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Imaging Science Today

Due to the data deluge, the area of imaging science is of tremendous
importance in today’s world.

Main Tasks

Acquisition

Preprocessing
I Denoising, Inpainting, ...

Analysis
I Feature Detection, ...

Storing
I Compression, ...

What has Applied Harmonic Analysis to offer?
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Applied Harmonic Analysis

Representation systems designed by Applied Harmonic Analysis concepts
have established themselves as a standard tool in applied mathematics,
computer science, and engineering.

Examples:

Wavelets.

Ridgelets.

Curvelets.

Shearlets.

...

Key Property:
Fast Algorithms combined with Sparse Approximation Properties!
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An Applied Harmonic Analysis Viewpoint

Exploit a carefully designed representation system (ψλ)λ∈Λ ⊆ H:

H 3 f −→ (〈f , ψλ〉)λ∈Λ −→
∑
λ∈Λ

〈f , ψλ〉ψλ = f .

Desiderata:

Special features encoded in the “large” coefficients | 〈f , ψλ〉 |.
Efficient representations:

f ≈
∑
λ∈ΛN

〈f , ψλ〉ψλ, #(ΛN) small

Goals:

Modification of the coefficients according to the task.

Derive high compression by considering only the “large” coefficients.
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Two Main Viewpoints

Decomposition:

H 3 f −→ (〈f , ψλ〉)λ∈Λ.

Preprocessing (e.g. denoising).

Analysis (e.g. feature detection).

Clustering/Classification.

...

Efficient Representations:

f =
∑
λ∈Λ

cλψλ.

Compression.

Regularization of inverse problems.

Ansatz functions for PDE solvers.

...
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Sparsity

Novel Paradigm:

For each class of data, there exists a sparsifying system!

Two Viewpoints of ‘Sparsifying System’:
Let C ⊆ H and (ψλ)λ ⊆ H.

Decay of Coefficients. Consider the decay for n→∞ of the sorted
sequence of coefficients

(|〈x , ψλn〉|)n for all x ∈ C.

Approximation Properties. Consider the decay for N →∞ of the
error of best N-term approximation, i.e.,

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ for all x ∈ C.
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Sparsifying System

Functional Analytic Properties:

(ψλ)λ can be an orthonormal basis.

(ψλ)λ can form a frame, i.e., there exist 0 < A ≤ B <∞ with

A‖x‖2 ≤
∑
λ

|〈x , ψλ〉|2 ≤ B‖x‖2 for all x ∈ H.

Basic Facts about Frames:

The frame operator S : H → H, Sx =
∑

λ 〈x , ψλ〉ψλ is invertible.

The dual frame (ψ̃λ)λ := (S−1ψλ)λ yields

x =
∑
λ

〈x , ψλ〉 ψ̃λ =
∑
λ

〈x , ψ̃λ〉ψλ for all x ∈ H.

Some Advantages of Redundancy:

Flexibility in expansions x =
∑

λ cλψλ.

Robustness against loss of coefficients 〈x , ψλ〉.
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Notion of Optimality

Two Viewpoints of Optimality of (ψλ)λ: Let C ⊆ H.

Decay of Coefficients. β > 0 is largest (for all systems) with

|〈x , ψλn〉| . n−β as n→∞, for all x ∈ C.

Approximation Properties. γ > 0 is largest (for all systems) with

inf
#ΛN=N,(cλ)λ

∥∥∥x − ∑
λ∈ΛN

cλψλ

∥∥∥ . N−γ as N →∞, for all x ∈ C.

Situation of an ONB: For the best N-term approximation xN of x , we have

‖x − xN‖2 =
∑
λ6∈ΛN

|cλ|2 =
∑
n>N

|〈x , ψλn〉|
2

Situation of a Frame: For the N-term approximation xN=
∑

λ∈ΛN
〈x , ψλ〉 ψ̃λ

of x consisting of the N largest coefficients |〈x , ψλ〉|, we only have

‖x − xN‖2 ≤ 1

A

∑
n>N

|〈x , ψλn〉|
2 .
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Applied Harmonic Analysis

Desiderata:

Multiscale representation system.

Convenient structure: Operators applied to one generating function.

Partition of Fourier domain.

Space/frequency localization.

Fast algorithms: x 7→ (〈x , ψλ〉)λ  x .

Optimality for the considered class.
 In this Talk: Modeling natural images!

Gitta Kutyniok (TU Berlin) Applied Harmonic Analysis (Intro) SIAM IS16 9 / 11



Continuous versus Discrete

Continuous World:

Continuous index sets.

Resolution of Singularities/Wavefront sets.

More flexibility in scale → 0.

Allows strong theoretical results.

Discrete World:

Discrete index sets.

(Sparse) approximation properties.

More efficient numerical realization.
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Outline

1 Continuous World
Resolution of Singularities
Continuous Wavelet Transform
Continuous Shearlet Transform
Applications: Edge Detection, ...

2 Discrete World
Sparse Approximations
Discrete Wavelets
Directional Representation Systems: Curvelets, Shearlets,...
Applications: Inpainting, Magnetic Resonance Imaging, ...
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Applied Harmonic Analysis Approach

Selection of different Representation Systems:
Wavelets, Ridgelets, Curvelets, Shearlets,...

Main Desiderata:

Multiscale representation system.

Partition of Fourier domain.

Fast decomposition and reconstruction algorithm.

Optimally sparse approximation of the considered class.
 Here: Modeling natural images!
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Outline

1 Sparse Approximation of Images
Model Situation
Benchmark Result

2 Wavelets

3 Shearlets

4 Applications
Denoising
Feature Extraction
Inpainting
Magnetic Resonance Imaging

5 3D Shearlets
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What is an Image?

Intuitively edges are main structure.
Justified by neurophysiology.

Field et al., 1993
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Fitting Model

Definition (Donoho; 2001):
The set of cartoon-like functions E2(R2) is defined by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where ∅ 6= B ⊂ [0, 1]2 simply connected with C 2-boundary and bounded
curvature, and fi ∈ C 2(R2) with supp fi ⊆ [0, 1]2 and ‖fi‖C2 ≤ 1, i = 0, 1.

Theorem (Donoho; 2001):
Let (ψλ)λ ⊆ L2(R2). Allowing only polynomial depth search, we have the
following optimal behavior for f ∈ E2(R2):

‖f − fN‖2
2 � N−2 and |〈f , ψλn〉| . n−

3
2 as N, n→∞.
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Review of 2-D Wavelets

Definition (1D): Let φ ∈ L2(R) be a scaling function and ψ ∈ L2(R) be a
wavelet. Then the associated wavelet system is defined by

{φ(x −m) : m ∈ Z} ∪ {2j/2 ψ(2jx −m) : j ≥ 0,m ∈ Z}.

Definition (2D): A wavelet system is defined by

{φ(1)(x −m) : m ∈ Z2} ∪ {2jψ(i)(2jx −m) : j ≥ 0,m ∈ Z2, i = 1, 2, 3},

where ψ(1)(x) = φ(x1)ψ(x2),

φ(1)(x) = φ(x1)φ(x2) and ψ(2)(x) = ψ(x1)φ(x2),

ψ(3)(x) = ψ(x1)ψ(x2).

Theorem: Wavelets provide optimally sparse approximations for functions
f ∈ L2(R2), which are C 2 apart from point singularities:

‖f − fN‖2
2 � N−1, N →∞.
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Wavelet Decomposition: JPEG2000
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Wavelet Decomposition: JPEG2000

Original

25% Compression 5% Compression
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What can Wavelets do?

Problem:

For f ∈ E2(R2), wavelets only achieve ‖f − fN‖2
2 � N−1, N →∞.

Isotropic structure of wavelets:

{2jψ(

(
2j 0
0 2j

)
x −m) : j ≥ 0,m ∈ Z2}.

Wavelets cannot sparsely represent cartoon-like functions.

Intuitive explanation:
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Main Goal

Design a Representation System which...

...fits into the framework of affine systems,

...provides an optimally sparsifying system for cartoons,

...allows for compactly supported analyzing elements,

...is associated with fast decomposition algorithms,

...treats the continuum and digital ‘world’ uniformly.

Non-Exhaustive List of Approaches:

Ridgelets (Candès and Donoho; 1999)

Curvelets (Candès and Donoho; 2002)

Contourlets (Do and Vetterli; 2002)

Bandlets (LePennec and Mallat; 2003)

Shearlets (K and Labate; 2006)
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What is a Shearlet?
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Scaling and Orientation

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Historical remark:

1970’s: Fefferman und Seeger/Sogge/Stein.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Advantage:

Shearing leaves the digital grid Z2 invariant.

Uniform theory for the continuum and digital situation.
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Shearlet Systems

Affine systems:

{| detM|1/2ψ(M · −m) : M ∈ G ⊆ GL2, m ∈ Z2}.

Definition (K, Labate; 2006):
For ψ ∈ L2(R2), the associated shearlet system is defined by

{2
3j
4 ψ(SkA2j · −m) : j , k ∈ Z,m ∈ Z2}.

 Can be regarded as discretization of continuous shearlet systems!

Remarks:

Advantage: Generated by a unitary representation of the locally
compact group (R+ × R) nR2.

Disadvantage: Non-uniform treatment of directions.
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Example of Classical (Band-Limited) Shearlet

Let ψ ∈ L2(R2) be defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

),

where

ψ1 wavelet, supp(ψ̂1) ⊆ [−2,−1
2 ] ∪ [ 1

2 , 2] and ψ̂1 ∈ C∞(R).

supp(ψ̂2) ⊆ [−1, 1] and ψ̂2 ∈ C∞(R).
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(Cone-adapted) Shearlet Systems

Definition (K, Labate; 2006):
The (cone-adapted) shearlet system SH(c ;φ, ψ, ψ̃), c > 0, generated by
φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· − cm) : m ∈ Z2},

{23j/4ψ(SkA2j · −cm) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −cm) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2}.

Theorem (K, Labate, Lim, Weiss; 2006):
For ψ, ψ̃ classical shearlets, SH(1;φ, ψ, ψ̃) is a Parseval frame for L2(R2):

A‖f ‖2
2 ≤

∑
σ∈SH(φ,ψ,ψ̃)

|〈f , σ〉|2 ≤ B‖f ‖2
2 for all f ∈ L2(R2)

holds for A = B = 1.
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Compactly Supported Shearlets

Theorem (Kittipoom, K, Lim; 2012):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let φ̂, ψ̂, ˆ̃ψ satisfy
certain decay conditions. Then there exists c0 such that SH(c ;φ, ψ, ψ̃)
forms a shearlet frame with controllable frame bounds for all c ≤ c0.

Remark: Exemplary class with B/A ≈ 4.

Theorem (Guo, Labate; 2007)(K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let φ̂, ψ̂, ˆ̃ψ satisfy
certain decay conditions. Then SH(c ;φ, ψ, ψ̃) = (ση)η provides an
optimally sparsifying system for f ∈ E2(R2), i.e., for N, n→∞,

‖f − fN‖2
2 . N−2(logN)3 and |〈f , σηn〉| . n−

3
2 (log n)

3
2 .
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certain decay conditions. Then there exists c0 such that SH(c ;φ, ψ, ψ̃)
forms a shearlet frame with controllable frame bounds for all c ≤ c0.

Remark: Exemplary class with B/A ≈ 4.

Theorem (Guo, Labate; 2007)(K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let φ̂, ψ̂, ˆ̃ψ satisfy
certain decay conditions. Then SH(c ;φ, ψ, ψ̃) = (ση)η provides an
optimally sparsifying system for f ∈ E2(R2), i.e., for N, n→∞,

‖f − fN‖2
2 . N−2(logN)3 and |〈f , σηn〉| . n−

3
2 (log n)

3
2 .
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Heuristic Argument

Estimate:

‖f − fN‖2
2 .

∑
n>N

(|〈f , σηn〉|)2 .
∑
n>N

(n−
3
2 )2 . N−2.

Case 1:

|〈f , ση〉| negligible!

Case 2:
|〈f , ση〉| negligible!

Case 3:
|〈f , ση〉| ≤ ‖f ‖∞‖ση‖1 . 2−

3
4
j

 |〈f , σηn〉| . n−
3
2
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Curvelets

Definition (Candès, Donoho; 2002):
Let

W ∈ C∞(R) be a wavelet with supp(W ) ⊆
(

1
2 , 2
)
,

V ∈ C∞(R) be a ‘bump function’ with supp(V ) ⊆ (−1, 1).

Then the curvelet system (γ(j ,l ,k))(j ,l ,k) is defined by

γ̂(j ,0,0)(r , ω) := 2−3j/4W
(
2−j r

)
V (2bj/2cω)

and
γ(j ,l ,k)(·) := γ(j ,0,0)(Rθ(j,l,k)

(· − x(j ,l ,k))).

Theorem (Candès, Donoho; 2002):
The Parseval frame of curvelets provides optimally sparse approximations
of f ∈ E2(R2), i.e.,

‖f − fN‖2
2 ≤ C · N−2 · (logN)3, N →∞.
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Framework for Sparse Approximation Results

General Framework:

Parabolic Molecules (Grohs, K; 2013) (Flinth; 2013)
 includes curvelets, shearlets, ...

α-Molecules (Grohs, Keiper, K, Schäfer; 2016)
 includes ridgelets, wavelets, curvelets, shearlets, ...

Illustration (“α = degree of anisotropy”):

α = 0 1
2 1

Ridgelets Curvelets/Shearlets Wavelets

Theorem (Grohs, Keiper, K, Schäfer; 2016):
“Sparse approximation results for appropriate function classes can be
derived in the very general setting of α-molecules.”
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Recent Approaches to Fast Shearlet Transforms

www.ShearLab.org:

Separable Shearlet Transform (Lim; 2009)

Digital Shearlet Transform (K, Shahram, Zhuang; 2011)

2D&3D (parallelized) Shearlet Transform (K, Lim, Reisenhofer; 2013)

Additional Code:

Filter-based implementation (Easley, Labate, Lim; 2009)

Fast Finite Shearlet Transform (Häuser, Steidl; 2014)

Shearlet Toolbox 2D&3D (Easley, Labate, Lim, Negy; 2014)

Theoretical Approaches:

Adaptive Directional Subdivision Schemes (K, Sauer; 2009)

Shearlet Unitary Extension Principle (Han, K, Shen; 2011)

Gabor Shearlets (Bodmann, K, Zhuang; 2013)
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Boundary Shearlets

Definition (Grohs, K, Ma, and Petersen; 2016):
For t ∈ N, W a biorthogonal wavelet basis, (ση)η a shearlet system, and

W0 := {ωj ,m ∈ W : d(suppωj ,m, ∂Ω) < 2−
j−t

2 }, the boundary shearlet
system with offset t is defined as

{ση : suppση ⊆ Ω} ∪W0

Some Results (Grohs, K, Ma, Petersen, and Raslan; 2016):
Boundary shearlet systems...

...form a frame for L2(Ω).

...provide optimally sparse approximations
for adapted cartoon-like functions.

...characterize Sobolev spaces.

...can be designed to provide Sobolev frames.

Boundary Wavelets
Transition Shearlets
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Selected Applications...
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Image Denoising, I

Original Noisy Version (20.17dB)

Curvelets (28.70dB, 7.22sec) Shearlets (29.20dB, 5.56sec)

(Source: W.-Q Lim; 2011)
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Image Denoising, II

Original Noisy Version (6.5dB)

Curvelets (22.10dB) Wavelets (23.68dB) Shearlets (24.45dB) Dict.Lear. (24.70dB)

(Source: S. Beckouche; 2012)
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Regularization of Inverse Problems

Generalized Tikhonov Regularization:
Given an ill-posed inverse problem Kx = y , where K : X → Y , an
approximate solution xα ∈ X , α > 0, can be determined by minimizing

J̃α(x) := ‖Kx − y‖2 + αP(x), x ∈ X .

 The penalty term P incorporates properties of the solution!

Some Examples for P:

‖x‖TV , ‖x‖Hs , ‖(〈x , ψλ〉)λ‖1, ...

Some Earlier Footprints in Inverse Problems:

Donoho (1995): Wavelet-Vaguelette decomposition.

Chambolle, DeVore, Lee, Lucier (1998): Penalty on the Besov norm.

Daubechies, Defries, De Mol (2004): General sparsity constraints.
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Numerical Results of Feature Extraction, I

+

(Source: Brandt, K, Lim, Sündermann; 2011)
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Numerical Results of Feature Extraction, II

MCALab 120 (52.74 sec) ShearLab (33.75 sec)
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Feature Extraction and `1 Minimization

Key Idea: Let x = x1 + x2. Let Φ1 and Φ2 be sparsifying frames for x1 and
x2, respectively, but not conversely, and consider

(x∗1 , x
∗
2 ) = argminx̃1,x̃2

‖ΦT
1 x̃1‖1 + ‖ΦT

2 x̃2‖1 subject to x = x̃1 + x̃2.

Model: For τ a closed C 2-curve,

f = P + C =
P∑
i=1

|x − xi |−3/2 +

∫
δτ(t)dt.

Subband Decomposition:

fj = Pj + Cj , Pj = P ? Fj and Cj = C ? Fj .

Two Sparsifying Systems:

Wavelets (ψλ)λ and Shearlets (ση)η.
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Analysis of Feature Extraction

`1-Decomposition:

(P∗j , C∗j ) = argminP̃j ,C̃j‖(〈P̃j , ψλ〉)λ‖1 + ‖(〈C̃j , ση〉)η‖1 s.t. fj = P̃j + C̃j

Theorem (Donoho, K; 2013):

‖P∗j − Pj‖2 + ‖C∗j − Cj‖2

‖Pj‖2 + ‖Cj‖2
→ 0, j →∞.

Idea of Proof:

Relative sparsity and cluster coherence.

Analyze wavefront sets of P and C in phase space.

Theorem (K; 2014):
Using One-Step-Thresholding, we also have

WF (
∑
j

Fj ? P∗j ) = WF (P) and WF (
∑
j

Fj ? C∗j ) = WF (C).
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Numerical Results of Inpainting, I

Undersampled seismic data Reconstructed image

(Source: K, Lim; 2012)
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Numerical Results of Inpainting, II

(Source: Kutyniok, Lim; 2014)
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Analysis of Inpainting

Key Idea:
Let Φ be a sparsifying frame for x in H = HM ⊕HK . Solve

x∗ = argminx̃‖ΦT x̃‖1 subject to PHK
x = PHK

x̃ .

Observed Object:
f = 1R2\Mh

· C.

`1-Inpainting:

C∗j = argminC̃j‖(〈C̃j , ση〉)η‖1 s.t. 1R2\Mhj
· (C ? Fj) = 1R2\Mhj

· C̃j

Theorem (King, K, Zhuang; 2014)(Genzel, K; 2015)
For hj = o(2−j/2) as j →∞,

‖C∗j − Cj‖2

‖Cj‖2
→ 0, j →∞.
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Application to MRI

Model Situation:
Reconstruct f ∈ L2(R2) from Fourier samples f̂ (λ), λ ∈ Λ ⊆ R2.

Goals:

Fast acquisition ←→ Small set Λ

Optimality result

Initial idea with wavelets: Lustig, Donoho, Pauly; 2007

General Idea (K, Ma, and Lim; 2014):

Model for f : Cartoon-like functions.

(Dualizable) shearlets as sparsifying system (ση)η.

Directional (random) sampling scheme Λ.

Algorithmic approach:

min
f
‖(〈f , ση〉)η‖1 subject to ‖(f̂ (λ)− gλ)λ∈Λ‖2 ≤ ε
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Asymptotic Optimality of Shearlet Scheme

Sampling Schemes:

Directional Sampling Scheme Variable Density Sampling Scheme

Theorem (K, Lim; 2015):
“Using the directional sampling schemes (∆M)M , #∆M = M, and
M →∞ in combination with dualizable shearlets, this reconstruction
scheme R is asymptotically optimal in the sense that, for all f ∈ E2(R2),

‖f −R(f ,∆M)‖2
2 . M−2+δ as M →∞.′′
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Numerical Results for 512x512 MRI Image

Shearlet Scheme
(5% sampling rate, 32.28dB)

Wavelets + Directional Sampling
(5% sampling rate, 29.81dB)

Original Wavelets + Variable Density Sampling
(5% sampling rate, 25.00dB)

Gitta Kutyniok (TU Berlin) Applied Harmonic Analysis (Part II) SIAM IS16 35 / 46



From 2D to 3D...
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2D −→ 3D

Question:
Why is the 3D situation such crucial?

Obvious answer:

3D data is essential for Astronomy, Biology, Seismology,...

A different viewpoint:

Anisotropic features occur in 3D for the first time in different
dimensions.

Transition 2D → 3D is unique.
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Extended Model for 3D Images

Definition:
Let 1 < α ≤ 2. The set of 3D images E2(R3) is defined by

Eα2 (R3) = {f ∈ L2(R3) : f = f0 + f1 χB},

where fi ∈ C 2, supp fi ⊂ [0, 1]3 and B ⊂ [0, 1]3 with ∂B a closed
C 2-surface whose principal curvatures are bounded by ν.

Theorem (K, Lemvig, Lim; 2011):
Let (ψλ)λ ⊂ L2(R3). Allowing only polynomial depth search, the optimal
asymptotic approximation error of f ∈ E2(R3) is

‖f − fN‖2
2 � N−1, N →∞.
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3D Shearlets

Anisotropic scaling Aj :

Aj =

2j 0 0

0 2j/2 0

0 0 2j/2


Shearing Sk , k = (k1, k2):

Sk =

1 k1 k2

0 1 0
0 0 1


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Pyramid-adapted Shearlet Systems

Definition:
The pyramid-adapted shearlet system SH(φ, ψ, ψ̃, ψ̆; c)
generated by φ ∈ L2(R3) and ψ, ψ̃, ψ̆ ∈ L2(R3) is

{φ(· − cm) : m ∈ Z3}

∪{2jψ(SkAj · −cm) : (j , k ,m) ∈ Λpyramid}

∪{2j ψ̃(S̃k Ãj · −cm) : (j , k ,m) ∈ Λpyramid}

∪{2j ψ̆(S̆k Ăj · −cm) : (j , k ,m) ∈ Λpyramid},

where

Λpyramid = {(j , k ,m) : j ≥ 0, |k1|, |k2| ≤ d2j/2e,m ∈ Z2}, c > 0.
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Optimal Sparse Approximation

Theorem (K, Lemvig, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R3) be compactly supported, and let φ̂, ψ̂, ˆ̃ψ satisfy
certain decay conditions. Then SH(φ, ψ, ψ̃; c) = (ση)η provides an
optimally sparsifying system for f ∈ E2(R3), i.e., for N →∞,

‖f − fN‖2
2 . N−1(logN)2.

Extended Model containing 0D, 1D & 2D Features:

Does the optimal approximation rate change?

Do we require additional 3D shearlets?

Theorem (K, Lemvig, Lim; 2011):

(i) The optimal approximation rate remains the same for cartoon-like 3D
images with only piecewise smooth C 2.

(ii) The shearlet approximation rate remains the same for cartoon-like 3D
images with only piecewise smooth C 2.
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certain decay conditions. Then SH(φ, ψ, ψ̃; c) = (ση)η provides an
optimally sparsifying system for f ∈ E2(R3), i.e., for N →∞,

‖f − fN‖2
2 . N−1(logN)2.

Extended Model containing 0D, 1D & 2D Features:

Does the optimal approximation rate change?

Do we require additional 3D shearlets?

Theorem (K, Lemvig, Lim; 2011):

(i) The optimal approximation rate remains the same for cartoon-like 3D
images with only piecewise smooth C 2.

(ii) The shearlet approximation rate remains the same for cartoon-like 3D
images with only piecewise smooth C 2.
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Video Denoising, I

original noisy (σ = 40 PSNR = 16.06) SL3D1 (PSNR = 26.17)

SL3D2 (PSNR = 27.14) NSST (PSNR = 25.68) SURF (PSNR = 25.91)
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Video Denoising, II

σ = 10 20 30 40 50

SL3D1 33.13 29.46 27.51 26.17 25.18

SL3D2 33.81 30.28 28.41 27.14 26.17
NSST 32.59 29.00 27.05 25.68 24.63

SURF 30.86 28.26 26.87 25.91 25.18

SL3D1: SL3D1 with 13, 13 and 49 directions on scales one, two and three
(K, Lim, and Reisenhofer, 2016).

SL3D2: SL3D2 with 49, 49 and 193 directions on scales one, two and three
(K, Lim, and Reisenhofer, 2016).

NSST : Nonsubsampled Shearlet Transform (Negi and Labate; 2013).

SURF : Surfacelet Transform (Do and Lu; 2007).
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Let’s conclude...

Gitta Kutyniok (TU Berlin) Applied Harmonic Analysis (Part II) SIAM IS16 44 / 46



What to take Home...?

Applied Harmonic Analysis provides various representation systems
such as wavelets, ridgelets, curvelets, and shearlets.

They provide sparse approximation for certain classes of images,
leading to

I Efficient decompositions for, e.g., the analysis/processing of images, in
particular for regularization of inverse problems.

I Sparse representations for, e.g., compression of images.

Continuous and discrete systems/frames and associated transforms
are available.

Some applications using wavelets and shearlets for regularization:
I Edge Detection.
I Feature extraction.
I Inpainting.
I Magnetic Resonance Imaging.
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THANK YOU!

References available at:

www.math.tu-berlin.de/∼kutyniok
Code available at:

www.ShearLab.org

Related Books:

Y. Eldar and G. Kutyniok
Compressed Sensing: Theory and Applications
Cambridge University Press, 2012.
G. Kutyniok and D. Labate
Shearlets: Multiscale Analysis for Multivariate Data
Birkhäuser-Springer, 2012.
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Outline

1 Continuous Wavelet Transform

2 Continuous Shearlet Transform
Shearlet analysis of singularities

3 Applications
Edge analysis and detection
Soma detection in neuronal images
Classification with scattering transform
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The Continuous Wavelet Transform

The classical continuous wavelet transform on R is associated with the
affine systems of functions

{ψa,t(x) = a−
1
2ψ(a−1 (x − t)) : a > 0, t ∈ R},

where ψ ∈ L2(R).

Provided that ψ satisfies the admissibility condition [Calderón, 1964]∫
a>0
|ψ(aξ)|2 da

a
= 1, for a.e. ξ ∈ R,

the continuous wavelet transform of f

Wψ : f →Wψf (a, t) = 〈f , ψa,t〉 , for a > 0, t ∈ Rd ,

is a linear isometry (from L2(R) to L2(A)).

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 3 / 57



The Continuous Wavelet Transform

The classical continuous wavelet transform on R is associated with the
affine systems of functions

{ψa,t(x) = a−
1
2ψ(a−1 (x − t)) : a > 0, t ∈ R},

where ψ ∈ L2(R).

Provided that ψ satisfies the admissibility condition [Calderón, 1964]∫
a>0
|ψ(aξ)|2 da

a
= 1, for a.e. ξ ∈ R,

the continuous wavelet transform of f

Wψ : f →Wψf (a, t) = 〈f , ψa,t〉 , for a > 0, t ∈ Rd ,

is a linear isometry (from L2(R) to L2(A)).

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 3 / 57



The Continuous Wavelet Transform

That is,

‖f ‖2L2(R) =

∫
R

∫
a>0
|Wψf (a, t)|2 da

a
dt,

or f (x) =

∫
R

∫
a>0
〈f , ψa,t〉 ψa,t(x)

da

a
dt.

dλ(a, t) = da
a dt is the left Haar measure on the affine group.

• Wψf (a, t) measures
the content of f
at scale a and location t.
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The Continuous Wavelet Transform

• The continuous wavelet transform has a special ability to deal with point
singularities.

If f is singular at location t0, Wψf (a, t) signals the location t0 through its
asymptotic decay at fine scales, a→ 0.

• This property is a manifestation of the sparsity and locality of the
wavelet representation and it is critical in multiple signal/image processing
applications.
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Example: Dirac Delta

Let ψ be a well-localized wavelet (e.g., Schwartz class)
on R, and δ be the Dirac delta.

We have:

Wψδ(a, t) = 〈δ, ψa,t〉 = ψa,t(0).

If t = 0, then

Wψδ(a, 0) = ψa,0(0) = a−
1
2 ψ(0) ∼ O(a−

1
2 ).

If t 6= 0, then, for each k ∈ N, there is a constant Ck such that

|Wψδ(a, t)| = |ψa,t(0)| ≤ Ck ak , a→ 0.
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Example: Heaviside function

Let ψ be a well-localized wavelet (e.g., Schwartz class)
on R, and h(x) = 1 if x ≥ 0, h(x) = 0 if x < 0.

We have:

Wψh(a, t) =
〈

ĥ, ψ̂a,t

〉
=
√

a

∫
R

1

2πiξ
ψ̂(aξ) e−2πiξt dξ

(set γ̂(η) =
1

2πiη
ψ̂(η)) =

√
a

∫
R
γ̂(η) e−2πiη

t
a dη

=
√

a γ(−t/a)

If t = 0, provided
∫
γ̂(η)dη 6= 0, then

|Wψh(a, 0)| ≈
√

a.

If t 6= 0, for any k ∈ N,

|Wψh(a, 0)| ≤ Ck ak , a→ 0.
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The Continuous Wavelet Transform

In general...

For an appropriate well-localized wavelet ψ:

Wψf (a, t)→ 0, rapidly as a→ 0, for t away from singularities;

Wψf (a, t0)→ 0, “slowly” (not rapidly), as a→ 0, if t = t0 is a
singularity.

Locations t = t0 of “slow” (not-rapid) asymptotic decay of Wψf (a, t), as
a→ 0, are exactly those points where f is singular.

The continuous wavelet transform resolves the singular support
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The Continuous Wavelet Transform

In higher dimensions...

The simplest way to extend the continuous wavelet transform to Rd is by
considering the affine systems

{ψa,t(x) = a−
d
2ψ(a−1 (x − t)) : a > 0, t ∈ Rd},

where ψ ∈ L2(Rd).

Similar to the 1D case, it can detect
point-singularities and resolve the
singular support.

However, it provides very limited information about the geometry of
singularities of multivariate functions and distributions.
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Continuous Shearlet Transform (D=2)

Shearlets are derived from the framework of affine systems.

The full affine group of motions on R2 is the set

A = {(M, t) : M ∈ GL2(R), t ∈ R2}

with group operation (M, t) · (M ′, t ′) = (MM ′, t + Mt ′).
We consider subgroups AG of A of the form

AG = {(M, t) : M ∈ G ⊂ GL2(R), t ∈ R2}

where G is referred to as the dilation subgroup.
The affine system generated by ψ ∈ L2(R2) and AG is{

ψM,t(x) = | det M|−1/2ψ(M−1(x − t)) : (M, t) ∈ AG

}
.
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Continuous Shearlet Transform (D=2)

Under appropriate admissibility conditions on ψ, it may be possible to
define a (generalized) continuous wavelet transform associated with AG .
(Note: not all AG have admissible functions)

In this case, the continuous wavelet transform associated with AG

Wψ : f →Wψf (M, t) = 〈f , ψM,t〉 , for (M, t) ∈ AG ,

is a linear isometry from L2(R2) into L2(AG ).
For all f ∈ L2(R2)

f (x) =

∫
R2

∫
G
〈f , ψM,t〉 ψM,t(x) dλ(M) dt,

where λ is the left Haar measure on G .
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Example: G = isotropic dilations

Isotropic dilations. The dilation group G is:

G =

M =

a 0

0 a

 : a > 0



Admissibility is given by the classical Calderón condition.
This group is associated with the conventional continuous wavelet
systems {

ψa,t(x) = a−1 ψ(a−1(x − t)) : a > 0, t ∈ R2
}
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Example: G = shearlet group [K,Labate,2009],[Dahlke et al,2008]

Shearlet group. The dilation group G is:

G =

Mas =

a −
√

a s

0
√

a

 , a > 0, s ∈ R



We have the factorization

Mas =

(
a −

√
a s

0
√

a

)
=

(
1 −s
0 1

) (
a 0
0
√

a

)
into anisotropic dilation

(
a 0
0
√

a

)
and shear transformation

(
1 −s
0 1

)
NOTE:

√
a can be replaced by aα, 0 < α < 1.

A system associated with this group is a continuous shearlet system{
ψa,s,t(x) = a−3/4 ψ(M−1as (x − t)) : a ∈ R+, s ∈ R, t ∈ R2

}
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Construction of Continuous Shearlets

There are many admissible shearlets.

Band-limited shearlets [Guo,Kutyniok,L, 2006]. We choose:

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

),

where

ψ1 is a continuous wavelet with ψ̂1 ∈ C∞(R)
and supp ψ̂1 ⊂ [−2,−1

2 ] ∪ [12 , 2].

ψ2 satisfies ψ̂2 ∈ C∞(R), supp ψ̂2 ⊂ [−1, 1]
and ‖ψ2‖ = 1.

Hence ψ is a smooth bandlimited function.
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Construction of Continuous Shearlets

Alternatively...

Compactly supported shearlets
[Lim,Kutyniok,2011] [Kutyniok,Petersen,2015]. We choose:

ψ(x1, x2) = ψ1(x1)φ(x2)

where

ψ1 is a compactly supported continuous wavelet.

φ ∈ C 2([−r , r ]) satisfies φ(0) = 0, φ′(0) 6= 0,
∫
φ(x)dx > C > 0.

Hence ψ is a compactly supported function.
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Construction of Continuous Shearlets

The elements of a shearlet system {ψa,s,t} are a well localized waveforms,
with orientation controlled by the shear parameter s, and increasingly
elongated at fine scales (a→ 0).
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Construction of Continuous Shearlets

Choosing an admissible function ψ, the Continuous Shearlet Transform

SHψ : f → SHψf (a, s, t) = 〈f , ψa,s,t〉 ,

is a linear isometry from L2(R2) to L2(AG ).

Hence

‖f ‖2 =

∫
R2

∫
R+

∫ ∞
0
|SHψf (a, s, t)|2 da

a3
ds dt.

SHψf (a, s, t) measures the content of f
as a function of the scale a,
the shear s and the location t.

It is able to resolve both the location and orientation of singularities.
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Example: Heaviside function (2D)

Let H(x1, x2) = χx1>0(x1, x2).

Then:

SHψH(a, s, t) =

∫
R2

Ĥ(ξ) ψ̂a,s,t(ξ) dξ = a
3
4

∫
R

ψ̂1(a ξ1)
2πiξ1

ψ̂2(a−
1
2 s)e2πiξ1t1 dξ1

(set γ̂(η) =
1

2πiη
ψ̂1(η)) = a

3
4 ψ̂2(a−1/2s)

∫
R
γ̂(η) e2πiη

t1
a dη

If t1 6= 0, since ψ̂1 ∈ C∞c (R), for any k ∈ N

SHψH(a, s, t) ≤ Ck ak , as a→ 0.

If t1 = 0 and s 6= 0, the term ψ̂2(a−1/2s) will vanish as a→ 0.

If t1 = 0 and s = 0, provided ψ̂2(0) 6= 0 and
∫
R γ̂(η) dη 6= 0, we have

SHψH(a, 0, (0, t2)) = O(a
3
4 ).
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Example: Heaviside function (2D)

SHψH(a, s, t) decays rapidly for all values of s and t = (t1, t2),
except for s = 0 and t2 = 0
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Resolution of the Wavefront Set

The Continuous Shearlet Transform of f

SHψs(a, s, t) = 〈f , ψa,s,t〉 , a ∈ R+, s ∈ R, t ∈ R2

describes the geometry of the singularities of f through its decay at fine
scales.

SHψf characterizes the wavefront set of a distribution f through its
decay at fine scales [Kutyniok,L,2009], [Grohs, 2011].

The continuous curvelet transform has similar properties
[Candès,Donoho,2005].

SHψf provides a precise description of the geometry of
piecewise-smooth edges of f through its asymptotic decay at fine
scales [Guo,L,2008-2015]. This holds also in 3D.
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Resolution of edges using the CST (d = 2)

Theorem [Guo,L] Let B = χS , S ⊂ R2 compact, and ∂S is piecewise
smooth.

(i) If t /∈ S or if t ∈ ∂S and s does not correspond to the normal
direction of ∂S at t then

lim
a→0+

a−N SHψB(a, s, t) = 0, for all N > 0.

(ii) If s = s0 corresponds to the normal direction of ∂S at t then

0 < lim
a→0+

a−
3
4 |SHψB(a, s0, t)| <∞.

That is, SHψB has slow asymptotic decay only at the edge points for
normal orientations, where

SHψB(a, s0, t) = O(a
3
4 ) as a→ 0
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(ii) If s = s0 corresponds to the normal direction of ∂S at t then

0 < lim
a→0+

a−
3
4 |SHψB(a, s0, t)| <∞.

That is, SHψB has slow asymptotic decay only at the edge points for
normal orientations, where

SHψB(a, s0, t) = O(a
3
4 ) as a→ 0
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Resolution of Edges (D=2)

O(a
3
4 )

O(aN)

O(a
3
4 )

O(a
3
4 )O(aN) O(aN)

At the regular points t on an edge, for normal orientation, the shearlet

transform decays as O(a
3
4 ). For all other values of s, the decay is as fast

as O(aN), for any N ∈ N.

At the corner points, the shearlet transform decays as O(a
3
4 ) for both

normal orientations.
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Extensions and generalizations

The shearlet analysis of discontinuities extends to:

Functions f =
∑

fiχSi where fi are smooth functions and the
boundary sets ∂Si may contain corner points [Guo,L,2009,2015].

Characterization of edges with uniform decay estimates
[Kutyniok,Petersen,2015].

Characterization of edge curvature and flatness [Guo,L,2015].
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Extensions and generalizations

The shearlet analysis of discontinuities extends to higher dimensions:

Functions f = χS where S ⊂ R3 and the
boundary set ∂S is a piecewise smooth
boundary which may contain wedges.
[Guo,L,2011],[Guo,L,2012].

Analysis of 3D edges and corners [Kutyniok,Petersen,2015].

Analysis of one-dimensional manifolds, such
as the curve of intersection of 2 surfaces.
[Houska,L,2015] [Guo,L,2015]
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Analysis of singularities: geometric separation

A related problem is the geometric separation of singularities.

Let f = P + C where P is a collection of point-like singularities and C is a
cartoon-like image.

It is possible to separate, in a precise sense, point and curvilinear
singularities in 2D [Donoho,Kutyniok, 2013] or points and piecewise linear
singularities (polyhedral singularities) in 3D [Guo & L, 2014].
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Applications
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Some image processing applications

The microlocal properties of the Continuous Shearlet Transform and
related tranforms are useful to derive efficient algorithms for

Edge and boundary detection (2D/3D)

Estimation of edge/boundary orientation

Identification of geometric features (corners, junctions,...)

Segmentation, classification

. . .
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Edge Detection

Several edge analysis and detection algorithms based on multiscale
methods and shearlets were proposed. For example:

[Mallat,Zhong,1992] introduce a multiscale wavelet-based algorithm
for edge detection.

[Easley,Labate,Yi,2008], [Duval,Odone,De Vito,2015] use a multiscale
shearlet-based algorithm that reinforces true edges and suppresses
noise.

[Schug,Easley,O’Leary,2011] extend idea above to 3D for surface
detection.

[King at al.,2015] apply complex shearlets to detect edges in flame
front images recorded by planar laser-induced fluorescence

. . .
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Edge Detection

Shearlet-based edge detection on retina images [Easley,L,Yi,2008].

The Figure Of Merit (FOM) measures the closeness of reconstruction to
the true edge map (the higher the better).

Shearlet-based methods yield extremely competitive results.
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Edge Orientation

With respect to conventional multiscale methods, shearlets enable more
accurate and robust estimation of edge orientation.

Average error (degrees) in estimating edge orientation using a
wavelet method (dashed line) versus a shearlet method (solid line),
as a function of the scale 2−j .
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Feature Extraction

Multiscale methods can be very useful to extract features and landmarks
in images. For example:

[Lee,Sun,Chen,1992], [Quddus,Gabbouj,2002] multiscale corner
detection using wavelet transform.

[Easley,Labate,Yi,2008], [Duval,Odone,De Vito,2015] shearlet-based
corner and junction detection.

[Shui,Zhang,2013] corner detection using directional representations

. . .
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Feature Extraction

Single-scale shearlet analysis of corners and junctions
[Easley,Labate,Yi,2008]
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Feature Extraction

This idea can be used to classify smooth regions, edges, corner points
[Easley,Labate,Yi,2008].
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Feature Extraction

A multiscale variant of this idea can be used to define a corner detector
that is stable to viewpoint and illumination change, and robust to blur and
noise [Duval,Odone,De Vito,2015].

Shearlet multiscale corner detection: j = 0 (Blue); j = 1 (Green); j = 2
(Red); j = 3 (Magenta).
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Surface Orientation

Same idea extends to 3D. The 3D shearlet transform can be used to
estimate the local surface orientation [L,Negi,2013].

The magnitude of the continuous shearlet transform signals the local
orientation of the surface of a solid
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Surface Orientation

It can also be useful to detect wedges and corners.

The magnitude of the continuous shearlet transform signals the local
orientation of the surface of a solid

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 38 / 57



Classification

Due to their ability to capture singularities over multiple scales, multiscale
representations are useful to generate highly informative features for
problems of classification.

Wavelet methods for texture classification and
segmentation [Unser,1995],[Laine,Fan,1993,1996],. . .

Rotation, scale invariance using wavelet packets
[Pun,Lee,2003], ridgelets [Chen,Bui,2005],
contourlets [Chen,Kegl,2010], . . .

Wavelet, shearlet filters in combination with SVM
[Chen,Xie,2007],[Jimenez,L,Papadakis,2015],. . .

. . .
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Problem: Soma Extraction

In neuroscience imaging, it is useful to automatically separate somas from
dendrites in fluorescent images of neurons.

Confocal image of neuronal culture (maximum projection view)
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Soma extraction

Shearlets and similar directional multiscale representations can be used to
detects regions of local isotropy.

Definition. Let f = χA, where A ⊂ R2. If x ∈ A we say that f is locally
isotropic at x and at scale s > 0 if B(x , s/2) ⊆ A.

Due to its directional sensitivity, the shearlet transform will exhibit a very
different behavior at points of local isotropy (inside soma) vs. points of
local anisotropy (inside dendrites)
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Directionality Ratio

We define the directionality ratio of an image f ∈ L2(R2) at scale a > 0
and location t ∈ R2 as the quantity

Daf (t) =
infs{|Sψf (a, s, t)|}
sups{|Sψf (a, s, t)|}

• It measures the strength of anisotropy at a location t and a scale a. •

The directionality ratio Daf (t) will be very different depending on t being
a point of local isotropy of f or not.
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Soma Extraction

Theorem [Labate,Negi,Ozcan,Papadakis,2014]: Let f = χN , where N
is the union of two subsets: a ball S with radius R > 0 and a cylinder C of
size 2r × L, where r > 0, L� R.

Then, for 4r ≤ a ≤ 1/4, there exists a threshold τ such that, for all y ∈ C ,
the directionality ratio yields: Daf (y) ≤ τ.

That is, the directionality ratio of f is small on the cylinder C .

On the other hand, the directionality ratio of f is large (close to 1)
inside the ball S .

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 44 / 57



Soma Extraction

Theorem [Labate,Negi,Ozcan,Papadakis,2014]: Let f = χN , where N
is the union of two subsets: a ball S with radius R > 0 and a cylinder C of
size 2r × L, where r > 0, L� R.

Then, for 4r ≤ a ≤ 1/4, there exists a threshold τ such that, for all y ∈ C ,
the directionality ratio yields: Daf (y) ≤ τ.

That is, the directionality ratio of f is small on the cylinder C .

On the other hand, the directionality ratio of f is large (close to 1)
inside the ball S .

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 44 / 57



Soma Extraction

Theorem [Labate,Negi,Ozcan,Papadakis,2014]: Let f = χN , where N
is the union of two subsets: a ball S with radius R > 0 and a cylinder C of
size 2r × L, where r > 0, L� R.

Then, for 4r ≤ a ≤ 1/4, there exists a threshold τ such that, for all y ∈ C ,
the directionality ratio yields: Daf (y) ≤ τ.

That is, the directionality ratio of f is small on the cylinder C .

On the other hand, the directionality ratio of f is large (close to 1)
inside the ball S .

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 44 / 57



Soma Extraction

Theorem [Labate,Negi,Ozcan,Papadakis,2014]: Let f = χN , where N
is the union of two subsets: a ball S with radius R > 0 and a cylinder C of
size 2r × L, where r > 0, L� R.

Then, for 4r ≤ a ≤ 1/4, there exists a threshold τ such that, for all y ∈ C ,
the directionality ratio yields: Daf (y) ≤ τ.

That is, the directionality ratio of f is small on the cylinder C .

On the other hand, the directionality ratio of f is large (close to 1)
inside the ball S .

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 44 / 57



Soma Extraction. Segmentation

Image segmentation (SVM based)

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 45 / 57



Soma Extraction. Directionality ratio

Computation of directionality ratio
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Soma Extraction

Large values of directionality ratio only identify a region strictly inside the
soma, not entire soma.

To complete the soma, we apply the level set method. We compute:

initial curve = boundary of set where directionality ratio is large;

a force field from the gradient of directionality ratio.

We also use this method to separate clustered somas.
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Soma Extraction

Directionality ratio + level set: soma detection
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Soma Extraction. Another example

Identification of somas

Demetrio Labate (UH) Applied Harmonic Analysis SIAM IS16 49 / 57



Soma Extraction. Another example

Identification of somas and separation of clustered ones
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Soma Extraction (3D)

Method extends to 3D where soma detection can be combined with the
extraction of soma morphology [Bozcan,L,Laezza,Negi,Papadakis,2014]
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Scattering Transform

The scattering transform [Mallat,2012, Mallat,Bruna,2013] computes
data representations targeted to problems of pattern recognition.
Key features:

It extracts locally invariant, stable, highly informative features.

It is implemented through a cascade of wavelet filters and modulus
operators over multiple layers (deep convolution network).

Dilated wavelets are also rotated with elements r ∈ G :

ψλ(x) = a−1ψ(a−1rx)

with λ = (a, r), a > 0, r ∈ G .

Wψ : f 7→ Wψf (a, t) = f ∗ ψλ(t)
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Scattering Transform

By taking the magnitude and then averaging with a low-pass function φ,
one defines locally translation invariant coefficients

S1f (x , λ) = |f ∗ ψλ(x)| ∗ φ(x).

This process is repeated
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Scattering Transform

The scattering transform builds coefficients

invariant to local translations and stable to small deformations;

other invariances can be built into this approach.

Multiple applications including:

texture classification [Sifre,Mallat,2014]

image registration [Easley,Mc-Innis,L,2015]
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Conclusion
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Conclusion

Methods from applied harmonic analysis offer powerful tools to
capture the structure of imaging data.

I Wavelets, curvelets, shearlets, scattering wavelets,. . .

Shearlets and related multiscale representations enable a precise
geometrical description of the singularities of multivariate
functions and distributions.

These properties are useful to extract essential image features
I edge analysis, edge/boundary and corner detection, local isotropy, . . .

Building on this low-level image processing capabilities, one can
construct improved methods for pattern recognition and
classification

I soma detection, texture classification, . . .
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References + codes at:

www.math.uh.edu\∼dlabate
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