SAND2018-7448 C

Exceptional service in the national interest

Modeling microstructure and defects with peridynamics

Stewart Silling

Sandia National Laboratories Albuquerque, New Mexico

SIAM Conference on Mathematical Aspects of Materials Science, Portland, OR, July 11, 2018

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Outline

Sandia National Laboratories

- Peridynamic theory summary
- Defects and material failure
- Phase changes and microstructure

3

Gaps in classical continuum mechanics

• Momentum balance, 1D:

$$\rho u_{tt} = (\sigma(u_x))_x + b$$

where u=displacement, σ =stress, b=external body force.

- Requires *u* to be twice continuously differentiable.
- Doesn't apply on cracks or growing discontinuities.
- Predicts infinite stress near defects.
- Can't include nanoscale forces.

Peridynamics:* What it is

- It's an extension of continuum mechanics to media with cracks and long-range forces.
- It unifies the mechanics of continuous and discontinuous media within a single, consistent set of equations.

- Our goals
 - Nucleate cracks and seamlessly transition to growth.
 - Model complex fracture patterns.
 - Communicate across length scales.

* Peri (near) + dyn (force)

Peridynamics concepts: Horizon and family

- Any point ${f x}$ interacts directly with other points within a distance δ called the "horizon."
- The material within a distance δ of ${\bf x}$ is called the "family" of ${\bf x}$, ${\cal H}_{{\bf x}}$.

- SS, J. Mechanics and Physics of Solids (2000)
- SS & Lehoucq, Advances in Applied Mechanics (2010)

Peridynamic concept of strain energy density at a point

- The strain energy density $W(\mathbf{x})$ is determined by the deformation of the entire family of \mathbf{x} .
- How to describe this dependence? **States**

States: Nonlinear analogues of second order tensors

• Peridynamics uses states (nonlinear mappings from vectors to vectors).

States

• A state is a mapping whose domain is all the bonds $\boldsymbol{\xi}$ in a family.

 $\underline{\mathbf{A}}\langle \boldsymbol{\xi}
angle = \mathsf{something} \qquad orall \boldsymbol{\xi} \in \mathcal{H}.$

• Deformation state...

 $\underline{\mathbf{Y}}[\mathbf{x}]\langle \mathbf{q}-\mathbf{x}\rangle=\mathbf{y}(\mathbf{q})-\mathbf{y}(\mathbf{x})=\text{deformed image of the bond}$

Strain energy density: W(Y)

Operations with states

• Two operators on states are defined by

$$\underline{\mathbf{A}} \bullet \underline{\mathbf{B}} = \int_{\mathcal{H}} \underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle \cdot \underline{\mathbf{B}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}} \qquad \dots \text{dot product (a scalar)}$$
$$\underline{\mathbf{A}} \star \underline{\mathbf{B}} = \int_{\mathcal{H}} \underline{\mathbf{A}} \langle \boldsymbol{\xi} \rangle \otimes \underline{\mathbf{B}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}} \qquad \dots \text{tensor product (a 2nd order tensor)}$$

• Two more useful states...

$$\begin{split} \underline{\mathbf{1}} \langle \boldsymbol{\xi} \rangle &= 1 & \forall \boldsymbol{\xi} \in \mathcal{H} & \dots \text{unity state,} \\ \underline{\mathbf{X}} \langle \boldsymbol{\xi} \rangle &= \boldsymbol{\xi} & \forall \boldsymbol{\xi} \in \mathcal{H} & \dots \text{identity state.} \end{split}$$

Functions of states

- Let $\Psi(\underline{\mathbf{A}})$ be a scalar-valued function of a state.
- Suppose there is a state $\Psi_{\underline{A}}(\underline{A})$ such that for any small increment $d\underline{A}$,

$$\Psi(\underline{\mathbf{A}} + d\underline{\mathbf{A}}) - \Psi(\underline{\mathbf{A}}) = \Psi_{\underline{\mathbf{A}}}(\underline{\mathbf{A}}) \bullet d\underline{\mathbf{A}}.$$

• Then $\Psi_{\underline{\mathbf{A}}}(\underline{\mathbf{A}})$ is the *Fréchet derivative* of Ψ at $\underline{\mathbf{A}}$.

Potential energy minimization yields the peridynamic equilibrium equation

• Potential energy:

$$\Phi = \int_{\mathcal{B}} (W - \mathbf{b} \cdot \mathbf{y}) \, dV_{\mathbf{x}}$$

where W is the strain energy density, y is the deformation map, b is the applied external force density, and \mathcal{B} is the body.

• Euler-Lagrange equation is the equilibrium equation:

$$\int_{\mathcal{H}_{\mathbf{x}}} \mathbf{f}(\mathbf{q}, \mathbf{x}) \, dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

for all \mathbf{x} . \mathbf{f} is the *pairwise bond force density*.

• f is found from the Fréchet derivatives of W at x and each q:

$$\mathbf{f}(\mathbf{q}, \mathbf{x}) = W_{\underline{\mathbf{Y}}}[\mathbf{x}] \langle \mathbf{q} - \mathbf{x} \rangle - W_{\underline{\mathbf{Y}}}[\mathbf{q}] \langle \mathbf{x} - \mathbf{q} \rangle.$$

Material models

- Recall the equilibrium equation:
 - $\int_{\mathcal{H}} \mathbf{f}(\mathbf{q}, \mathbf{x}) + \mathbf{b}(\mathbf{x}) = \mathbf{0}$

X ℋ↓x

where (from the first variation of Φ)

• $\underline{\mathbf{T}}[\mathbf{x}]$ is the *force state* obtained from the material model $\hat{\underline{\mathbf{T}}}$ applied to the family of x:

 $\mathbf{f}(\mathbf{q}, \mathbf{x}) = \mathbf{T}[\mathbf{x}] \langle \mathbf{q} - \mathbf{x} \rangle - \mathbf{T}[\mathbf{q}] \langle \mathbf{x} - \mathbf{q} \rangle.$

$$\underline{\mathbf{T}}[\mathbf{x}] = \underline{\hat{\mathbf{T}}}(\underline{\mathbf{Y}}[\mathbf{x}]).$$

SS, Epton, Weckner, Xu, & Askari, J. Elasticity (2007) ٠

13

Examples of material models

- Bond-based (each bond responds independently of the others):
 - $\underline{\mathbf{T}}\langle \boldsymbol{\xi} \rangle = f(s, \boldsymbol{\xi}) \frac{\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle}{|\mathbf{Y}\langle \boldsymbol{\xi} \rangle|}, \qquad s = \frac{|\underline{\mathbf{Y}}\langle \boldsymbol{\xi} \rangle| |\boldsymbol{\xi}|}{|\boldsymbol{\xi}|}$ where s = bond strain. Direction of the deformed bond $\boldsymbol{\xi}$
- Isotropic solid:
 - $\underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle = \alpha s + \beta \vartheta, \qquad \vartheta = \underline{\mathbf{U}} \bullet \underline{\mathbf{X}}, \qquad \underline{\mathbf{U}} = \underline{\mathbf{Y}} \underline{\mathbf{X}}$

where α, β are constants and ϑ is a measure of the volume change in the family, and U=displacement state.

Linearized:

$$\underline{\mathbf{T}} = \underline{\mathbb{K}} \bullet \underline{\mathbf{U}}, \qquad \underline{\mathbb{K}} = W_{\underline{\mathbf{Y}}\underline{\mathbf{Y}}}$$

where $\underline{\mathbb{K}}$ is the micromodulus double state (second Fréchet derivative).

$$\underline{\mathbf{T}}\langle\boldsymbol{\xi}\rangle = \int_{\mathcal{H}} \underline{\mathbb{K}}\langle\boldsymbol{\xi},\boldsymbol{\zeta}\rangle \cdot \underline{\mathbf{U}}\langle\boldsymbol{\zeta}\rangle \ dV_{\boldsymbol{\zeta}}.$$

Damage

- Damage is usually treated through *bond breakage*.
- After a bond ξ breaks according to some criterion, it no longer carries any force.
- Typical breakage criterion: prescribed *critical bond strain* s₀:

$$s = rac{|\underline{\mathbf{Y}}\langle \boldsymbol{\xi}
angle| - |\boldsymbol{\xi}|}{|\boldsymbol{\xi}|}$$
 bond strain.

 $s >= s_0$ at some time t_0

means the bond remains broken for all $t \ge t_0$.

Discontinuities are treated within the basic field equations

• When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

Cracking in a composite lamina

Impact against reinforced concrete

Emu numerical method

Integral is replaced by a finite sum: resulting method is <u>meshless</u> and <u>Lagrangian</u>.

$$\rho \ddot{\mathbf{y}}(\mathbf{x},t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{x}',\mathbf{x},t) \, dV_{\mathbf{x}'} + \mathbf{b}(\mathbf{x},t) \quad \longrightarrow \quad \rho \ddot{\mathbf{y}}_i^n = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_k,\mathbf{x}_i,t) \, \Delta V_k + \mathbf{b}_i^n$$

- SS & Askari, Computers & Structures (2005)
- Tian & Du, SIAM Journal on Numerical Analysis (2014)

Force states and stress

• For a homogeneous deformation of a homogeneous body,

$$\sigma = \underline{\mathbf{T}} \star \underline{\mathbf{X}}$$
 or $\sigma = \int_{\mathcal{H}} \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \otimes \boldsymbol{\xi} \ dV_{\boldsymbol{\xi}}.$

- This σ is called the *partial stress*.
- It has the usual mechanical interpretation (force/area).
- For non-homogeneous deformations, in general for this σ

 $\nabla \cdot \boldsymbol{\sigma} + \mathbf{b} \neq \mathbf{0}.$

- But there is a more general peridynamic stress tensor for which equality holds.
- Lehoucq & SS, J. Mechanics and Physics of Solids (2008)
- SS, Littlewood & Seleson, J. Mechanics of Materials & Structures (2014)

Peridynamic form of thermodynamics

• First law:

$$\dot{e} = \underline{\mathbf{T}} \bullet \underline{\dot{\mathbf{Y}}} + h + r$$

where e=internal energy density, h=energy transport rate, r=energy source rate.

 $\bullet\ h$ is usually given by a nonlocal diffusion law such as

$$h(\mathbf{x}) = \int_{\mathcal{H}_{\mathbf{x}}} k(\mathbf{q}, \mathbf{x}) (\theta(\mathbf{q}) - \theta(\mathbf{x})) \ dV_{\mathbf{q}}$$

where k is a conductivity, θ =temperature.

• Second law:

$$\theta\dot{\eta} >= h + r$$

where $\eta =$ entropy density.

- SS & Lehoucq, Advances in Applied Mechanics (2010)
- Bobaru, & Duangpanya, J. Computational Physics (2012)
- Oterkus, Madenci, & Agwai, J. Mechanics & Physics of Solids (2014)

Fracture in a brittle plate with a lot of defects

• How do defects join up to form a macroscopic crack?

Metallic glass fracture (Hofmann et al, Nature 2008)

Fracture in a brittle plate with a lot of defects

20

Fracture in an elastic-plastic plate with a In Sandia Laboratories lot of defects

Cracks nucleate due to a material instability

• Condition for growth of a discontinuity in displacement:

 $\det(\underline{1} \bullet \underline{\mathbb{K}} \bullet \underline{1}) = 0$

where $\underline{\mathbb{K}}$ is a tensor-valued state obtained from the second Fréchet derivatives of the strain energy density:

- SS, Weckner, Askari, & Bobaru, Int. J. Fracture (2010)
- Lipton, J. Elast. (2014)
- Lipton, *J. Elast*. (2015)

 $\underline{\mathbb{K}} = W_{\underline{\mathbf{Y}}\underline{\mathbf{Y}}}.$

Multiscale model of a graphene sheet

- Assign strength randomly to grain boundaries.
- This one realization fails at some stress under uniaxial tension.
- Repeating with more realizations leads to statistical distribution of strength of the polycrystal.

Microstructure

- Properties of metals are strongly influenced by their microstructure (sizes and shapes of grains).
- Microstructure evolution is largely about the energetics of grain boundaries.
- Will demonstrate:
 - Phase boundaries in peridynamics contain finite energy.
 - They dissipate energy as they move.
 - They move in the direction of lower total potential energy of the system.

Steel microstructure Image: R F Cochrane, University of Leeds

Bond-based model for coexistent phases* 🔂 Sandia Laboratories

*Dayal & Bhattacharya, J. Mechanics & Physics of Solids (2006)

- Elastic bars: Ericksen, J. Elast. (1975)
- Crystals: James, Archive for Rational Mechanics & Analysis (1981)
- Strings: Purohit & Bhattacharya, J. Mechanics & Physics of Solids (2003)
- Lattices: Truskinovsky & Vainchtein, SIAM J. Applied Math. (2005)
- Inelastic continuum: Levitas, Int. J. Solids & Structures (1998)
- 3D elasticity: Abeyaratne & Knowles, Archive for Rational Mechanics & Analysis (1991)

Structure of the phase boundary in a peridynamic model

- Hard load problem in a bar.
- The phase boundary contains internal structure, finite width and energy.

• Dayal & Bhattacharya, J. Mechanics & Physics of Solids (2006)..

Condition for nucleation of a phase boundary

- Momentum balance across the phase boundary:
 - $\left(\int_{\mathcal{H}} \Delta \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \otimes \boldsymbol{\xi} \, dV_{\boldsymbol{\xi}}\right) \mathbf{n} = 0 \quad \text{or} \quad (\Delta \underline{\mathbf{T}} \star \underline{\mathbf{X}}) \mathbf{n} = 0.$
- Continuity of displacement in the plane of the phase boundary:

 $\Delta \underline{\mathbf{U}} = (\mathbf{n} \otimes \Delta \mathbf{L}) \underline{\mathbf{X}} \qquad \text{for some vector } \Delta \mathbf{L} \neq 0.$

- Linear material model: $\underline{\mathbf{T}} = \underline{\mathbb{K}} \bullet \underline{\mathbf{U}}$.
- The above lead to the following condition:

 $\big[\mathsf{C}(\mathbf{n}\otimes\mathbf{n})\big]\Delta\mathbf{L}=0.$

where C is the fourth order elasticity tensor, $C = \underline{\mathbf{X}} \bullet (\underline{\mathbb{K}} \bullet \underline{\mathbf{X}})$.

• This condition holds if and only if $det[C(\mathbf{n} \otimes \mathbf{n})] = 0$. This is formally the same as loss of *ordinary ellipticity* in the local theory.

Condition for energy minimization with multiple phases

Sandia National Laboratories

• Stationary potential energy for 2-phase equilibrium implies

$$\mathbf{n} \cdot (\Delta \mathbf{P} \mathbf{n}) = 0 \tag{1}$$

where ${\bf P}$ is the Eshelby energy-momentum tensor, defined by

$$\mathbf{P} = W\mathbf{1} - \underline{\mathbf{T}} \star \underline{\mathbf{Y}} \quad \text{or} \quad \mathbf{P} = W\mathbf{1} - \int_{\mathcal{H}} \underline{\mathbf{T}} \langle \boldsymbol{\xi} \rangle \otimes \underline{\mathbf{Y}} \langle \boldsymbol{\xi} \rangle \ dV_{\boldsymbol{\xi}}.$$

- (Compare classical version: $\mathbf{P} = W\mathbf{1} \sigma \mathbf{F}^T$.)
- (1) leads to

$$\Delta \big\{ W - (\underline{\mathbf{T}} \cdot \mathbf{n}) \bullet (\underline{\mathbf{Y}} \cdot \mathbf{n}) \big\} = 0$$

which is the 3D peridynamic version of the 1D Maxwell condition for phase equilibrium

$$\Delta W - \sigma \Delta \epsilon = 0.$$

Energy dissipation model for a bond

- A moving phase boundary must dissipate energy.
- Introduce a dissipative term into the material model:

$$\begin{aligned} \underline{\mathbf{T}}\langle \boldsymbol{\xi} \rangle &= W_{\underline{\mathbf{Y}}}\langle \boldsymbol{\xi} \rangle + \gamma(\underline{\dot{\mathbf{Y}}}\langle \boldsymbol{\xi} \rangle + \underline{\dot{\mathbf{Y}}}\langle -\boldsymbol{\xi} \rangle) \\ &= W_{\underline{\mathbf{Y}}}\langle \boldsymbol{\xi} \rangle + \gamma(\dot{\mathbf{y}}(\mathbf{x} + \boldsymbol{\xi}) - 2\dot{\mathbf{y}}(\mathbf{x}) + \dot{\mathbf{y}}(\mathbf{x} - \boldsymbol{\xi})), \end{aligned}$$

where $\gamma > 0$ is a constant.

- Can show the new term satisfies the dissipation inequality.
- Observe the dependence on the "curvature" of the velocity field expect it to be significant only *within* a phase boundary.

• Abeyaratne & Knowles, Archive for Rational Mechanics & Analysis (1991).

Phase boundary seeks out the Maxwell line asymptotically

- Peridynamic simulation of a bar using the dissipation model discussed above.
- Perturb the boundary conditions and watch the phase boundary motion.
- The phase boundary moves so the system lowers its energy.

Deformation gradually reduces the area (of a phase boundary in 2D

- Plate with ends fixed. Global strain *∈*↓0 is in the unstable part of the material model.
- Complex microstructure appears at first, then simplifies.
- Driving force is the energy stuck in a phase boundary.

Colors show bond strain

VIDEO

National

Deformation gradually reduces the area of a phase boundary in 2D

Colors show bond strain

Transformation toughening (isothermal)

- Can a phase transformation make a crack try to stay closed?
- Permanent transformation in each bond.

Colors show bond strain

Sandia

National

Transformation toughening, ctd.

• Crack path deviates to avoid the toughened material in front of it.

VIDEO

Colors show bond strain

Transformation toughening, ctd.

• Crack grows slower in the 2-phase material.

Free surfaces and material boundaries can have energy too

VIDEO

Droplet motion driven by surface tension

Sintering of 4 copper grains

Summary

- By treating discontinuous and continuous deformation within the same field equations we gain a lot in modeling some aspects of materials science.
 - Autonomous nucleation and growth of defects.
 - Phase boundaries evolve according to driving force.
 - Defects "do what they want."
 - We avoid the need for supplemental equations that govern defect evolution.