Outline

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

- Introduction
- Optimal Paths
- Probability of escape
- Summary

Prototype model for rate-induced tipping (S. Wieczorek)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie. University of Exeter, (3rd Year PhD Student). Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal aths

Probability of scape

Summary

References

 A Tipping event occurs when gradual changes to input levels causes the system to change states.

$$\dot{x} = f(x,t) = (x + \lambda(t))^2 - 1,$$

$$\dot{x} = f(x,t) = (x+\lambda(t))^2 - 1, \qquad U(x,t) = -\int_X f(\bar{x},t)\mathrm{d}\bar{x}$$

Rate-induced tipping escaping イロン (例) イラン イラン

Prototype model for rate-induced tipping (S. Wieczorek)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie. University of Exeter, (3rd Year PhD Student). Supervised by Dr. Jan Sieber

Dutline

ntroduction

Optimal aths

Probability of scape

Summary

References

 A Tipping event occurs when gradual @anges to input levels causes the system to change states.

$$\dot{x} = f(x,t) = (x + \lambda(t))^2 - 1,$$

$$\dot{x} = f(x,t) = (x+\lambda(t))^2 - 1, \qquad U(x,t) = -\int_X f(\bar{x},t)\mathrm{d}\bar{x}$$

Rate-induced tipping escaping

イロト イラト イラト イラト ラ めのの

Prototype model for rate-induced tipping (S. Wieczorek)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

 A Tipping event occurs when gradual changes to input levels causes the system to change states.

$$\dot{x} = f(x,t) = (x+\lambda(t))^2 - 1, \qquad U(x,t) = -\int_x f(\bar{x},t)\mathrm{d}\bar{x}$$

Rate-induced tipping not escaping well

Normal form for rate-induced tipping

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Simplest model for rate-induced tipping:

$$\dot{x} = (x + \lambda)^2 - 1$$

$$\dot{\lambda} = \epsilon \lambda (\lambda_{max} - \lambda)$$

$$\lambda(t) = \frac{\lambda_{max}}{2} \left(\tanh\left(\frac{\lambda_{max} \epsilon t}{2}\right) + 1 \right)$$

(Ashwin et al., 2012)

Phase plane, $\epsilon \approx 0$

Prototype model for rate-induced tipping (S. Wieczorek)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Fokker-Planck Equation (FPE)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

 Probability density function of the random variable X_t is governed by the Fokker-Planck equation (FPE):

$$\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial x^2} - \frac{\partial}{\partial x} (f(x,t)P(x,t))$$

How density P(x, t) evolves in potential well U(x, t)

Fokker-Planck Equation (FPE)

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

 Probability density function of the random variable X_t is governed by the Fokker-Planck equation (FPE):

$$\frac{\partial P(x,t)}{\partial t} = D \frac{\partial^2 P(x,t)}{\partial x^2} - \frac{\partial}{\partial x} (f(x,t)P(x,t))$$

Noise and rate-induced tipping

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Time profile and phase plane of rate-induced tipping along with the escape rate, $\epsilon=1.25,\,D=0.008,\, \text{Prob.}$ of escape = 0.45

Time profile

Phase plane

Optimal path definition

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

The optimal path is the most likely path for getting from x_0 to x_T in a time T whilst remaining within the gates of the path.

Variational problem for the optimal path

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

From the FPE it turns out that we need to maximise the following functional F:

$$F = \exp\left[\frac{U(x_0, t_0) - U(x_T, T)}{2D} - \int_{t_0}^T \left(\frac{\dot{x}^2}{4D} + V_s\right) d\tau\right]$$

which gives us a Boundary Value Problem (BVP):

$$\ddot{x} = 2D \frac{\partial V_s}{\partial x}, \qquad \begin{cases} x(0) = x_0 \\ x(T) = x_T \end{cases}$$

where

$$V_s = \frac{1}{4D} \left(\frac{\partial U}{\partial x} \right)^2 - \frac{1}{2} \frac{\partial^2 U}{\partial x^2} - \frac{1}{2D} \frac{\partial U}{\partial t}$$

(Zhang, 2008), (Ho and Dai, 2008)

Variational problem for the optimal path

NonAutonomous
Instabilities:
Interactions
Between
Noise and
Rate-Induced
Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

BVP:

$$\ddot{x} = 2D \frac{\partial V_s}{\partial x}, \qquad \begin{cases} x(0) = x_0 \\ x(T) = x_T \end{cases}$$

 To find the optimal time for our optimal path we maximise our F again by keeping T_{end} free:

$$F = \exp\left[\frac{U(x_0, t_0) - U(x_T, T_{end})}{2D} - \int_{t_0}^{T_{end}} \left(\frac{\dot{x}^2}{4D} + V_s\right) d\tau\right]$$

this is performed using continuation techniques in AUTO.

Optimal path for rate-induced tipping

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Optimal path of escape for rate-induced tipping along with the escape rate, $\epsilon = 1.25$, D = 0.008, Prob. of escape = 0.45

Time profile

Phase plane

Density plots from simulations

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Density plots of simulations started at $x_0 = -1$ at t = -10 and run until t = 10 for rate-induced system with optimal path added, $\epsilon = 1.25$, D = 0.008

Time profile

Phase plane

Colour plot for optimal time

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

 Maximising the functional F using continuation techniques in AUTO gives the optimal time for escape.

Colour contour plots for the optimal time of escape for a range of ϵ and D values.

Calculating probability of following a path

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Previously,

This time we take $dt \rightarrow 0$ but keep δ fixed.

- Calculate probability of going from one gate to the next assuming we are in the gate to start with.
- Use instantaneous eigenmodes of the linear FPE to approximate the probability of escape.

Instantaneous Eigenmodes for FPE

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Fokker-Planck equation:

$$\frac{\partial P(x,t)}{\partial t} = \left[D \frac{\partial^2}{\partial x^2} - f(x,t) \frac{\partial}{\partial x} - \frac{\partial f(x,t)}{\partial x} \right] P(x,t)$$

• The FPE can then be written as:

$$\dot{\mathbf{P}} = A(t)\mathbf{P}$$

Assume solution to be of the form:

$$P(t) = x_1(t)v_1(t) + x_2(t)v_2(t) + ...$$

where
$$A(t)\mathbf{v}_k(t) = \lambda_k(t)\mathbf{v}_k(t)$$

Instantaneous Eigenvalue Spectrum

NonAutonomous
Instabilities:
Interactions
Between
Noise and
Rate-Induced
Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

10 dominant eigenvalues

Eigenvalue spectrum for the full rate-induced system

Instantaneous Eigenmodes for FPE

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

• Initial x_k given by projection of some given initial density:

$$x_k = \langle \mathbf{w}_k^T, \mathbf{P}^{initial} \rangle$$

where \mathbf{w}_{k}^{T} arise from the adjoint of the matrix A:

$$A^{adj}(t) = D \frac{\partial^2}{\partial x^2} + f(x, t) \frac{\partial}{\partial x}$$

 Subsequent x_k are gained through substituting the assumed solution into the FPE:

$$\dot{x}_1 \mathbf{v}_1 + x_1 \dot{\mathbf{v}}_1 + \dot{x}_2 \mathbf{v}_2 + x_2 \dot{\mathbf{v}}_2 + \dots = A(x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + \dots)$$

= $\lambda_1 x_1 \mathbf{v}_1 + \lambda_2 x_2 \mathbf{v}_2 + \dots$

• Multiply this equation on the left by \mathbf{w}_1^T and use $\mathbf{w}_i^T \mathbf{v}_j = \delta_{ij}$ to give:

$$\dot{x}_1 = \lambda_1 x_1 - \mathbf{w}_1^T \dot{\mathbf{v}}_1 x_1 - \mathbf{w}_1^T \dot{\mathbf{v}}_2 x_2 - \dots$$

Comparison of simulations with eigenmodes

Non-Autonomous Instabilities: Interactions Between Noise and Rate-Induced Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Parameter values: $\epsilon = 0.7$, D = 0.1

Comparison between using simulations and 1 eigenmode

Comparison between using simulations and 3 eigenmodes

Comparison of simulations with eigenmodes

NonAutonomous
Instabilities:
Interactions
Between
Noise and
Rate-Induced
Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

simulations and 3 eigenmodes

Overview of probability of escape using simulations

NonAutonomous
Instabilities:
Interactions
Between
Noise and
Rate-Induced
Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Starting simulations at $x_0 = -1$ and observing the probability of escaping potential well for a large range of ϵ and D values

Comparison for probability of escape using different techniques

NonAutonomous
Instabilities:
Interactions
Between
Noise and
Rate-Induced
Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

Simulations

Contour plots comparing % that escape denoted by the colour in using simulations with using either 1 or 3 modes.

3 modes

Summary

NonAutonomous
Instabilities:
Interactions
Between
Noise and
Rate-Induced
Tipping

Paul Ritchie, University of Exeter, (3rd Year PhD Student), Supervised by Dr. Jan Sieber

Outline

ntroduction

Optimal Paths

Probability of escape

Summary

References

- To calculate the timing of escape we have a BVP that can be solved.
- For probability of escape we can use the mode approximation of the linear FPE.
- The timing and probability of escape can be used as an extra early-warning indicator for tipping events.