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Outline

1 Complicated flows are often a combination of turbulent,
random-looking, behaviour and more regular or predictable (in
the medium-term) behaviour.

2 The aim of this talk is to describe some of the tools that can
be used to study these types of dynamics, and to separate
these different types of behaviour.
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Key tool: the transfer operator

Suppose I have a dynamical system T : X → X .

The transformation T tells me how to evolve points, or more
generally, sets of points.

One can canonically identify a subset A ⊂ X with its indicator
function 1A contained in some function space B(X ) (= B).

For simplicity, if T is invertible and volume preserving, then
the transfer operator (or Perron-Frobenius operator),
P : B → B is defined by Pf = f ◦ T−1 for all f ∈ B.

Why composition with T−1 and not with T?

Set Function

Object A 1A
Evolved object T (A) P(1A) = 1A ◦ T−1 = 1T (A)

More generally, the transfer operator is designed to be the natural
push forward of a density under T to another density.
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Temporal correlations of CO2

X = A 2D slice of the atmosphere, T : X → X is 1-day evolution,
f (x) = CO2 concentration at location x ∈ X on April 2, 2006.

Measure temporal (auto-)correlation by

cov(Pk f , f ) =
∫

X
Pk f · f dµ−

(∫

X
f dµ

)2
.

April 2, 2006, (Graph of f ); April 4, 2006, (Graph of P2f )

April 6, 2006, (Graph of P4f ); April 10, 2006, (Graph of P8f )
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Smooth ergodic theory and temporal correlations

What properties of T will guarantee that cov(Pk f , g) → 0
“quickly” as k → ∞?

Theorem (Sinai’72, Bowen’75, Ruelle’76)

If T is C 2 and uniformly hyperbolic, f is C 1, and g is bounded,
then there is a 0 < λ < 1 such that

cov (Pk f , g) ≤ C (f , g)λk for all k ≥ 0.

That is, T has “exponential decay of correlations”.

Q: What is driving this decay of correlation?
A: The exponential separation of nearby trajectories caused by
the strict local expansion of T .
Local expansion is a common feature in many dynamical
systems. Rapidly decaying correlation is why the weather is
hard to predict far in advance using observations from the
present.
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A uniformly hyperbolic dynamical system
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A uniformly hyperbolic dynamical system
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So what is this rate of decay?
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So what is this rate of decay?

The figure on the left shows the evolution of a small square of
points under the “standard” 4-fold lamington map.

The figure on the right is the tweaked lamington map.

Both lamington maps have expansion factors of 4,
meaning nearby trajectories separate by a factor 4 at each
iteration.

However, the “standard” version (on the left) appears to mix
faster. What’s going on?
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Spectrum controls decay rate

For f ∈ B, g ∈ L∞(X ), if Eµ(f ) = 0,

|cov(Pk f , g)| =

∣

∣

∣

∣

∫

X

Pk f · g dµ

∣

∣

∣

∣

≤ ‖Pk f ‖B · ‖g‖L∞ , k ≥ 0.

Thus, the spectrum of P is important for controlling
covariances and upper bounds of rates of decay of correlations.

Typically, one considers P : B 	, where B is a Banach space
of suitably regular functions, with norm stronger than L1.

School of Mathematics and Statistics, UNSW Dynamics, Mixing, and Coherence



Spectrum controls decay rate

Left: Spectrum of P for the “standard” lamington map;
Right: Spectrum of P for the tweaked lamington map.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

in
ar

y

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real

Im
ag

in
ar

y
The rate of decay of correlations λ is controlled by the size of the
spectral gap, which is not necessarily related to expansion
rates or Lyapunov exponents. “More chaotic” does not
necessarily equal “faster mixing” (Dellnitz/F/Sertl’00,
Collet/Eckmann’04, F’07)
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Visualising an eigenfunction of P

Experiments of dye-mixing in periodically forced fluids (eg. [Voth et
al. ’02]) have shown that intricate, persistent patterns can develop
from an initial dye distribution.

You are watching convergence to f2, where Pf2 = λ2f2 and λ2 is the
second largest eigenvalue of P .

f2 known as strange eigenmodes [Pierrehumbert’94, Liu/Haller’04],

persistent patterns [Pikovsky/Popovych’03] and used to find

almost-invariant sets [Dellnitz/Junge’99, Deuflhard et al.’00].
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Optimizing mixing by manipulating the spectrum

Numerical strategy

Original vector field
↓ Numerically approximate transfer operator

Original transfer operator
↓ Optimization to increase spectral gap

Optimized transfer operator
↓ Infer optimized velocity field

Optimized velocity field

Mixing optimisation work includes [Ottino/Wiggins’04, Balasuriya’05/’10,

Mathew et al.’07, Cortelezzi et al.’08, Thiffeault/Pavliotis’08,

Gubanov/Cortelezzi’10, Forgoston et al.’11, Lin et al.’11,

Ober-Blöbaum/Padberg-Gehle’15, F/González-Tokman/Watson’16,

Grover/Elamvazhuthi’17].

Here we address the question of computing a general small
perturbation of the vector field that most enhances mixing. We do
this by transforming the nonlinear flow into a linear representation.
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Ober-Blöbaum/Padberg-Gehle’15, F/González-Tokman/Watson’16,
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The double gyre

Consider a periodically driven flow on [0, 2]× [0, 1] with vector field

v(t, x) = (−(π/4) sin(πf (t, x1)) cos(πx2),

(π/4) cos(πf (t, x1)) sin(πx2) · (df /dx1)(t, x1))

where f (t, x1) = sin(2πt)x21/4 + (1− sin(2πt)/2)x1.

Parameters used as in [Shadden et al.’05].
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Original and optimized vector fields

Original vector field, Optimally perturbed vector field

See [F/Santitissadeekorn, subm.], computations done using the time

derivative of the transfer operator (the infinitesimal generator), based on

constructions in [F/Junge/Koltai’13,F/Koltai’17].
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The double gyre (Left: original; Right: optimized)

The double gyre has both regular and chaotic dynamics.

The chaotic dynamics is controlled by the intersection of the stable (blue)

and unstable (red) manifolds of periodic points on the lower and upper

boundaries, respectively (Lobe dynamics [Rom-Kedar/Wiggins ’90]).
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Evolution (Upper: original; Lower: optimized)
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Time-dependent dynamics

In applications, many systems are time-dependent, meaning
that the underlying dynamical rules change over time.

Continuous time: A time-dependent ODE ẋ = f (x , t) rather
than ẋ = f (x).
Discrete time: A concatenation · · ·Tk ◦ Tk−1 ◦ · · · ◦ T2 ◦ T1,
where Ti , i = 1 . . . , k are different maps, rather than T k ,
iteration of a single map T .

School of Mathematics and Statistics, UNSW Dynamics, Mixing, and Coherence



Slow mixing structures in time-dependent systems

There is no reason to expect the slowly-mixing structures to
be fixed in space (like almost-invariant sets) in
time-dependent systems.

In fact, they can be highly mobile, making their detection
considerably more difficult.
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Decay in time-dependent systems

Time-independent case
We found the eigenfunction f2 corresponding to the second
largest eigenvalue λ2. Thus,

‖Pk f2‖ ≤ C (f2)λ
k

2 , for all k ≥ 0.

But what are “eigenvalues” and “eigenfunctions” in the
time-dependent setting?

Time-dependent case
The analogous growth rate expression is

‖PTk
◦ · · · ◦ PT2 ◦ PT1 f ‖ ≤ C (f )λk

2 .

Or:

lim
k→∞

1

k
log ‖PTk

◦ · · · ◦ PT2 ◦ PT1 f ‖ ≤ logλ2.

Note that the PTi
are linear operators (or in numerical

experiments, matrices), so logλ2 is a Lyapunov exponent.
Thus, eigenvalues are replaced with Lyapunov exponents.
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Decay in time-dependent systems

The Oseledets Multiplicative Ergodic Theorem (MET), proven in
Oseledets’ thesis in 1965, creates time-dependent generalisations
of eigenvalues and eigenvectors for compositions of matrices.

Building on the work of Ruelle, Mañé, Thieullen, extensions of
Oseledets’ MET have been developed (Blumenthal, F,
González-Tokman, Lloyd, Quas, Young,...) to enable application
to time-dependent dynamical systems.

The Oseledets vectors corresponding to the second Lyapunov
exponent λ2 are the unique collection of f s that decays as
slowly as possible and evolve consistently with the
time-dependent dynamics:

lim
k→∞

1

k
log ‖PTk

◦ · · · ◦ PT2 ◦ PT1 f ‖

is exactly logλ2.

See e.g. [F/Lloyd/Santitissadeekorn’10] for an applied description.
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Slowly decaying structures in finite time

What about finite time durations (finite k)?

We want to find an f2 so that
‖PTk

◦ · · · ◦ PT2
◦ PT1

f2‖ = λ2‖f2‖ with λ2 < 1 as large as
possible.

This is accomplished by selecting f2 to the be singular vector
corresponding to the 2nd largest singular value λ2 of
PTk

◦ · · · ◦ PT2
◦ PT1

, and

This leads to the slowest decay in finite time [F’13].
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Stratospheric polar vortex

In the stratosphere over each pole, there is huge whirlpool of
cold air centred over the pole.

The boundary of the vortex (the polar front jet stream) is a
barrier that stops polar air and subtropical air from mixing.

The polar vortex and this mixing interface is constantly
changing.

Image: National Geographic.
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The polar vortex is a slowly mixing object

We wish to resolve the polar vortex as the slowest
decaying object in the vicinity of the pole.

We do this by numerically approximating transfer
operators P using ECMWF vector fields, and computing the
second singular vectors (left and right).

Our initial domain is a 475K isentropic surface and we follow
the flow for two weeks from September 1, 2008 until
September 14, 2008.

Other work on resolving the polar vortex includes Boffetta et
al. ’01, Koh/Legras ’02, Rypina et al. ’07, Lekien/Ross ’10,
de la Cámara et al. ’12, Padberg-Gehle/Schneide’17, Serra et
al.’17
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The left & right second singular vectors f2 & Pf2

See [F/Santitissadeekorn/Monahan, 2010.]
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Particle simulation demonstrating the identified vortex
inhibits global mixing
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Methods for detecting coherent structures

Lagrangian (trajectory-following) scalar fields. e.g. FTLE, FSLE,
mesohyperbolicity, M-function,... (Budǐsić, Haller, Mancho, Mezić,
Pratt, Rom-Kedar, Ross, Rypina, Scott, Shadden, ...).

Spatially local continuum-mechanical ideas (Blazevsky/Beron-
Vera/Hadjighasem/Haller/Huhn/Farazmand/Karrasch,
Bollt/Ma,...).

Topological methods and trajectory grouping ideas
(Allshouse/Thiffeault, F/Padberg-Gehle,
Hadjighasem/Haller/Karrasch/Teramoto, Schlueter-Kuck/Dabiri,...)

Probabilistic transfer operator methods
(F/González-Tokman/Junge/Padberg-Gehle/Santitissadeekorn,
Bollt/Ma, Rowley/Rypina/Williams, Banisch/Koltai,...).

Geometric transfer operator methods (F/Junge/Kwok,

Karrasch/Keller,...)
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Probabilistic mixing vs. geometric mixing

In the presence of small diffusion, the only region in which mixing
across the boundary can occur is in the orange neighbourhood of
the boundary.
The probability of this mixing occurring is proportional to the area
of the orange region. This area is minimised by the probabilistic
transfer operator method.
In the pure advection limit, as the diffusion amplitude goes to
zero, (the orange band narrows), the boundary length determines
the amount of “mixing”. ([Mathew et al’05, Thiffeault’12]).

These ideas have been formalised [F’15], leading to a limiting

transfer-type operator, a dynamic Laplace operator, which is the

usual Laplace operator composed with transfer and Koopman

operators: ∆DYN =
∑

k−1
i=0 P∗

T (i) ◦∆ ◦ PT (i) . (see also F/Kwok and

Karrasch/Keller for follow-up work).
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Application 2: Tracking Agulhas Rings

How much heat and salt an Agulhas Ring transports, and how
far into the North Atlantic the Ring transports these tracers,
is sensitive to how long the water remains within a Ring
as well as its path [Treguier et al. 2003].
Previous LCS-based studies include Poje/Haller ’99,
Beron-Vera et al. ’08, Bettencourt et al. ’11,
Beron-Vera et al. ’13, Karrasch et al. 15, Wang et al. ’16.
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Tracking ocean eddies

Use AVISO ocean surface velocity data to track Agulhas rings over
a 90 day period: 11 November 2006 to 9 February 2007. The
initial domain is M = [−4, 6] × [−34, 28] in degrees longitude by
latitude; domain as in [Hadjighasem/Haller’16]
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Tracking ocean eddies

We approximate the dynamic Laplacian ∆DYN using a
bespoke finite-element method, combined with collocation
[F/Junge, subm.].
Below, we use a grid of 250 × 150 points and only their
positions at the initial date 11 Nov 2006 and at the final
date 9 Feb 2007; in particular, no derivatives need to be
calculated.
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Evolution of identified eddies
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Summary

The spectrum(s) of the transfer operator are a powerful tool to
quantify mixing, to reveal slow mixing structures, and even to
manipulate those structures.

These ideas also apply to e.g. evolution operators of
time-dependent advection-diffusion PDEs.

Accurately mapping and tracking slowly decaying structures is of
great importance in models of geophysical flows because these
structures are the predictable components of often highly
unpredictable dynamics.

Aim is to produce automated algorithms to process input and

present results in near-real time for predictive use.
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