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Prototype model for rate-induced tipping (S.

Wieczorek)
Non-
e @ A Tipping event occurs when gradual changes to input
e e levels causes the system to change states.
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Prototype model for rate-induced tipping (S.

Wieczorek)
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Normal form for rate-induced tipping

P b @ Simplest model for rate-induced tipping:
Instabilities: : 2
Interactions X = (X 4 }\) Sy
Between
Noise and -
Ratiiﬁdaucm A= GA(Amax o )\)
Tipping A )\
€t
At) = ——| tanh [ /= T
2 2
(Ashwin et al., 2012)
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Fokker-Planck Equation (FPE)

e @ Probability density function of the random variable X; is
—— governed by the Fokker-Planck equation (FPE):
Between
Noise and OP(x,t) 9%P(x, t) e,
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Fokker-Planck Equation (FPE)

Ml @ Probability density function of the random variable X; is
re— governed by the Fokker-Planck equation (FPE):
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Noise and rate-induced tipping
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Optimal path definition

P i 1 The optimal path is the most likely path for getting from xp to
i xT in a time T whilst remaining within the gates of the path.
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Variational problem for the optimal path

Autg;"r;ms From the FPE it turns out that we need to maximise the
Instabilities: following functional F:
Interactions
Between
Noise and
e ipping F— exp Ulxo, to) — U(xt, T) [T (%% o,
2D » \2D "

which gives us a Boundary Value Problem (BVP):

% =2p%Vs {XEO

S’
|
&

Ox

. where
Dptimal

Paths

Vs

1 (aU\? 18°U 1 aU
4D\ ox 20x%? 2D ot

(Zhang, 2008), (Ho and Dai, 2008)



Variational problem for the optimal path

Non-

Auton(')fn.ous
inceractions [NSAVA =S
Between
Noise and
Rate-Induced
Tipping .
" Sl opYVs AR =
' Ox Ry = xy
@ To find the optimal time for our optimal path we maximise
our F again by keeping Tepg free:
U(Xo, tO) n U(XT, Tend) Tend x?
i F = exp 5D — /m E+ Vs |dr

this is performed using continuation techniques in AUTO.



Optimal path for rate-induced tipping
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Density plots from simulations
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r——— Density plots of simulations started at xp = —1 at t = —10 and
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Colour plot for optimal time

Non-
— @ Maximising the functional F using continuation techniques
ey in AUTO gives the optimal time for escape.
Noise and
peswmanll  Colour contour plots for the optimal time of escape for a range
of € and D values.
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Calculating probability of following a path

Previously,

dt
This time we take dt — 0 but keep d fixed.

@ Calculate probability of going from one gate to the next
assuming we are in the gate to start with.

@ Use instantaneous eigenmodes of the the linear FPE to
approximate the probability of escape.
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Instantaneous Eigenmodes for FPE

@ Fokker-Planck equation:

OP(x, t) o2 9 If(x, 1)
N | Sl P Bkl
Ot O x2 % )Bx Ox

@ The FPE can then be written as:
P=A(t)P
@ Assume solution to be of the form:
P(t) = xy(t)vi(t) + xo(t)va(t) + ...

where A(t)vk(t) = )\k(t)vk(t)
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Instantaneous Eigenvalue Spectrum
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Instantaneous Eigenmodes for FPE

Non-

At a—— @ Initial x; given by projection of some given initial density:
Instabilities: - —
| i t
m X =< wj , Pinial >
Noise and
oy where w/ arise from the adjoint of the matrix A:
: 02 0
A*(t) = D= + f(x, t)=—
( ) ax2 ( )ax
@ Subsequent xj are gained through substituting the
assumed solution into the FPE:
X1V1 + x1V1 + XoVa + XoVo + ... = A(x1v1 + xova + ...)
= A1X1V1 + A2xoVo + ...
@ Multiply this equation on the left by WIT and use
Probability of T S
bscape W; v; = 0;; to give:

Xl — /\1X1 = W{lel = WIVQXQ .
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Comparison of simulations with eigenmodes

Parameter values: ¢ = 0.7, D = 0.1
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Comparison of simulations with eigenmodes

Parameter values:

i LR |
Slmulatu)ns .
1.5/ 1 mode M
= | | \
2 4 {
@
() |
0.5} }
| J
I3 e i e
0 i T
X

Comparison between using

simulations and 1 eigenmode
W

e =07 D—01

2 ‘
—Simulations
1 5:/—3 modes
2
2 1
[0}
a
0.5}
St 2 0
X

it M3

—t:mqud?“rsml—bvfwemr‘mmg—
simulations and 3 eigenmodes



Non-
Autonomous
Instabilities:
Interactions
Between
Noise and
Rate-Induced

Tipping

Probability of
Pscape

Overview of probability of escape using

simulations
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Summary

@ To calculate the timing of escape we have a BVP that can
be solved.

@ For probability of escape we can use the mode
approximation of the linear FPE.

@ The timing and probability of escape can be used as an
extra early-warning indicator for tipping events.



