choice of the subspace impacts the
regularizing properties of the iteration: For large ¢
noise due to numerical precision and data error
enters the projected space.

(i) Determine optimal (; How do regularization parameter
techniques translate to the projected problem?

(iif) Relation optimal {; and optimal \ Given ¢ how well does
optimal (; for projected space yield optimal \ for
full space, or when is this the case?



Needed Properties and Definitions:

Interlace Properties Singular values, ~;, of By, o; of A, interlace

oy 2 Vi >0 2 W% >agn 2 .

Residuals Full, rl(x,), and projected, rP™i(w,),
rfll(x,) = Ax; — b = AGiw; — f1Hipre) T

1 roj
— Ht+1(BtWt — ﬁle§t+ )) T Ht+11'p J(Wt)-

Pseudoinverse Use AT()\) = (AT A + 2\2I)~1 AT for pseudo
inverse of [A; \I], then

wi(Ct) = Bi(B' B + CtQIt)_lBtTe(ltﬂ) = §1Btt(€bt)egt+l)
= (G"ATAG, + (*I,)'G," A"b = (AG,)1(¢,)b.

Influence A()\) = AAT()) for the influence matrix, likewise
(AG:)(Ct) = AGH(AG)T(C).



Calculating Unbiased Predictive Risk using w;(\)[RVA15]

Full problem
APt = argmin{ ™ (x(1)) |5 + 2 Tr(A())) — m} = argmin{U™(})}.
A A

Using the projected solution for parameter \ and
Tr ((AG:)(1)) = Tr (Bi()))

UML) = | (AG:)() — Im) blI3 + 2 Tr (AG,) (1)) —m
= [181(Be(A) = Iis1)el™ [l + 2 Te(By(Y)) — m

(ot for U™ (1) can be estimated given projected SVD




Deriving UPRE for the projected problem

Is \°P* relevant to (;°P" for the projected problem?

Noise in the right hand side For b = b€ + 5, n ~ N(0, I,,,)

B1 eH_l t+1b H+1btme + Ht+177

Noise in projected right hand side e}, satisfies
HT 1 ~N(0, I141)

Immediately

UP™I(¢y) = [|B1(Be(Ce) — Terr)el VI3 + 2 Te(Be(Cr)) — (¢ + 1)
= UM () +m— (t+1).

Minimizer of UP™i(¢,) is minimizer of U™ (¢,)




(;°P* calculated for projected problem may not yield °P* on full problem

(;°P* depends on ¢, \°P' depends on m* =: min(m,n)

Trace Relations By linearity and cycling.

Tr(A())) = (A(ATA 4+ X1)1AT) = n — 2T ((ATA + 221,) 7))
=m" — \QZ c + \2) =R

Immediately Tr(B;((:)) =t — (2 i (2 +¢2)~ L.
Interlacing Foro; ~ v, 1 <i<t,0?/(c? + %) =0,i >t

Tr(A(\) =t —A?) (67 + X371+ (m* —t) — \? Z (@2 + X2
=1

i=t+1

~ Te(By(\) + (m* —t) — A2 Y~ (07 + %)~ = Te(By())).
i=i+1

If t approx numerical rank A, ¢;°?' =~ \°P* for K, (AT A, ATb)




Other Estimation Techniques for the Projected Problem

GCV: [CNOO08] weighted GCV is introduced for w > 0.

proj o “rpmj(wt(ct))”% % roj
G J(C“w)_('Ik(wBt(c,)—Im))?’ G()\) = GP™i(),1).

Optimal Analysing as for UPRE: w = =L < 1.

Discrepancy Principle Seek ) such that |[rfll(x(1))||3 = § =~ m.
To avoid over smoothing: § = vm, v > 1

Discrepancy for the Projected Problem Seek (; such that

[P (we(Ce)) I3 = 07" = v(t +1).

We do not obtain in these cases (;°P" ~ \°P!




Numerical lllustrations 1d Underdetermined Cases

Regularization Tools phillips: Picard condition not satisfied,
shaw: severely ill-posed, and gravity d = .75
severely ill-posed, d = .25 less severe.

Noise levels SNR approx —10log 10(ny/m) for noise level .
Underdetermined m = 152 and n = 304. 50% undersampling.

(a) phillips, (b) gravity, d = (€) shaw, n = .005 (d) gravity, d =
N = .005 .25, N = .005 .75, N = .005

Figure: lllustrative test data high noise = .005 for 5 sample right
hand side data. Exact data are solid lines



Significance of Reorthogonalization: Clustering of singular values
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(@) phillips: R (b) gravity: R (c) shaw: R (d) gravity: R
d=.25 d= .75
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L

(e) phillips: (f) gravity: NR (g) shaw: NR (h) gravity: NR
NR d= .25 d=.75

Figure: Singular values against index for B,, increasing 1 compared to
A. With and without reorthogonalization (R) and (NR) in 2(a)-2(b) and
2(e)-2(f), resp.. Notice clustering of spectral values without high

accuracy reorthogonalization.



Average Relative Error over 50 samples: Reorthogonalized
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(c) shaw (d) gravity,d =.75

UPRE and WGCV may outperform GCV for small ¢




Observations

» For the most severe case: gravity d = .75 UPRE and
WGCYV yield optimal results

» PMDP gives good results small 7 but blows up.

» For these examples optimal solutions live on a small
projected space.

» Small scale demonstrates the theoretical analysis.

» WGCV and UPRE perform similarly and stabilize with
respect to t.



Identifying optimal subspace size ¢

Noise revealing function: [HPS09] suppose ¢; and 3; on
diagonal and sub diagonal of B;

t

p(t) = [ [ (6i/Bj+1)

7=1

Optimal ¢ is given by (for user determined t™")

(°P"% — min{argmax(p(t))} + step

t>tmin

step= 2 is to assure that noise has entered the entries in
p(t) and hence the basis.

™ js chosen based on examination of p(7).

Only useful if discrete Picard condition holds [HPS09].




Identifying optimal subspace size :

Minimization of the GCV for the truncated SVD of B;- [CKO15]
Projected subspace size is defined to be t*

G(t,t*) 72 Z u b|?.

t+1

Optimal ¢ is given by

topt—g — argmln g(te t*)
L

Does not require Picard condition, but :°°*~Y depends on t*




Significance of reorthogonalization: Estimating ¢
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d=.75

LAl LLdigan

(e) phillips NR (f) gravity NR (g) shawNR (h) gravity NR
d=.25 d=.75

Figure: Noise revealing function p(7).



Two dimensional image deblurring [NPP04] Problem size 256 x 256

(@) True (b) Data

(d) True (e) Data (f) PSF

Figure: Data for grain and satellite images with blur by the given point
spread function and noise level 10%.



Noise Revealing Function p(7): comparing t°Pt—¢, toPt=0 jopt—min

—-<—:®

—lzg
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(@) grain (b) satellite

Figure: p(t) using t™® = 25. Dashed-dot t°P*—* magenta t°P*~¢ and
black topt—min |ocation of minimum for p(#) plus step.



Evaluating Image Quality : Relative error

(@) grain RE (b) satel1ite RE

Figure: Relative error (RE) with increasing ¢. Solid line in each case
Is solution with projection and without regularization.

UPRE, WGCV and PMDP outperform GCV




Solutions for different t°Pt: (MIN, (oPt—min ;opt—G ;opt—p) Nojse level 10%

(d) 29

¢ e

(h) 27

Figure: UPRE to find ¢ and comparing to solutions obtained for
fopt—p topt—min gnd topt—¢ g compared to solution with minimum
error, MIN, (a) and (e).

Solutions inadequate




Iteratively Reweighted Regularization [LK83]

Minimum Support Stabilizer Regularization operator L¥).

(E9Ns = (=" " —x" P +8TE g0

Parameter 3 ensures L*) invertible
Invertibility use (L*))~! as right preconditioner for A

(L(k));;l _ ((ng—l) . ng—Q))‘z 4 ﬂ2)1/2 6 >0

Initialization L(©) =T, x(9) = x,. (might be 0)

Reduced System When 3 = 0 and x,(;k-l) = x,§’°‘2’ remove
column i, matrix is A.

Update Equation Solve Ay ~r = b — Ax*—1). With correct
iIndexing set y; = y; if updated, else y; = 0.

Cost of L(*) is minimal




Solutions °P* after two steps IRR: (MIN, t°Pt—min topt—G opt—p)

(e) 35 (f) 71 (g) 69 (h) 27

Figure: IRR k = 2 Grain k = 2 MIN solution is at t°P*=™" show k = 3.

Solutions are stabilized less dependent on ¢




Relative error with k: 5% error
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Figure: Relative errors decrease initially with k and then increase.
Dashed-dot t°P*—? magenta t°P*—9, black t°pt—min,



Noise revealing function p(7) with k 5% error

5 10 15 20 25 5 10 15§ 20 23

(a) Grain p(t) (b) Satellite

Figure: Determining #°P* with k for 5% noise using p(t). Stopping
Critera : Grain k = 4 noise enters, use k = 2. Satellite £ = 3 noise
enters, use k = 1.



Sparse tomographic reconstruction: walnut [HHK™15, HKK™13]

Projection Problem Resolution of data 164 x 120.
Downsampling 50%, 25%, eg m = 164 x 60, m = 164 x 30
Resolution Full problem is 164 x 164

(@) p(t) for increasing sparsity




Solutions at 1°P*— =8

fmin — 5
e = §,
sampling at

12°  intervals,
30 projections.
Comparison

from [HKK*13],
sparsity  with
prior, and reso-
lution 256 x 256

() Comparison (m) GCV:k =0 (n) GCVik =2

Stablized Projection no characteristic TV blocky structure




Conclusions

UPRE/WGCV regularization parameter estimation explained
for projected problem.

¢,°Pt, \°Pt related across levels
Underdetermined problems are also solved.

lteratively Reweighted Regularization stabilizes the projected
solution

Sensitivity to choice of °P* reduced by IRR

t°P' can be estimated using p(#), use t°Pt*—™i" gg
iIndependent of other parameters

Future

() extend to more realistic large scale problems
(i) embed in TV solvers

(ili) alternative iterative methods/randomized
approaches



