ASNT LEARN.

GROW YOUR KNOWLEDGE. GROW YOUR CAREER.

Welcome! "NDT Applications" Webinar Series

December 16, 2021

Host: Flynn Spears

Alban NDE

www.arcadiaaerospace.com

asnt.org / learn

"Acoustography NDE and Its Use for UT of Aerospace Composites"

Presenters:

Jaswinder (Jas) S. Sandhu, SANTEC SYSTEMS, INC. Ramona Bergó Soto, Arcadia Aerospace Industries, LLC.

Dr. Jaswinder "Jas" Singh Sandhu

Founder and Owner Santec Systems Inc.

Ramona Bergó Soto

Materials Specialist & Quality Manager Arcadia Aerospace Industries, L.L.C.

Acknowledgement

This work was supported in part by: US Army Research Laboratory Contract: W911QX-16-C0027 Army Project Lead: <u>Mr. Charles J. Pergantis</u>

Agenda

- 1. Introduction
- 2. PART 1

2.1 Quick review of traditional of UT methods

2.2 Fundamental Principles of Acoustography NDE method

3. PART 2: Case Study- "UT of Small Composite Parts"

Introduction

- Acoustography NDE
 - Alternative to the traditional point-by-point UT
 - like radiography, uses <u>large area ultrasound detector screen (</u>AO sensor) to form instant "x-ray like" ultrasound images
- <u>Acoustography NDE Principles (Part 1)</u>:
 - Physical Principles;
 - Geometrical & Contrast resolution;
 - Ultrasonic Inspection Process.
- Acoustography NDE of "small" Composites- Case Study (Part 2):
 - "Small" composite UT Challenges.
 - Acoustography NDE Solution.

PART 1 Acoustography NDE Principles by Jaswinder S. (Jas) Sandhu Santec Systems, Inc.

Traditional UT Method

GROW YOUR KNOWLEDGE. GROW YOUR CAREER.

ASNT | LEARN.

UT Methods – C-Scan Data Presentation

C-SCAN PRESENTATION

Transducer scanned point-by-point in pulseecho mode C-Scan is a 2D image of the scanned area, lateral resolution depends on Transducer indexing steps.

ASNT | LEARN.

Acoustography NDE – Image Formation Principle

- 1. Sound Source (Transducer) illuminates Test Specimen with Ultrasound Waves.
- 2. Ultrasound Waves are "Differentially Attenuated" as they propagate through the Test Specimen and cast an "X-ray like" 2D Ultrasound image on the AO Sensor (Detector Screen).
- 3. AO Sensor converts the 2D Ultrasound image into corresponding visual image.
- 4. Digital video camera acquires the 2D visual image on the AO Sensor for computer storage and image enhancement.

ASNT | LEARN.

Acoustography NDE – <u>Geometrical Resolution</u>

Ref. 1- Hecht, "Optics," 2nd Ed., Pub. Addison Wesley, 1987, pp. 396. Ref. 2-ASNT, NDT Handbook, 2nd Ed., Vo. 7 "Ultrasonic Testing,"pp831.

GROW YOUR KNOWLEDGE. GROW YOUR CAREER.

ASNT LEARN.

Acoustography NDE – <u>AO Sensor (Detector Screen)</u> How it Works & Contrast Resolution

- 1. Acousto-Optic (AO) Sensor contains a layer of proprietary LC material that shows a brightness change when exposed to ultrasound.
- 2. Brightness level is related to the Ultrasound level; see AO transfer curve.
- 3. Differential Attenuation between flaw and normal area is converted to a visual (optical) image according to the AO transfer curve.
- 4. Digital video camera acquires the image formed on the AO Sensor for computer storage and image enhancement.

ASNT | LEARN.

Acoustography NDE – <u>AO Sensor (Detector Screen)</u> Pixel/Lateral Resolution

AO Sensor Image Area	Resolution with 1216x912 Camera (1Megapixel)
6"x6" (152mm x152mm)	0.0065 to 0.005 in/pixel (0.166 to 0.125 mm/pixel)
12"x12" (305mmx305mm)	0.013 to 0.01 in/pixel (0.332 to 0.25 mm/pixel)

AO Sensor Resolution: <u>Photographic</u> <u>Film</u> like because LC layer detector molecules are ~20 Angstrom in size When viewed by Digital Camera, AO Sensor resolution depends on pixel resolution of the Digital camera (See Table).

Acoustography NDE – <u>Sound Source</u> Wand Transducer

- 1. Wand transducer radiates a collimated, rectangular ultrasound beam.
- 2. Transducer is swept across the AO sensor width to generate images.
- 3. Image on the AO sensor is continuously acquired by a digital camera as the Wand transducer sweeps across AO sensor.

ASNT LEARN.

Acoustography NDE – Inspection Process

Data Acquisition

- 1. Test Part is held above the AO sensor.
- Wand transducer is powered on and swept across the test part by DAS (Data Acquisition Software).
- 3. DAS acquires image generated on the AO sensor with a Digital camera.
- 4. AO sensor reset using an E-field for next part or area to be imaged.

ASNT LEARN.

5. Steps 1 through 4 repeated until entire part has been imaged.

Acoustography NDE – Instant Ultrasound Image generated on AO Sensor (Detector Screen)

ASNT LEARN.

Acoustography NDE - Data Acquisition & Analyses-User Interface <u>Main Menu</u>

Main Menu

Allows operator to input all the test parameters, e.g. Wand transducer frequency, power, sweep limits, sweep speed, etc.

GROW YOUR KNOWLEDGE. GROW YOUR CAREER.

ASNT LEARN.

Acoustography NDE - Data Acquisition & Analyses – User Interface Second Menu

Second Menu

- Shows the acquired image, which is processed using SSI Algorithms and various other tools.
- Images can be stitched contiguously, by moving the part in 6" indexing steps; 6"x6" images stitched in a Matrix (See Next Slide).

Acoustography NDE - Data Acquisition & Analyses – User Interface Second Menu - Example of Stitched Image

ASNT LEARN.

Acoustography NDE - Data Acquisition & Analyses – User Interface <u>Third Menu</u>

Third Menu

- 1. Allows operator to convert images into quantitative dB images, color coded or gray scale.
- 2. Measurements and analyses can be performed, e.g. SNR, dB variation, thresholding, etc.

ASNT LEARN.

Acoustograhpy NDE - High Resolution & Detection Sensitivity NDE of 1/8" Thick Aerospace Flat Panel Standard

1/8" sa.

1/8" thick Graphite/Epoxy Panel with Embedded Defects

10.0ir

Defect Map

C-scan performed with 0.5" dia., flat, 5 MHz Transducer

Acoustography Image produced on AO sensor, 5MHz Wand Transducer

Detection Sensitivity (Thresholding)

ASNT LEARN.

NDE of 0.4" Thick Aerospace Flat Panel Standard Through Transmission Ultrasonic Scan

0.4" thick Graphite/Epoxy Panel with Various Manufacturing Embedded Defects

Point-by-point UT @ 5MHz, unfocused TX with 0.25" diameter

Side-by-Side Comparison of TTU C-Scan and Acoustography NDE

Point-by-point TTU C-Scan @ 5MHz, unfocused TX with 0.25"diameter

Acoustography NDE @ 5MHz, unfocused 6"x0.5" Wand TX

Acoustography NDE vs. C-Scan Enhanced

C-Scan - Contrast Enhanced

Acoustography Image – FFT Band Pass filter and Contrast Enhanced.

ASNT LEARN.

PART 2 UT of "Small Composites Parts" by Ramona Borgo Soto Arcadia Aerospace Industries

UT of "Small Composites Parts" - The Problem

- UT of Small composite parts such as T-shaped Clips, L-shaped Clips, Ushaped Longerons, etc., which range in size from a few inches to 1ft or so, is usually performed through <u>manual hand-scanning</u> of a small ¼" diameter ultrasound probe, point-by-point, over the entire part area.
- This process is:
 - 1) Labor-intensive
 - 2) Inefficient
 - 3) Subjective
 - 4) Less reliable
 - 5) Provides no image of the flaw

UT of "Small Composites Parts" - The Problem

- Traditional point-by-point C-scan can be slow.
- Automated UT equipment with multi-axes gantry or robot is too expensive, and not practical for small parts.
- Phase Array UT could provide a faster solution but requires extensive operator training.

Case Study: Candidate "Small Composite Part" Selected

- This part is produced in a batch (30-40 clips)
- Currently each part is tested manually by scanning areas with a ¼" probe.

ASNT LEARN.

Case Study: Traditional C-Scan (2 Scans needed) 1st Scan – Clip Base

	(HP)	- He	(HP)	(HP)	P	P
	P	P	P	P	P	P
1 7/	(M)	P	P	P	P	
12	P	P	P	P	(p)	
	(h)				P	(p)
	P	P				P
	•		20"			•

C-Scan of 12"x20" (304mm x 508mm) Envelope						
Scan Speed	3in/s	6in/s	12in/s			
	(76mm/s)	(152mm/s)	(305mm/s)			
Indexing Steps	0.04 in	0.04 in	0.04 in			
	(1mm)	(1mm)	(1mm)			
Time for 1Pass (12")	4 sec	2 sec	1 sec			
Passes Required for Full Coverage	508	508	508			
1 st Scan Time	2032s	1016s	508s			
	(34 min)	(17 min)	(8.5 min)			

GROW YOUR KNOWLEDGE. GROW YOUR CAREER.

ASNT LEARN.

Case Study: Traditional C-Scan (2 Scans needed) 2nd Scan – Clip Vertical (Web)

		M	M	M	M	
2″						
•	•		20"			

C-Scan of 12"x20" (304mm x 508mm) Envelope Scan Speed 3in/s 6in/s 12in/s(76 mm/s)(152 mm/s)(305 mm/s)0.04 in Indexing Steps 0.04 in 0.04 in (1mm)(1mm)(1mm)Time for 1Pass 4 sec 2 sec 1 sec (12") **Passes Required** 508 508 508 for Full Coverage 2032s 1016s 508s 2nd Scan Time (34 min) (8.5 min)(17 min)

68 min

Scan Time

(1st+2nd)

ASNT LEARN.

34 min

17 min

Case Study: Manual Hand Scan

- <u>Manual hand-scanning</u> is performed with a small ¼" diameter ultrasound probe, point-by-point, over the entire part area.
- Operator looks for flaw echo signal between the Front and Back Surface on the A-scan Display.
- Acceptable / Rejectable testing decision made by operator based in his training/experience
- No C-scan type image, no way to review the results in the future.
- No historical file to compare after part has been in service or some damage occurs.

ASNT | LEARN.

Case Study: Acoustography NDE System Used for UT of Clip Part

ASNT | LEARN.

Case Study: Acoustography UT

- Initially, multiple test parts were placed on the cover plate over the AO sensor, as shown in Scan Setup.
- 2. Wand Transducer was swept across the AO sensor (~6"x6" area).
- 3. Ultrasonic image of multiple test parts appear in just seconds!!

Scan Setup

UT Image produced in seconds

Case Study: Acoustography UT - Clip Study 1st Scan - Clip Base

12 loaded clips –for base imaging

Acoustography UT of Base of 12 Clips

- 1. A simple Jig designed to hold Clips.
- 2. 12 clips were loaded as shown (1st image from left).
- 3 image shots were needed to image 12 Clips bases (2nd image from left).
- 4. At ~10 seconds/Image Shot, 1st Scan inspection time was about <u>30</u>
 <u>seconds!</u>

ASNT | LEARN.

Case Study: Acoustography UT - 12 Clip Study 2nd Scan – Clip Vertical

12 loaded clips –for base imaging

of Base of 12 Clips

- 1. Clips were removed, rotated 90° and reloaded, as shown.
- 2. 3 image shots were needed to image 12 Clips verticals (2nd image from left).
- 3. At ~10 seconds/Image Shot, 2nd Scan time was also ~ 30 seconds!
- 4. Scan Time $(1^{st} + 2^{nd}) \sim 60$ seconds
- 5. For 36 Clips Scan Time was 180! seconds (~3min).

ASNT LEARN.

Comparison

Hand Scan		C-Scan				Acoustography	
~1in/s (25mm/s)	Scan Speed	3in/s (76mm/s)	6in/s (152mm/s)	12in/s (305mm/s)	Wand TX Sweep Speed	~1in/s (25mm/s)	
Continuous Sweeping	Index Steps	0.04 in (1mm)	0.04 in (1mm)	0.04 in (1mm)	Index	N/A	
20-25 mins	Inspection Time	68 min	34 min	17 min	Inspection time	~3mins!	
 This process is: 1) Labor-intensive 2) Inefficient 3) Subjective 4) Less reliable 5) Provides no image of the 		 This Process is: 1) Reliable 2) Provides image of the flaw. (inspection of a set of 36 units of composite clips)			 This Process is: 1) Reliable 2) Provides image of the flaw 3) 5-20x FASTER THAN C-scan 4) >5X FASTER THAN HAND- SCAN 		
	Scan 'lin/s (25mm/s) Continuous Sweeping 20-25 mins iive	Scan~1in/s (25mm/s)Scan SpeedIndex StepsIndex StepsSweepingInspection Time20-25 minsInspection 2) Provides in (inspection)	ScanC-S``lin/s (25mm/s)Scan Speed3in/s (76mm/s)Continuous SweepingIndex Steps0.04 in (1mm)20-25 minsInspection Time68 minStiveThis Process is: 1) Reliable 2) Provides image of the flaw.image of theInspection of a set of 36 under the flaw.	I ScanC-Scan~1in/s (25mm/s)Scan Speed3in/s (76mm/s)6in/s (152mm/s)Continuous SweepingIndex Steps0.04 in (1mm)0.04 in (1mm)20-25 minsInspection Time68 min34 minStiveThis Process is: 1) Reliable 2) Provides image of the flaw.11 Reliable 2) Provides image of the flaw.	J ScanC-Scan~1in/s (25mm/s)Scan Speed3in/s (76mm/s)6in/s (152mm/s)12in/s (305mm/s)Continuous SweepingIndex Steps0.04 in (1mm)0.04 in (1mm)0.04 in (1mm)20-25 minsInspection Time68 min34 min17 minSiveThis Process is: 1) Reliable 2) Provides is: The Reliable 2) Provides is: This Process is: This	Image of the Image of the <th< td=""></th<>	

ASNT LEARN.

Summary

- Acoustography NDE can provide reliable UT of Composites, with images that are comparable to high quality point-by-point C-scan.
- Acoustography NDE method can be much faster than point-by-point C-scan for "small" composite parts; 5-20x faster as demonstrated by the Case Study.
- Acoustography NDE is more that 5X faster than current Manual hand-scan UT inspection which is: 1) Labor-intensive; 2) Inefficient; 3) Subjective; 4) Less reliable; 5) provides no image of the flaw.
- Unlike Manual hand-scan, Acoustography provides a high-resolution C-scan type image that can be archived and reviewed; for future comparison after part has been in service or some damage occurs.

Additional Questions?

Contact:

Dr. Jaswinder "Jas" Singh Sandhu j-sandhu@santecsystems.com www.santecsystems.com

Ramona Bergó Soto ramona.bergosoto@arcadiaaerospace.com www.arcadiaaerospace.com

> Flynn Spears flynn@albannde.com

Thank you for participating!

The American Society for Nondestructive Testing 1711 Arlingate Lane Columbus, Ohio 43228-0518

(614) 274-6003 | (800) 222-2768 www.asnt.org

ASNT ... Creating a Safer World!®

ASNT LEARN.