Periodic Orbits to Gross Pitaevskii with Vortices following Point Vortex Flow

Raghav Venkatraman

Indiana University

The Gross-Pitaevskii Equations

Seek non-constant time periodic solutions to the Gross-Pitaevskii (GP) equations

$$
i u_{t}(x, t)=\Delta u(x, t)+\frac{u(x, t)\left(1-|u(x, t)|^{2}\right)}{\varepsilon^{2}},
$$

$$
(x, t) \in \mathbb{D} \times \mathbb{R}
$$

posed on the unit disc \mathbb{D}, subject to the Dirichlet boundary conditions (BC)

$$
u\left(e^{i \theta}, t\right)=g_{n}(\theta):=e^{i n \theta}
$$

$$
\theta \in[0,2 \pi), t \in \mathbb{R}
$$

The Gross-Pitaevskii Equations

Seek non-constant time periodic solutions to the Gross-Pitaevskii (GP) equations

$$
i u_{t}(x, t)=\Delta u(x, t)+\frac{u(x, t)\left(1-|u(x, t)|^{2}\right)}{\varepsilon^{2}}, \quad(x, t) \in \mathbb{D} \times \mathbb{R}
$$

posed on the unit disc \mathbb{D}, subject to the Dirichlet boundary conditions (BC)

$$
u\left(e^{i \theta}, t\right)=g_{n}(\theta):=e^{i n \theta}
$$

$$
\theta \in[0,2 \pi), t \in \mathbb{R}
$$

$$
\operatorname{deg}\left(g_{n}, \partial \mathbb{D}, 0\right)=n
$$

Hamiltonian Structure

The flow (GP-BC) conserves the Ginzburg-Landau Energy,

$$
\begin{equation*}
E_{\varepsilon}(u):=\frac{1}{2} \int_{\mathbb{D}}|\nabla u|^{2}+\frac{1}{2 \varepsilon^{2}}\left(1-|u|^{2}\right)^{2} d x \tag{0.1}
\end{equation*}
$$

Here $0<\varepsilon \ll 1$. Energetically, minimizers u_{ε} of GL prefer $\left|u_{\varepsilon}\right| \approx 1$. In the limit $\varepsilon \rightarrow 0$, topological restrictions from the boundary condition force vortices.

Renormalized Energy à la Bethuel-Brezis-Helein

- The sequence of minimizers u_{ε} converge as $\varepsilon \rightarrow 0$ to a nice function u_{*}, away from exactly n distinct points- vortices.

Renormalized Energy à la Bethuel-Brezis-Helein

- The sequence of minimizers u_{ε} converge as $\varepsilon \rightarrow 0$ to a nice function u_{*}, away from exactly n distinct points- vortices.
- u_{*} satisfies the Harmonic map PDE away from these vortices and has degree +1 about each of these. Vortices are located at a global minimizer of the re-normalized energy W.

Renormalized Energy à la Bethuel-Brezis-Helein

- The sequence of minimizers u_{ε} converge as $\varepsilon \rightarrow 0$ to a nice function u_{*}, away from exactly n distinct points- vortices.
- u_{*} satisfies the Harmonic map PDE away from these vortices and has degree +1 about each of these. Vortices are located at a global minimizer of the re-normalized energy W.
- More generally, for any positive number $N \geq n$, integers $d_{i}, i=1, \cdots, N$ satisfying $\sum d_{i}=n$, and distinct points $a_{i}, i=1, \cdots, N$, and a boundary condition g taking values in \mathbb{S}^{1} with $\operatorname{deg}(g, \partial \mathbb{D}, 0)=n$

$$
W\left(a_{1}, \cdots, a_{N} ; d_{1}, d_{2}, \cdots, d_{N} ; g\right):=-\pi \sum_{i \neq j} d_{i} d_{j} \log \left|a_{i}-a_{j}\right|
$$

+ boundary terms.

Point Vortex Flow

The Hamiltonian system on \mathbb{C}^{N} associated to W :

$$
\begin{equation*}
d_{j}\left(\frac{d a_{j}}{d t}\right)^{\perp}=-\frac{1}{\pi} \nabla_{a_{j}} W, \quad j=1, \cdots, N . \tag{PVF}
\end{equation*}
$$

Arises in fluid mechanics as a singular limit of 2D incompressible Euler, (cf. Marchioro and Pulvirenti /Saffmann for more on this connection.)

Point Vortex Flow

The Hamiltonian system on \mathbb{C}^{N} associated to W :

$$
\begin{equation*}
d_{j}\left(\frac{d a_{j}}{d t}\right)^{\perp}=-\frac{1}{\pi} \nabla_{a_{j}} W, \quad j=1, \cdots, N . \tag{PVF}
\end{equation*}
$$

Arises in fluid mechanics as a singular limit of 2D incompressible Euler, (cf. Marchioro and Pulvirenti /Saffmann for more on this connection.)

Crucial to us: (PVF) captures effective dynamics of vortices to GP as $\varepsilon \rightarrow 0^{+}$, up to first collision time.
Made rigorous by Colliander-Jerrard/Lin-Xin/Jerrard-Spirn.
Rigorous results on the hydrodynamic/mean field limit of GP: Jerrard-Spirn/Serfaty.

Main Question

Given a time periodic solution to (PVF), can we construct time-periodic solution to (GP), whose vortices follow the given periodic solution?

- Large time behavior for GP for $\varepsilon>0$: given solutions to (PVF) with vortices that never collide, can we construct solutions to (GP) that follow these point vortices for all time, as $\varepsilon \rightarrow 0^{+}$? Especially interesting when vortices of opposite degrees persist.

Main Question

Given a time periodic solution to (PVF), can we construct time-periodic solution to (GP), whose vortices follow the given periodic solution?

- Large time behavior for GP for $\varepsilon>0$: given solutions to (PVF) with vortices that never collide, can we construct solutions to (GP) that follow these point vortices for all time, as $\varepsilon \rightarrow 0^{+}$? Especially interesting when vortices of opposite degrees persist.
- More abstract question: say something about Hamiltonian dynamics associated to Gamma converging sequence of energies, and effective Hamiltonian dynamics?

Main Question

Given a time periodic solution to (PVF), can we construct time-periodic solution to (GP), whose vortices follow the given periodic solution?

- Large time behavior for GP for $\varepsilon>0$: given solutions to (PVF) with vortices that never collide, can we construct solutions to (GP) that follow these point vortices for all time, as $\varepsilon \rightarrow 0^{+}$? Especially interesting when vortices of opposite degrees persist.
- More abstract question: say something about Hamiltonian dynamics associated to Gamma converging sequence of energies, and effective Hamiltonian dynamics?

Our (modest) contribution: in the very special case of (GP-BC), using variational and symmetry arguments, we show that for a very large class of time-periodic solutions, called relative equilibria to (PVF), there exist time-periodic solutions to (GP) following them.

Relative Equilibria

- Definition: Uniformly rotating periodic solutions to the system (PVF).
- Obtained by pursuing the ansatz $a_{j}(t)=a_{j} e^{i(-\tilde{\omega} t)}$, where $\tilde{\omega} \in \mathbb{R}$.
- Results in nested rings of vortices, each with equal numbers of rings, and all vortices of a ring having the same degree.
- Different rings may be aligned or staggered.

Relative Equilibria

Figure 2: An staggered configuration. The solid and hollow bullets indicate possibly different degrees. $k=4$. Not to scale.

Figure: A staggered configuration

Figure 1: An aligned configuration. The solid and hollow bullets indicate possibly different degrees. $k=6$. Not to scale.

Figure: An aligned configuration

Rotational Ansatz

Starting Point: Make a rotational ansatz:

$$
u(x, t)=R(-k \omega t) v\left(R\left(\frac{\omega}{m} t\right) x\right)
$$

Rotational Ansatz

Starting Point: Make a rotational ansatz:

$$
u(x, t)=R(-k \omega t) v\left(R\left(\frac{\omega}{m} t\right) x\right)
$$

Here: $R(\beta)$ is the counterclockwise rotation matrix by an angle $\beta ; k, m$ are integers and $\omega \in \mathbb{R}$.
Thanks to Bob Jerrard for suggesting this ansatz in the case $n=1$ of a single vortex.

An Elliptic PDE: Variational Formulations

Plugging in the ansatz into (GP) yields an elliptic PDE.

$$
\begin{aligned}
\Delta v(y)+\frac{v}{\varepsilon^{2}}\left(1-|v|^{2}\right)(y) & =\omega\left(k v+\frac{1}{m} y^{\perp} \cdot \nabla v^{\perp}\right)(y), \quad y \in \mathbb{D} \\
v\left(e^{i \theta}\right) & =e^{i n \theta}
\end{aligned}
$$

An Elliptic PDE: Variational Formulations

Plugging in the ansatz into (GP) yields an elliptic PDE.

$$
\begin{aligned}
\Delta v(y)+\frac{v}{\varepsilon^{2}}\left(1-|v|^{2}\right)(y) & =\omega\left(k v+\frac{1}{m} y^{\perp} \cdot \nabla v^{\perp}\right)(y), \quad y \in \mathbb{D} \\
v\left(e^{i \theta}\right) & =e^{i n \theta}
\end{aligned}
$$

The boundary condition is compatible with the rotating frame ansatz above, iff $k \mid n$ and $m=\frac{n}{k}$. Inspired by relative equilibria, look for v with k-fold symmetry.
In case $n=0$, use the ansatz with $k=0$ and m an arbitrary integer, reflecting m-fold symmetry.

Conserved Quantities

- Hamiltonians:

Gross-Pitaevskii: Ginzburg-Landau Energy:

$$
E_{\varepsilon}(u):=\int_{\mathbb{D}} \frac{|\nabla u|^{2}}{2}+\frac{\left(1-|u|^{2}\right)^{2}}{4 \varepsilon^{2}} d x .
$$

Point Vortex Flow: Renormalized Energy: W

Conserved Quantities

- Hamiltonians:

Gross-Pitaevskii: Ginzburg-Landau Energy:

$$
E_{\varepsilon}(u):=\int_{\mathbb{D}} \frac{|\nabla u|^{2}}{2}+\frac{\left(1-|u|^{2}\right)^{2}}{4 \varepsilon^{2}} d x .
$$

Point Vortex Flow: Renormalized Energy: W

- Momenta:

Gross-Pitaevskii:

$$
J(v):=-\frac{1}{2} \int_{\mathbb{D}} k|v|^{2}+\frac{1}{m} v \cdot\left(x^{\perp} \cdot \nabla\right) v^{\perp} d x .
$$

Point Vortex Flow:

$$
J_{0}(\mathbf{b}, d)=-\frac{1}{2} \sum_{j=1}^{N} d_{j}\left|b_{j}\right|^{2}
$$

Constrained Minimization Approach

The elliptic PDE above has a variational formulation based on momentum-constrained minimization. Since this is a minimization procedure, can only yield +1 vortices.

Constrained Minimization Approach

The elliptic PDE above has a variational formulation based on momentum-constrained minimization. Since this is a minimization procedure, can only yield +1 vortices.

General Idea: Fix a relative equilibrium, to (PVF) whose vortices are aligned rather than staggered. Then consider the problem

$$
\min _{u \in A} E_{\varepsilon}(u)
$$

Constrained Minimization Approach

The elliptic PDE above has a variational formulation based on momentum-constrained minimization. Since this is a minimization procedure, can only yield +1 vortices.

General Idea: Fix a relative equilibrium, to (PVF) whose vortices are aligned rather than staggered. Then consider the problem

$$
\min _{u \in A} E_{\varepsilon}(u)
$$

- A: admissible set reflecting symmetry of the chosen relative equilibrium, and
- $J(u) \approx J_{0}\left(a_{1}, \cdots, a_{n}\right)$.
$\omega=\omega_{\varepsilon}$ arises as a Lagrange multiplier. This approach follows work by Gelantalis and Sternberg.

Constrained Minimization Approach

- Existence of minimizer: easy, provided the admissible set is non-empty.

Constrained Minimization Approach

- Existence of minimizer: easy, provided the admissible set is non-empty.
- Assuming this, in the case of a single ring, the momentum constraint value determines the position of the vortices up to a rotation.

Constrained Minimization Approach

- Existence of minimizer: easy, provided the admissible set is non-empty.
- Assuming this, in the case of a single ring, the momentum constraint value determines the position of the vortices up to a rotation.
- Complete the proof using the vortex balls construction and the Jacobian estimate.

Limitations of the constrained minimization approach

- Unable to treat multiple ring solutions/staggered ring solutions.
- Unable to show $\omega_{\varepsilon} \rightarrow \omega$ where ω is the speed corresponding to the limit.

Alternative approach: Linking

The main difficulty was inability to control ω_{ε} arising as Lagrange multipliers.

Alternative approach: Linking

The main difficulty was inability to control ω_{ε} arising as Lagrange multipliers.

Fix a relative equilibrium (may have ± 1 vortices), and denote the corresponding speed by ω_{0}. Solve above PDE with $\omega \equiv \omega_{0}$.

Alternative approach: Linking

The main difficulty was inability to control ω_{ε} arising as Lagrange multipliers.

Fix a relative equilibrium (may have ± 1 vortices), and denote the corresponding speed by ω_{0}. Solve above PDE with $\omega \equiv \omega_{0}$.

Good news: no need to control ω_{ε} any more.

Alternative approach: Linking

The main difficulty was inability to control ω_{ε} arising as Lagrange multipliers.

Fix a relative equilibrium (may have ± 1 vortices), and denote the corresponding speed by ω_{0}. Solve above PDE with $\omega \equiv \omega_{0}$.

Good news: no need to control ω_{ε} any more.
Bad news: we lose the constrained minimization formulation from above: can't specify constraint value and Lagrange multiplier!

Linking

Definition: Fix a Banach space V, a closed subset $S \subset V$ and a submanifold Q, and denote its relative boundary by ∂Q. The sets S and ∂Q are said to link if

- $S \cap \partial Q=\emptyset$
- For any continuous map $h: V \rightarrow V$ such that $\left.h\right|_{\partial Q}=i d$, there holds $h(Q) \cap S \neq \emptyset$.

Linking

Definition: Fix a Banach space V, a closed subset $S \subset V$ and a submanifold Q, and denote its relative boundary by ∂Q. The sets S and ∂Q are said to link if

- $S \cap \partial Q=\emptyset$
- For any continuous map $h: V \rightarrow V$ such that $\left.h\right|_{\partial Q}=i d$, there holds $h(Q) \cap S \neq \emptyset$.

In the context of Ginzburg Landau, a linking method was used by F-H. Lin to construct critical points of GL near critical points of W.

Main Theorem

Theorem (V., '16)

Let (\mathbf{a}, d) be a relative equilibrium, with speed ω_{0}. Write $\mathbf{a}(t):=\mathbf{a} e^{i \omega_{0} t}$.
For each $\varepsilon>0$ sufficiently small (depending on a), there exists a non-trivial time periodic solution u_{ε} to ($G P-B C$), with the same period of rotation as the given relative equilibrium, such that the Jacobian

$$
J u_{\varepsilon}(\cdot, t) \rightharpoonup \pi \sum_{i=1}^{N} d_{i} \delta_{a_{i}(t)}
$$

as $\varepsilon \rightarrow 0$, in $W^{-1,1}(\mathbb{D})$, for each time $t \in \mathbb{R}$.
Here, one can think of $J u_{\varepsilon}(\cdot, t):=\operatorname{det}\left(\nabla u_{\varepsilon}(\cdot, t)\right) d x$.

Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional $\mathcal{E}_{\varepsilon}:=E_{\varepsilon}-\omega_{0} J$ near a given critical point (\mathbf{a}, d) of $\mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d):=\frac{1}{\pi} W(\mathbf{a}, d)-\omega_{0} J_{0}(\mathbf{a}, d)$

Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional $\mathcal{E}_{\varepsilon}:=E_{\varepsilon}-\omega_{0} J$ near a given critical point (\mathbf{a}, d) of $\mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d):=\frac{1}{\pi} W(\mathbf{a}, d)-\omega_{0} J_{0}(\mathbf{a}, d)$ Steps:

- Required critical point arises as the large time limit of the gradient flow of $\mathcal{E}_{\varepsilon}$, by appeal to Leon Simon's theorem.

Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional $\mathcal{E}_{\varepsilon}:=E_{\varepsilon}-\omega_{0} J$ near a given critical point (\mathbf{a}, d) of $\mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d):=\frac{1}{\pi} W(\mathbf{a}, d)-\omega_{0} J_{0}(\mathbf{a}, d)$ Steps:

- Required critical point arises as the large time limit of the gradient flow of $\mathcal{E}_{\varepsilon}$, by appeal to Leon Simon's theorem.
- Initial data: well-prepared near the given critical point. Near optimal construction yields an embedding of the neighborhood of the critical point in \mathbb{C}^{N} into the Sobolev space H^{1}.

Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional $\mathcal{E}_{\varepsilon}:=E_{\varepsilon}-\omega_{0} J$ near a given critical point (\mathbf{a}, d) of $\mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d):=\frac{1}{\pi} W(\mathbf{a}, d)-\omega_{0} J_{0}(\mathbf{a}, d)$ Steps:

- Required critical point arises as the large time limit of the gradient flow of $\mathcal{E}_{\varepsilon}$, by appeal to Leon Simon's theorem.
- Initial data: well-prepared near the given critical point. Near optimal construction yields an embedding of the neighborhood of the critical point in \mathbb{C}^{N} into the Sobolev space H^{1}.
- Use a sort of vortex ball construction, together with Besicovitch's covering theorem to obtain a projection map, a sort of approximate inverse to above embedding.

Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional $\mathcal{E}_{\varepsilon}:=E_{\varepsilon}-\omega_{0} J$ near a given critical point (\mathbf{a}, d) of $\mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d):=\frac{1}{\pi} W(\mathbf{a}, d)-\omega_{0} J_{0}(\mathbf{a}, d)$ Steps:

- Required critical point arises as the large time limit of the gradient flow of $\mathcal{E}_{\varepsilon}$, by appeal to Leon Simon's theorem.
- Initial data: well-prepared near the given critical point. Near optimal construction yields an embedding of the neighborhood of the critical point in \mathbb{C}^{N} into the Sobolev space H^{1}.
- Use a sort of vortex ball construction, together with Besicovitch's covering theorem to obtain a projection map, a sort of approximate inverse to above embedding.

Some Details in the Proof of the Main Theorem

- Linking structure: use negative and positive eigenvalues of the Hessian $D^{2} \mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d)$.

Some Details in the Proof of the Main Theorem

- Linking structure: use negative and positive eigenvalues of the Hessian $D^{2} \mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d)$.
- Key Step: Construct a family of deformations of the linking structure, which preserves the linking structure. Done at future times using the projection map above, and some careful comparison arguments.

Some Details in the Proof of the Main Theorem

- Linking structure: use negative and positive eigenvalues of the Hessian $D^{2} \mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d)$.
- Key Step: Construct a family of deformations of the linking structure, which preserves the linking structure. Done at future times using the projection map above, and some careful comparison arguments.
- Critical value of $\mathcal{E}_{\varepsilon}$: Using this family, we can give an inf - sup characterization of the critical value, which, upto multiples of $\pi \log \frac{1}{\varepsilon}$ and $O(1)$ terms, is the energy $\mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d)$.

Some Details in the Proof of the Main Theorem

- Linking structure: use negative and positive eigenvalues of the Hessian $D^{2} \mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d)$.
- Key Step: Construct a family of deformations of the linking structure, which preserves the linking structure. Done at future times using the projection map above, and some careful comparison arguments.
- Critical value of $\mathcal{E}_{\varepsilon}$: Using this family, we can give an inf - sup characterization of the critical value, which, upto multiples of $\pi \log \frac{1}{\varepsilon}$ and $O(1)$ terms, is the energy $\mathcal{H}^{n, \omega_{0}}(\mathbf{a}, d)$.
- Conclusion of Critical Value Step: $\mathcal{E}_{\varepsilon}$ is Palais-Smale, so pass to the large time limit, holding ε fixed. Obtain a critical point v_{ε} satisfying

$$
\left|\mathcal{E}_{\varepsilon}\left(v_{\varepsilon}\right)-N \pi \log \frac{1}{\varepsilon}-\mathcal{H}^{n, \omega_{0}}(\mathbf{a})-N \gamma\right|=o_{\varepsilon}(1)
$$

What I've swept under the rug

- Directions of degeneracy of Hessian.

What I've swept under the rug

- Directions of degeneracy of Hessian.
- Symmetry.

What I've swept under the rug

- Directions of degeneracy of Hessian.
- Symmetry.
- Above argument only says energies are close. We need v_{ε} to have zeroes close to the given critical point of \mathcal{H}. Follows from Pohazaev-type identities and letting $\varepsilon \rightarrow 0^{+}$.

Afterthought: some examples

- For each integer k, there exists a solution to Gross-Pitaevskii with boundary condition $g \equiv 1$, and zeroes on the vertices of concentric k-gons, one with +1 vortices, and the other, staggered, with -1 vortices.

Afterthought: some examples

- For each integer k, there exists a solution to Gross-Pitaevskii with boundary condition $g \equiv 1$, and zeroes on the vertices of concentric k-gons, one with +1 vortices, and the other, staggered, with -1 vortices.
- Given n, corresponding to the degree of the b.c., fix a divisor k of n. Then there exists a periodic orbit to (GP-BC) containing $\frac{n}{k}$ aligned rings, each with $k+1$ vortices.
- When n is a prime, there's only one relative equilibrium to (GP-BC) with all +1 vortices. Stability??

