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Motivation

Simulation

bottlenecks

Mesh generation

Mesh partition

Linear solver

Background

• Scalable linear solvers are making possible to solve larger problems

efficiently on HPC platforms

• Simulation bottleneck for industrial applications is shifting towards

body-fitted mesh generation and graph partitioning of unstructured grids
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Motivation

Need for additive manufacturing simulation (EU projects: CAxMan, eMusic),

body-fitted meshes are not suitable

• Our code can read AM process data (CLI) and perform process simulations

• Geometry depends in time Ω(t)...

• Conforming meshes Th(t) at all times not possible
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Motivation

Body-fitted unstructured grid Unfitted Cartesian grid

Our goals

1) To use (adaptive) Cartesian meshes for scalable mesh generation and

partitioning; (Adapted) octree meshes can be generated/partitioning

fast/scalable (e.g., p4est [Burstedde et al’11, Issac et al’15])

Showstopper: Very ill-conditioned problems

2) To extend an optimal/scalable linear solver (BDDC) to unfitted meshes
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Problem setup

Model problem (Poisson equation)
−∆u = f in Ω,

u = gD on ΓD,

∇u · n = gN on ΓN.

Discretization with an (adaptive)

Cartesian grid

+ Easy to generate

+ Easy to partition into sub-domains

– Difficult to impose Dirichlet BC

– Difficult to integrate the weak

form

– Difficult for iterative linear solvers
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Notation:

Ω: Physical domain

Ω̃: Extended domain
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Imposing Dirichlet BC with Nitsche’s method

Variatonal problem (Nitsche-XFEM)

{
Find uh ∈ Vh such that

a(vh, uh) = l(vh) ∀vh ∈ Vh,
with

a(v, u) :=

∫
Ω

∇v · ∇u dV +

∫
ΓD

(βuv −v (n · ∇u)−u (n · ∇v)) dV

l(v) :=

∫
Ω

vf dV +

∫
ΓN

vgN dS +

∫
ΓD

(
βgDv −gD (n · ∇v)

)
dS,

and β > 0 is a stability parameter that must be large ”enough” to ensure

coercivity (Nitsche’s method)

Properties

+ Coercivity (stability)

+ Consistent (optimal convergence order for high order FEs)

– β can be arbitrary large for cut elements (problems for the linear solver)
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Computing the stability parameter

Minimum admissible value [de

Prenter]

βi ≥ sup
v∈Vh

bi(v, v)

a1
i (v, v)

with

bi(v, u) :=

∫
Ei∩ΓD

(n · ∇v) (n · ∇u) dS

a1
i (v, u) :=

∫
Ei∩Ω

∇v · ∇u dV

Element-wise generalized eigenvalue

problem

Bixi = λA1
ixi ⇒ βi ≥ λmax

[de Prenter] F. de Prenter, C.V. Verhoosel, G.J. van Zwieten, E.H. van Brummelen, Condition

number analysis and preconditioning of the finite cell method. In: “Comput. Methods Appl.

Mech. Engrg.”. In press. 9



Numerical integration in cut elements

Gauss quadrature in sub-triangulation of cut

elements

+ Simple and robust approach

We adopt a level-set based boundary

representation

∂Ω := {x ∈ Rd : φLS(x) = 0}

+ Easy to compute intersections

+ Easy to compute sub-triangulation

(reduced number of cases)

– Difficult to reconstruct high order surfaces

(talk by Reusken)

– Difficult to reconstruct sharp corners

Remark

Other more sophisticated integration and geometry representation can be

adopted without changing the preconditioner presented later
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Marching cubes algorithm

Total of 28 intersection cases for an hexahedron (only 14 unique intersection

cases).

Sub-triangulations can be precomputed and reused !

Surface sub-cells
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Marching cubes algorithm

Total of 28 intersection cases for an hexahedron (only 14 unique intersection

cases).

Sub-triangulations can be precomputed and reused !

Volume sub-cells
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Preconditioners for unfitted meshes

Condition number estimate

– The condition number of the discrete

problem (for a fixed grid) scales as [de Prenter]

k2(A) ∼ |η|−(2p+1−2/d)

with η the smallest intersection.

State-of-the-art (solvers for XFEM) : Menk and Bordas’11, Berger-Vergiat et

al’12, Hiriyur et al’12, Lang et al’14 [...]

AMG for internal nodes + external nodes send to a coarse solver... limited

parallel efficiency
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BDDC preconditioning

BDDC preconditioner [Dohrmann’03, . . .]

• Replace V0 by V̄0 (reduced continuity)

• Define the injection W : V̄0 −→ V0

(weight, comm and add)

• Find ū0 ∈ V̄0 such that:

ū0 ∈ V̄0 : a(ū0, v̄0) = (f, v̄0) ∀v̄0 ∈ V̄0

and obtain u = MBDDCr = EWū0, where

E is the harmonic extension operator (cor-

rect in the interior of subdomains)

V0

6W W t

?

V̄0

[Dohrmann ’03] C. R. Dohrmann. A Preconditioner for Substructuring Based on Constrained Energy Minimization.

In: SIAM Journal on Scientific Computing 25.1 (2003), pp. 246–258.
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• Find ū0 ∈ V̄0 such that:
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Weak scaling 3-lev BDDC(ce) solver

3D Linear Elasticity problem on IBM BG/Q (JUQUEEN@JSC) w/ FEMPAR

https://gitlab.com/fempar/fempar (A. Mart́ın’s talk, 11:45h)
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Weak scaling for MLBDDC(ce) solver

3-lev H1/h1=25 H2/h2=7

#PCG iterations Total time (secs.)

Experiment set-up

Lev. # MPI tasks FEs/core

1st 42.8K 74.1K 117.6K 175.6K 250K 343K 456.5K 153/203/253

2nd 125 216 343 512 729 1000 1331 73

3rd 1 1 1 1 1 1 1 n/a
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Problematic example

Poisson equation

Dirichlet BC on ∂Ω

Arbitrary small ε

(!) Standard

BDDC cannot be

robust with respect

to the position of

the cut (example)
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Problematic example

Remark

The condition number is computed as

k2(MbddcA) =
λmax

λmin
=
λmax

1
= sup
ũ∈Ṽ

||Wũ||a
||ũ||a

which for body-fitted meshes can be bounded as

k2(MbddcA) ≤ C
(

1 + log2

(
H

h

))
.

(!) For cut-elements we can have arbitrarily large condition numbers. Example:

Before weighting After weighting

||ũ||a → 0 for ε→ 0. However ||Wũ||a > c. That is, λmax →∞. 19



DD analysis

(Some) basic DD anaysis ingredients (see, e.g., [Toselli & Widlund’05]):

1. Stable decomposition of harmonic functions (corners/edges/faces):

wh =
∑
λ∈{C,E,F}Rλwh,

|Rλwh|a ≤ β|wh|a(Ωi), β = c
(
1 + log2(H/h)

)
for wh ∈ V̄0

2. Rλwh = 0 on ∂Ωi \ λ for all objects

3. Trace theorem (+ harmonic function):

c−|Rλwh|a(Ωi) ≤ |Rλwh|s(λ) ≤ c+|Rλwh|a(Ωi)

wh

1

=

RE1
wh

1

+

RE2wh

1

+ . . . +

RC1
wh

1

+ . . .
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DD analysis

(Some) basic DD anaysis ingredients (see, e.g., [Toselli & Widlund’05]):

1. Stable decomposition of harmonic functions (corners/edges/faces):

wh =
∑
λ∈{C,E,F}Rλwh,

|Rλwh|a ≤ β|wh|a(Ωi), β = c
(
1 + log2(H/h)

)
for wh ∈ V̄0

2. Rλwh = 0 on ∂Ωi \ λ for all objects

3. Trace theorem (+ harmonic function):

c−|Rλwh|a(Ωi) ≤ |Rλwh|s(λ) ≤ c+|Rλwh|a(Ωi)

RE1wh

1

The second property is lost in EBM in general
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Enlarged coarse spaces

Property (2) only lost when there are nodes in λ that belong to cut elements

“Solution”: Consider all these nodes as corner constraints

• All the theory of BDDC methods readily apply (robustness with respect to

cuts)

• It can be extremely expensive and induce load balance loss (interface

subdomains)

In any case, the coarse space can be easily reduced:

• Reducing cut cells touching the interface (attaching cut cells to full cells)

• Neumann bc’s easily handled wo/ additional corners (analysis possible)

• Still, costly when many interface cut cells touching ΓD

21
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Alternative weighting operator

Standard weighting

ui =
1

2
u1
i +

1

2
u2
i

i.e. the mean value.

Stiffness weighting (e.g., in

[Dohrmann ’03])

ui =
k1
ii

k1
ii + k2

ii

u1
i +

k2
ii

k1
ii + k2

ii

u2
i

i.e. weighted average using the

diagonal entries of the stiffness

matrix
22



Problematic example (fixed)

Poisson equation

Dirichlet BC on ∂Ω

Arbitrary small ε

Algebraic

weighting

+ Very robust

method with

respect to the

position of the

interface

– Non-constant

weighting

within objects:

loss of

mathematical

properties
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Alternative definition of edges

Motivation

• We require constant weighting coefficient within the objects in

mathematical analysis

• Split only edges into new objects with (nearly) constant weighting

00.51 0.5 1

Edge object with non-constant

weighting

00.51 0.5 1

Splitting into new objects with

constant weighting

+ It works for Dirichlet BC/Neumann BC

– Larger coarse space 24
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Weak scalability in complex 3D examples

Sphere. Popcorn flake. Block. Array of blocks. Spiral.

Alternative weighting. No extra corners added.

• Poisson equation

• Fixed ratio

H/h = 8

• Solver tolerance
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Weak scalability in complex 3D examples

Sphere. Popcorn flake. Block. Array of blocks. Spiral.

Alternative weighting. Splitting edges (version 1). Dirichlet BC.

• Poisson equation

• Fixed ratio

H/h = 8

• Solver tolerance

10−9
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Coarse space size

– Splitting the edges results in a larger coarse space.

+ The increment tends to standard coarse space as more subd’s

• Worst case... about twice more expensive than full elements

(scalable/robust)
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Conclusions and future work

Conclusions:

• Substructuring DD theory cannot be applied to EBM

• Unless expensive coarse spaces being considered

• For Neumann problems, it can be handled (not explained, provably robust)

• Stiffness-based weighting very robust (+ constant weighting on edge

objects)

• Heuristic approach, no theory

• Robust + scalable solvers for unfitted methods

Ongoing work

• Mathematical analysis for Nitsche’s bc’s

• Preconditioners for ghost penalty stabilization strategies [Burman’10]

• Extension to other problems (Navier-Stokes...)

• Multilevel extension (MLBDDC in FEMPAR)

• Adaptive Cartesian grids and space filling curves (using p4est+FEMPAR)
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