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Introduction: Classical Turing's model of pattern formation

Reaction-diffusion system:

Oeu =diAu+ f(u.v)

in (0, (2,
v =dhAv +g(u.v) i e

with Neumann boundary conditions.

Let (u™.v") be stationary, spatially homogeneous solution (ground state) which is

@ stable without diffusion,
@ unstable with diffusion.

Evolution of perturbations around (u™.v"):

{"')tﬁ = dl AU+ bllﬁ + blgaﬁ + M (H

V).
i’)ti}’ = Cfgﬁv + bg]?f + bgg'f?-i“ ﬂg(ﬁﬂ.ﬁﬁ).
Conditions for Turing instability:

tr B <0. b1] dz + bggdl > (.
detB>0, (by1ds+ byady)? > 4did>det B.
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Introduction: Biological motivation
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Linear kinetics: Summary of numerical experiments

o T1LAT1R A T2L A T2R.

T3 ATA™ | T3 A TA® | TI™A «TA" | =TI AT

T3~A TA"
~T3LA T4t
T3:A T4t
~T3EA-T4"

o ~(T1LATIR A T2L A T2R):

Crucial observations:
o the results are constant in each cell (except at the boundary),
o results of both methods correspond.
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Linear kinetics: llustration of numerical results

Parameters:

spectrum : evolution
one positive real part unbounded
all real parts negative no pattern
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Non-linear kinetics: Conditions and numerical verification

Hypothetical distinction of pattern types:
T15A T 5 T8~ T2° A
A (T3EA Taby A (T3R A T4R) pattern on both sides,
AR T3EA Taby A (T3R A T4F) pattern on the right side,
A (T3" A T4L) A = ( 73R A T4R) pattern on the left side,
A ~( T3t A T4L) A = 73R A T4R) no pattern.

Verifiable by numerical simulations of evolution problem with
Schnakenberg's kinetics

f(u,v)=a-u+ u’v g(u,v)=b-uv.

and Gierer-Meinhardt’s kinetics
2

f(u, v):a—bu+u— g(u.v)=u’-v,
v

with a,b positive constants.
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Gierer-Meinhardt's kinetics with s=0.5

L =400, & =120, both-side pattern

dl =1 d2 =100, rI__-;':.}i'-- side patterr

s = 0.5, lett-side pattern
no pattern

axis: (a.b), unknown



Non-linear kinetics: Conditions and numerical verification

Hypothetical distinction of pattern types:
T1%A T1% 5 T95A TR A
A (T3 A T4y A (T3R A T4R) pattern on both sides,
/\—.(T3L A TabY A (T3R A T4aR)  pattern on the right side,
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N —( T3EA TR A ~(T3R A T4R)  no pattern.
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Gierer-Meinhardt's kinetics with s=0.5

L =400, £ =120, both-side pattern

dy = 1, dos = 100, right-side patter:

s = 0.5, left-side pattern
no pattern

axis: (a,b), unknown



Non-linear kinetics: Conditions and numerical verification

Hypothetical distinction of pattern types:
T15A T1% & To5A TR A
A\ (T3EA Taby A (T3R A T4R) pattern on both sides,
/\—.(T3L A TaN A (T3R A T4aR)  pattern on the right side,
A\ (T3 A T4L) A = ( 737 A T4R) pattern on the left side,
A —( T3EA TaE) A ~(T3R A T4R)  no pattern.

Verifiable by numerical simulations of evolution problem with
Schnakenberg's kinetics

f(u,v)=a-u+ uv g(u,v)=b-uv.

and Gierer-Meinhardt’'s kinetics

U2

fluv)=a-bu+— gluv)=u’-v.
v

with a,b positive constants.
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Gierer-Meinhardt's kinetics with s=0.5
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L =400, £ =120, both-side pattern

di =1, d» =100, right-side pattern

s =0.5, left-side pattern
no pattern

axis: (a.b), unknown



Schnakenberg's kinetics with s=0.25 and s=-0.25




Gierer-Meinhardt's kinetics with s=0.5
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L =400, & =120, both-side pattern

dl - ]., d2 - 100, r'l__-;['i'-“-ii";'.'d patterr

s = 0.5, left-side pattern
no pattern

axis: (a.b), unknown



Schnakenberg's kinetics with s=0.25 and s=-0.25
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Outline and conclussions

Summary
o effect of small spatial dependence of coefficient was analysed,
@ pattern with different frequencies emerges,
@ Turing's idea was extended to this case,
@ conditions to distinguish patterns in general case was stated,
@ and verified by an analytical-numerical approach.

Remarks
@ positive: helpful conditions,
@ negative: accuracy of the conditions; only analytical approach?
@ should work for any linear coefficient,
@ should work for N steps.
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