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The Gross-Pitaevskii Equations

Seek non-constant time periodic solutions to the Gross-Pitaevskii (GP)

equations

iut(x , t) = ∆u(x , t) +
u(x , t)(1− |u(x , t)|2)

ε2
, (x , t) ∈ D× R,

posed on the unit disc D, subject to the Dirichlet boundary conditions

(BC)

u(e iθ, t) = gn(θ) := e inθ, θ ∈ [0, 2π), t ∈ R.

deg(gn, ∂D, 0) = n.
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Hamiltonian Structure

The flow (GP-BC) conserves the Ginzburg-Landau Energy,

Eε(u) :=
1

2

∫
D
|∇u|2 +

1

2ε2
(1− |u|2)2 dx . (0.1)

Here 0 < ε� 1. Energetically, minimizers uε of GL prefer |uε| ≈ 1. In the

limit ε→ 0, topological restrictions from the boundary condition force

vortices.
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Renormalized Energy à la Bethuel-Brezis-Helein

• The sequence of minimizers uε converge as ε→ 0 to a nice

function u∗, away from exactly n distinct points– vortices.

• u∗ satisfies the Harmonic map PDE away from these vortices and

has degree +1 about each of these. Vortices are located at a global

minimizer of the re-normalized energy W .

• More generally, for any positive number N ≥ n, integers

di , i = 1, · · · ,N satisfying
∑

di = n, and distinct points

ai , i = 1, · · · ,N, and a boundary condition g taking values in S1 with

deg(g , ∂D, 0) = n

W (a1, · · · , aN ; d1, d2, · · · , dN ; g) := −π
∑
i 6=j

didj log |ai − aj |

+ boundary terms.
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Point Vortex Flow

The Hamiltonian system on CN associated to W :

dj

(
daj
dt

)⊥
= − 1

π
∇ajW , j = 1, · · · ,N. (PVF )

Arises in fluid mechanics as a singular limit of 2D incompressible Euler,

(cf. Marchioro and Pulvirenti /Saffmann for more on this connection. )

Crucial to us: (PVF) captures effective dynamics of vortices to GP as

ε→ 0+, up to first collision time.

Made rigorous by Colliander-Jerrard/Lin-Xin/Jerrard-Spirn.

Rigorous results on the hydrodynamic/mean field limit of GP:

Jerrard-Spirn/Serfaty.
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Main Question

Given a time periodic solution to (PVF), can we construct time-periodic

solution to (GP), whose vortices follow the given periodic solution?

• Large time behavior for GP for ε > 0 : given solutions to (PVF)

with vortices that never collide, can we construct solutions to (GP)

that follow these point vortices for all time, as ε→ 0+? Especially

interesting when vortices of opposite degrees persist.

• More abstract question: say something about Hamiltonian dynamics

associated to Gamma converging sequence of energies, and effective

Hamiltonian dynamics?

Our (modest) contribution: in the very special case of (GP-BC),

using variational and symmetry arguments, we show that for a very

large class of time-periodic solutions, called relative equilibria to

(PVF), there exist time-periodic solutions to (GP) following them.
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Relative Equilibria

• Definition: Uniformly rotating periodic solutions to the system

(PVF).

• Obtained by pursuing the ansatz aj(t) = aje
i(−ω̃t), where ω̃ ∈ R.

• Results in nested rings of vortices, each with equal numbers of

rings, and all vortices of a ring having the same degree.

• Different rings may be aligned or staggered.
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Relative Equilibria

Figure: A staggered configuration
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Figure: An aligned configuration
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Rotational Ansatz

Starting Point: Make a rotational ansatz:

u(x , t) = R(−kωt)v
(
R( ωm t)x

)
,

Here: R(β) is the counterclockwise rotation matrix by an angle β; k ,m

are integers and ω ∈ R.

Thanks to Bob Jerrard for suggesting this ansatz in the case n = 1 of a

single vortex.
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An Elliptic PDE: Variational Formulations

Plugging in the ansatz into (GP) yields an elliptic PDE.

∆v(y) +
v

ε2
(1− |v |2)(y) = ω

(
kv +

1

m
y⊥ · ∇v⊥

)
(y), y ∈ D,

v(e iθ) = e inθ.

The boundary condition is compatible with the rotating frame ansatz

above, iff k |n and m = n
k . Inspired by relative equilibria, look for v with

k−fold symmetry.

In case n = 0, use the ansatz with k = 0 and m an arbitrary integer,

reflecting m−fold symmetry.
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Conserved Quantities

• Hamiltonians:

Gross-Pitaevskii: Ginzburg-Landau Energy:

Eε(u) :=

∫
D

|∇u|2

2
+

(1− |u|2)2

4ε2
dx .

Point Vortex Flow: Renormalized Energy: W

• Momenta:

Gross-Pitaevskii:

J(v) := −1

2

∫
D
k |v |2 +

1

m
v · (x⊥ · ∇)v⊥ dx .

Point Vortex Flow:

J0(b, d) = −1

2

N∑
j=1

dj |bj |2
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Constrained Minimization Approach

The elliptic PDE above has a variational formulation based on

momentum-constrained minimization. Since this is a minimization

procedure, can only yield +1 vortices.

General Idea: Fix a relative equilibrium, to (PVF) whose vortices are

aligned rather than staggered. Then consider the problem

min
u∈A

Eε(u)

• A: admissible set reflecting symmetry of the chosen relative

equilibrium, and

• J(u) ≈ J0(a1, · · · , an).

ω = ωε arises as a Lagrange multiplier. This approach follows work by

Gelantalis and Sternberg.
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Constrained Minimization Approach

• Existence of minimizer: easy, provided the admissible set is

non-empty.

• Assuming this, in the case of a single ring, the momentum

constraint value determines the position of the vortices up to a

rotation.

• Complete the proof using the vortex balls construction and the

Jacobian estimate.
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Limitations of the constrained minimization approach

• Unable to treat multiple ring solutions/staggered ring solutions.

• Unable to show ωε → ω where ω is the speed corresponding to the

limit.
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Alternative approach: Linking

The main difficulty was inability to control ωε arising as Lagrange

multipliers.

Fix a relative equilibrium (may have ±1 vortices), and denote the

corresponding speed by ω0. Solve above PDE with ω ≡ ω0.

Good news: no need to control ωε any more.

Bad news: we lose the constrained minimization formulation from above:

can’t specify constraint value and Lagrange multiplier!
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Linking

Definition: Fix a Banach space V , a closed subset S ⊂ V and a

submanifold Q, and denote its relative boundary by ∂Q. The sets S and

∂Q are said to link if

• S ∩ ∂Q = ∅

• For any continuous map h : V → V such that h|∂Q = id , there

holds h(Q) ∩ S 6= ∅.

In the context of Ginzburg Landau, a linking method was used by F-H. Lin

to construct critical points of GL near critical points of W .
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Main Theorem

Theorem (V., ’16)

Let (a, d) be a relative equilibrium, with speed ω0. Write a(t) := ae iω0t .

For each ε > 0 sufficiently small (depending on a), there exists a

non-trivial time periodic solution uε to (GP-BC), with the same period of

rotation as the given relative equilibrium, such that the Jacobian

Juε(·, t) ⇀ π

N∑
i=1

diδai (t)

as ε→ 0, in W−1,1(D), for each time t ∈ R.

Here, one can think of Juε(·, t) := det(∇uε(·, t)) dx .
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Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional Eε := Eε − ω0J near a

given critical point (a, d) of Hn,ω0(a, d) := 1
πW (a, d)− ω0J0(a, d)

Steps:

• Required critical point arises as the large time limit of the gradient

flow of Eε, by appeal to Leon Simon’s theorem.

• Initial data: well-prepared near the given critical point. Near

optimal construction yields an embedding of the neighborhood of the

critical point in CN into the Sobolev space H1.

• Use a sort of vortex ball construction, together with Besicovitch’s

covering theorem to obtain a projection map, a sort of approximate

inverse to above embedding.

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii July 15, 2016



Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional Eε := Eε − ω0J near a

given critical point (a, d) of Hn,ω0(a, d) := 1
πW (a, d)− ω0J0(a, d)

Steps:

• Required critical point arises as the large time limit of the gradient

flow of Eε, by appeal to Leon Simon’s theorem.

• Initial data: well-prepared near the given critical point. Near

optimal construction yields an embedding of the neighborhood of the

critical point in CN into the Sobolev space H1.

• Use a sort of vortex ball construction, together with Besicovitch’s

covering theorem to obtain a projection map, a sort of approximate

inverse to above embedding.

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii July 15, 2016



Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional Eε := Eε − ω0J near a

given critical point (a, d) of Hn,ω0(a, d) := 1
πW (a, d)− ω0J0(a, d)

Steps:

• Required critical point arises as the large time limit of the gradient

flow of Eε, by appeal to Leon Simon’s theorem.

• Initial data: well-prepared near the given critical point. Near

optimal construction yields an embedding of the neighborhood of the

critical point in CN into the Sobolev space H1.

• Use a sort of vortex ball construction, together with Besicovitch’s

covering theorem to obtain a projection map, a sort of approximate

inverse to above embedding.

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii July 15, 2016



Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional Eε := Eε − ω0J near a

given critical point (a, d) of Hn,ω0(a, d) := 1
πW (a, d)− ω0J0(a, d)

Steps:

• Required critical point arises as the large time limit of the gradient

flow of Eε, by appeal to Leon Simon’s theorem.

• Initial data: well-prepared near the given critical point. Near

optimal construction yields an embedding of the neighborhood of the

critical point in CN into the Sobolev space H1.

• Use a sort of vortex ball construction, together with Besicovitch’s

covering theorem to obtain a projection map, a sort of approximate

inverse to above embedding.

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii July 15, 2016



Some Details in the Proof of the Main Theorem

Main Goal: Find a critical point of the functional Eε := Eε − ω0J near a

given critical point (a, d) of Hn,ω0(a, d) := 1
πW (a, d)− ω0J0(a, d)

Steps:

• Required critical point arises as the large time limit of the gradient

flow of Eε, by appeal to Leon Simon’s theorem.

• Initial data: well-prepared near the given critical point. Near

optimal construction yields an embedding of the neighborhood of the

critical point in CN into the Sobolev space H1.

• Use a sort of vortex ball construction, together with Besicovitch’s

covering theorem to obtain a projection map, a sort of approximate

inverse to above embedding.

Venkatraman (Indiana University) Periodic Orbits to Gross-Pitaevskii July 15, 2016



Some Details in the Proof of the Main Theorem

• Linking structure: use negative and positive eigenvalues of the

Hessian D2Hn,ω0(a, d).

• Key Step: Construct a family of deformations of the linking

structure, which preserves the linking structure. Done at future times

using the projection map above, and some careful comparison

arguments.

• Critical value of Eε: Using this family, we can give an inf − sup

characterization of the critical value, which, upto multiples of π log 1
ε

and O(1) terms, is the energy Hn,ω0(a, d).

• Conclusion of Critical Value Step: Eε is Palais-Smale, so pass to the

large time limit, holding ε fixed. Obtain a critical point vε satisfying∣∣∣∣Eε(vε)− Nπ log
1

ε
−Hn,ω0(a)− Nγ

∣∣∣∣ = oε(1)
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What I’ve swept under the rug

• Directions of degeneracy of Hessian.

• Symmetry.

• Above argument only says energies are close. We need vε to have

zeroes close to the given critical point of H. Follows from

Pohazaev-type identities and letting ε→ 0+.
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Afterthought: some examples

• For each integer k, there exists a solution to Gross-Pitaevskii with

boundary condition g ≡ 1, and zeroes on the vertices of concentric

k−gons, one with +1 vortices, and the other, staggered, with −1

vortices.

• Given n, corresponding to the degree of the b.c., fix a divisor k of n.

Then there exists a periodic orbit to (GP-BC) containing n
k aligned

rings, each with k +1 vortices.

• When n is a prime, there’s only one relative equilibrium to (GP-BC)

with all +1 vortices. Stability??
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