Regularization Parameter Estimation: Stabilization of LSQR Algorithms by Iterative Reweighting

Rosemary Renaut¹ Saeed Vatankhah²

1: School of Mathematical and Statistical Sciences, Arizona State University

2: University of Tehran

SIAM Applied Linear Algebra, October 2015

Outline

Background: Tikhonov Regularization for III-Posed Problems Standard Approaches to Estimate Regularization Problem

Parameter estimation on the projected problem

UPRE is a good estimator [RVA15]

Identifying the weight parameter in the GCV [CNO08]

Numerical Illustrations

Numerical Illustrations 1d Underdetermined Cases

Identifying the optimal Subspace

Appearance of Noise in the Subspace [HPS09]

Minimization of the GCV for the truncated SVD [CKO15]

Simulations: Two dimensional Examples

Iteratively Reweighted Regularization [LK83]

Conclusions

Background: Tikhonov Regularization for III-Posed Problems

III-Posed Equations in the presence of noise

$$A\mathbf{x} \approx \mathbf{b}$$
 $A \in \mathbb{R}^{m \times n}$
 $\mathbf{b} = \mathbf{b}_{\mathsf{true}} + \boldsymbol{\eta}$, noise $\boldsymbol{\eta} \sim \mathbb{N}(0, C_{\boldsymbol{\eta}})$

Tikhonov Regularization:

$$\mathbf{x}(\lambda) = \underset{\mathbf{x} \in \mathbb{R}^n}{\operatorname{argmin}} \{ \|A\mathbf{x} - \mathbf{b}\|_{W_{\eta}}^2 + \lambda^2 \|L(\mathbf{x} - \mathbf{x}_0)\|_2^2 \}$$

Mapping L defines basis for x

Prior x_0

Weighting $W_{\eta} = C_{\eta}^{-1}$, $\|\mathbf{y}\|_{W_{\eta}} = \mathbf{y}^T W_{\eta} \mathbf{y}$. Whitens noise in b.

Requires automatic estimation of λ

Regularization Parameter Estimation using the SVD: Examples (m = n)

For L invertible, and SVD $W_{\eta}^{1/2}AL^{-1}=U\Sigma V^T$, $\Sigma=\mathrm{diag}(\sigma_i)$. Find λ^{opt} from e.g.

Unbiased Predictive Risk Minimize functional

$$U(\lambda) = \sum_{i=1}^{n} \left(\frac{\lambda^2}{\sigma_i^2 + \lambda^2} \right)^2 (\mathbf{u}_i^T \mathbf{b})^2 + 2 \sum_{i=1}^{n} \frac{\sigma_i^2}{\sigma_i^2 + \lambda^2}$$

Morozov Discrepancy Principle Given parameter ν , solve

$$M(\lambda) = \sum_{i=1}^{n} \left(\frac{\lambda^2}{\sigma_i^2 + \lambda^2}\right)^2 (\mathbf{u}_i^T \mathbf{b})^2 - \nu n = 0$$

GCV: Minimize rational function

$$G(\lambda) = \left(\sum_{i=1}^{n} \left(\frac{\lambda^2}{\sigma_i^2 + \lambda^2}\right)^2 (\mathbf{u}_i^T \mathbf{b})^2\right) \left(\sum_{i=1}^{n} \frac{\lambda^2}{\sigma_i^2 + \lambda^2}\right)^{-2}$$

Not practical for large scale problems

Regularization of the LSQR solution: Questions

- (i) Determine optimal t The choice of the subspace impacts the regularizing properties of the iteration: For large t noise due to numerical precision and data error enters the projected space.
- (ii) Determine optimal ζ_t How do regularization parameter techniques translate to the projected problem?
- (iii) Relation optimal ζ_t and optimal λ Given t how well does optimal ζ_t for projected space yield optimal λ for full space, or when is this the case?

Needed Properties and Definitions:

Interlace Properties Singular values, γ_i , of B_t , σ_i of A, interlace

$$\sigma_1 \geq \gamma_1 \geq \sigma_2 \cdots \geq \gamma_t \geq \sigma_{t+1} \geq 0.$$

Residuals Full, $\mathbf{r}^{\text{full}}(\mathbf{x}_t)$, and projected, $\mathbf{r}^{\text{proj}}(\mathbf{w}_t)$,

$$\mathbf{r}^{\text{full}}(\mathbf{x}_t) = A\mathbf{x}_t - \mathbf{b} = AG_t\mathbf{w}_t - \beta_1 H_{t+1} \mathbf{e}_1^{(t+1)}$$
$$= H_{t+1}(B_t\mathbf{w}_t - \beta_1 \mathbf{e}_1^{(t+1)}) = H_{t+1}\mathbf{r}^{\text{proj}}(\mathbf{w}_t).$$

Pseudoinverse Use $A^{\dagger}(\lambda) = (A^TA + \lambda^2 I)^{-1}A^T$ for pseudo inverse of $[A; \lambda I]$, then

$$\mathbf{w}_t(\boldsymbol{\zeta}_t) = \beta_1 (B_t^T B_t + \boldsymbol{\zeta}_t^2 I_t)^{-1} B_t^T \mathbf{e}_1^{(t+1)} = \beta_1 B_t^{\dagger}(\boldsymbol{\zeta}_t) \mathbf{e}_1^{(t+1)}$$
$$= (G_t^T A^T A G_t + \boldsymbol{\zeta}_t^2 I_t)^{-1} G_t^T A^T \mathbf{b} = (A G_t)^{\dagger}(\boldsymbol{\zeta}_t) \mathbf{b}.$$

Influence $A(\lambda) = AA^{\dagger}(\lambda)$ for the influence matrix, likewise $(AG_t)(\zeta_t) = AG_t(AG_t)^{\dagger}(\zeta_t)$.

Calculating Unbiased Predictive Risk using $\mathbf{w}_t(\lambda)$ [RVA15]

Full problem

$$\lambda^{\text{opt}} = \underset{\lambda}{\operatorname{argmin}} \{ \|\mathbf{r}^{\text{full}}(\mathbf{x}(\lambda))\|_{2}^{2} + 2\operatorname{Tr}(A(\lambda)) - m \} = \underset{\lambda}{\operatorname{argmin}} \{ U^{\text{full}}(\lambda) \}.$$

Using the projected solution for parameter λ and $\operatorname{Tr}((AG_t)(\lambda)) = \operatorname{Tr}(B_t(\lambda))$

$$U^{\text{full}}(\lambda) = \| ((AG_t)(\lambda) - I_m) \mathbf{b} \|_2^2 + 2 \operatorname{Tr} ((AG_t)(\lambda)) - m$$

= $\| \beta_1(B_t(\lambda) - I_{t+1}) \mathbf{e}_1^{t+1} \|_2^2 + 2 \operatorname{Tr} (B_t(\lambda)) - m$

 λ^{opt} for $U^{\mathrm{full}}(\lambda)$ can be estimated given projected SVD

Deriving UPRE for the projected problem

Is λ^{opt} relevant to ζ_t^{opt} for the projected problem?

Noise in the right hand side For $\mathbf{b} = \mathbf{b}^{\mathsf{true}} + \boldsymbol{\eta}, \, \boldsymbol{\eta} \sim \mathbb{N}(0, I_m)$

$$\beta_1 \mathbf{e}_1^{t+1} = H_{t+1}^T \mathbf{b} = H_{t+1}^T \mathbf{b}^{\mathsf{true}} + H_{t+1}^T \boldsymbol{\eta}.$$

Noise in projected right hand side $\beta_1 \mathbf{e}_1^{t+1}$, satisfies $H_{t+1}^T \boldsymbol{\eta} \sim \mathbb{N}(0, I_{t+1})$

Immediately

$$U^{\text{proj}}(\zeta_t) = \|\beta_1(B_t(\zeta_t) - I_{t+1})\mathbf{e}_1^{(t+1)}\|_2^2 + 2\operatorname{Tr}(B_t(\zeta_t)) - (t+1)$$
$$= U^{\text{full}}(\zeta_t) + m - (t+1).$$

Minimizer of $U^{\mathrm{proj}}(\zeta_t)$ is minimizer of $U^{\mathrm{full}}(\zeta_t)$

 ζ_t^{opt} calculated for projected problem may not yield λ^{opt} on full problem

 ζ_t^{opt} depends on t, λ^{opt} depends on $m^* =: \min(m, n)$

Trace Relations By linearity and cycling.

$$\operatorname{Tr}(A(\lambda)) = \operatorname{Tr}(A(A^{T}A + \lambda^{2}I_{n})^{-1}A^{T}) = n - \lambda^{2}\operatorname{Tr}((A^{T}A + \lambda^{2}I_{n})^{-1})$$
$$= m^{*} - \lambda^{2}\sum_{i=1}^{m^{*}} (\sigma_{i}^{2} + \lambda^{2})^{-1}.$$

Immediately $\text{Tr}(B_t(\zeta_t)) = t - \zeta_t^2 \sum_{i=1}^t (\gamma_i^2 + \zeta_t^2)^{-1}$. Interlacing For $\sigma_i \approx \gamma_i$, $1 \le i \le t$, $\sigma_i^2/(\sigma_i^2 + \lambda^2) \approx 0$, i > t,

$$\operatorname{Tr}(A(\lambda)) = t - \lambda^2 \sum_{i=1}^t (\sigma_i^2 + \lambda^2)^{-1} + (m^* - t) - \lambda^2 \sum_{i=t+1}^{m^*} (\sigma_i^2 + \lambda^2)^{-1}$$

$$\approx \operatorname{Tr}(B_t(\lambda)) + (m^* - t) - \lambda^2 \sum_{i=t+1}^{m^*} (\sigma_i^2 + \lambda^2)^{-1} \approx \operatorname{Tr}(B_t(\lambda)).$$

If t approx numerical rank A, $\zeta_t^{\text{opt}} \approx \lambda^{\text{opt}}$ for $\mathcal{K}_t(A^T A, A^T \mathbf{b})$

Other Estimation Techniques for the Projected Problem

GCV: [CNO08] weighted GCV is introduced for $\omega > 0$.

$$G^{\text{proj}}(\zeta_t, \omega) = \frac{\|\mathbf{r}^{\text{proj}}(\mathbf{w}_t(\zeta_t))\|_2^2}{\left(\text{Tr}(\omega B_t(\zeta_t) - I_{t+1})\right)^2}, \quad G(\lambda) = G^{\text{proj}}(\lambda, 1).$$

Optimal Analysing as for UPRE: $\omega = \frac{t+1}{m} < 1$.

Discrepancy Principle Seek λ such that $\|\mathbf{r}^{\text{full}}(\mathbf{x}(\lambda))\|_2^2 = \delta \approx m$. To avoid over smoothing: $\delta = vm$, v > 1

Discrepancy for the Projected Problem Seek ζ_t such that

$$\|\mathbf{r}^{\text{proj}}(\mathbf{w}_t(\zeta_t))\|_2^2 \approx \delta^{\text{proj}} = \upsilon(t+1).$$

We do not obtain in these cases $\zeta_t^{\rm opt} \approx \lambda^{\rm opt}$

Numerical Illustrations 1d Underdetermined Cases

Regularization Tools phillips: Picard condition not satisfied, shaw: severely ill-posed, and gravity d=.75 severely ill-posed, d=.25 less severe.

Noise levels SNR approx $-10 \log 10 (\eta \sqrt{m})$ for noise level η . Underdetermined m = 152 and n = 304. 50% undersampling.

Figure: Illustrative test data high noise $\eta = .005$ for 5 sample right hand side data. Exact data are solid lines

Significance of Reorthogonalization: Clustering of singular values

Figure: Singular values against index for B_t , increasing t compared to A. With and without reorthogonalization (R) and (NR) in 2(a)-2(b) and 2(e)-2(f), resp.. Notice clustering of spectral values without high accuracy reorthogonalization.

Average Relative Error over 50 samples: Reorthogonalized

UPRE and WGCV may outperform GCV for small t

Observations

- For the most severe case: gravity d = .75 UPRE and WGCV yield optimal results
- PMDP gives good results small t but blows up.
- For these examples optimal solutions live on a small projected space.
- Small scale demonstrates the theoretical analysis.
- WGCV and UPRE perform similarly and stabilize with respect to t.

Identifying optimal subspace size t

Noise revealing function: [HPS09] suppose θ_j and β_j on diagonal and sub diagonal of B_t

$$\rho(t) = \prod_{j=1}^{t} (\theta_j/\beta_{j+1})$$

Optimal t is given by (for user determined t^{\min})

$$t^{\text{opt}-\rho} = \min\{\underset{t>t^{\min}}{\operatorname{argmax}}(\rho(t))\} + \text{step}$$

step= 2 is to assure that noise has entered the entries in $\rho(t)$ and hence the basis.

 t^{\min} is chosen based on examination of $\rho(t)$.

Only useful if discrete Picard condition holds [HPS09].

Identifying optimal subspace size t:

Minimization of the GCV for the truncated SVD of B_{t^*} [CKO15] Projected subspace size is defined to be t^*

$$G(t, t^*) = \frac{t^*}{(t^* - t)^2} \sum_{t+1}^{t^*} |\mathbf{u}_i^T \mathbf{b}|^2.$$

Optimal t is given by

$$t^{\text{opt}-\mathcal{G}} = \operatorname*{argmin}_{t} \mathcal{G}(t, t^*)$$

Does not require Picard condition, but $t^{\text{opt}-\mathcal{G}}$ depends on t^*

Significance of reorthogonalization: Estimating t

Figure: Noise revealing function $\rho(t)$.

Two dimensional image deblurring [NPP04] Problem size 256×256

Figure: Data for grain and satellite images with blur by the given point spread function and noise level 10%.

Noise Revealing Function $\rho(t)$: comparing $t^{\text{opt}-\rho}$, $t^{\text{opt}-\mathcal{G}}$, $t^{\text{opt}-\min}$

Figure: $\rho(t)$ using $t^{\min}=25$. Dashed-dot $t^{\text{opt}-\rho}$, magenta $t^{\text{opt}-\mathcal{G}}$ and black $t^{\text{opt}-\min}$, location of minimum for $\rho(t)$ plus step.

Evaluating Image Quality: Relative error

Figure: Relative error (RE) with increasing t. Solid line in each case is solution with projection and without regularization.

UPRE, WGCV and PMDP outperform GCV

Solutions for different t^{opt} : (MIN, $t^{\text{opt-min}}$, $t^{\text{opt-}\mathcal{G}}$, $t^{\text{opt-}\rho}$) Noise level 10%

Figure: UPRE to find ζ and comparing to solutions obtained for $t^{\text{opt}-\rho}$, $t^{\text{opt}-\min}$ and $t^{\text{opt}-\mathcal{G}}$ as compared to solution with minimum error, MIN, (a) and (e).

Solutions inadequate

Iteratively Reweighted Regularization [LK83]

Minimum Support Stabilizer Regularization operator $L^{(k)}$.

$$(L^{(k)})_{ii} = ((\mathbf{x}_i^{(k-1)} - \mathbf{x}_i^{(k-2)})^2 + \beta^2)^{-1/2} \quad \beta > 0$$

Parameter β ensures $L^{(k)}$ invertible Invertibility use $(L^{(k)})^{-1}$ as right preconditioner for A

$$(L^{(k)})_{ii}^{-1} = ((\mathbf{x}_i^{(k-1)} - \mathbf{x}_i^{(k-2)})^2 + \beta^2)^{1/2} \quad \beta > 0$$

Initialization $L^{(0)} = I$, $\mathbf{x}^{(0)} = \mathbf{x}_0$. (might be 0)

Reduced System When $\beta = 0$ and $\mathbf{x}_i^{(k-1)} = \mathbf{x}_i^{(k-2)}$ remove column i, matrix is \hat{A} .

Update Equation Solve $\hat{A}\hat{y} \approx \mathbf{r} = \mathbf{b} - A\mathbf{x}^{(k-1)}$. With correct indexing set $\mathbf{y}_i = \hat{\mathbf{y}}_i$ if updated, else $\mathbf{y}_i = 0$.

$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + \mathbf{y}$$

Cost of $L^{(k)}$ is minimal

Solutions t^{opt} after two steps IRR: (MIN, $t^{\text{opt-min}}$, $t^{\text{opt-}\mathcal{G}}$, $t^{\text{opt-}\mathcal{P}}$)

Figure: IRR k=2 Grain k=2 MIN solution is at $t^{\text{opt}-\min}$, show k=3.

Solutions are stabilized less dependent on t

Relative error with k: 5% error

Figure: Relative errors decrease initially with k and then increase. Dashed-dot $t^{\text{opt}-\rho}$, magenta $t^{\text{opt}-\mathcal{G}}$, black $t^{\text{opt}-\min}$.

Noise revealing function $\rho(t)$ with k 5% error

Figure: Determining t^{opt} with k for 5% noise using $\rho(t)$. Stopping Critera: Grain k=4 noise enters, use k=2. Satellite k=3 noise enters, use k=1.

Sparse tomographic reconstruction: walnut [HHK+15, HKK+13]

Projection Problem Resolution of data 164×120 . Downsampling 50%, 25%, eg $m = 164 \times 60$, $m = 164 \times 30$

Resolution Full problem is 164×164

250 $\frac{120}{50}$ $\frac{60}{30}$ $\frac{30}{15}$ $\frac{150}{50}$ $\frac{150}{50}$ $\frac{1}{15}$ $\frac{1}{15}$ $\frac{1}{20}$ $\frac{1}{25}$ $\frac{1}{30}$ $\frac{1}{30}$

 $\rho(t)$ quite consistent for small t and m.

Solutions at $t^{\text{opt}-\rho} = 8$

 $t^{\min} = 5$, $t^{\text{opt}-\rho} = 8$, sampling at 12° intervals, 30 projections. Comparison from [HKK+13], sparsity with prior, and resolution 256×256

Stablized Projection no characteristic TV blocky structure

Conclusions

UPRE/WGCV regularization parameter estimation explained for projected problem.

 ζ_t^{opt} , λ^{opt} related across levels

Underdetermined problems are also solved.

Iteratively Reweighted Regularization stabilizes the projected solution

Sensitivity to choice of t^{opt} reduced by IRR

 t^{opt} can be estimated using $\rho(t)$, use $t^{\mathrm{opt-min}}$ as independent of other parameters

Future

- (i) extend to more realistic large scale problems
- (ii) embed in TV solvers
- (iii) alternative iterative methods/randomized approaches