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Tobin Isaac (Georgia Tech), Noémi Petra (UC-Merced), Georg Stadler (NYU)

SIAM Conference on Mathematical and Computational Issues in the Geosciences

O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 1 / 59



Former PhD students who worked on geophysical inversion

Volkan Akcelik
ExxonMobil

Aysegul Askan
Middle East Tech U

Johann Rudi
Argonne

Jifeng Xu
COMAC

Jenn Worthen
Emerson 

Tiankai Tu 
DE Shaw

James Martin 

Ioannis
Epanomeritakis

Univ Crete 

Pearl Flath
Molex

Nick Alger
UT Austin

Amal Alghamdi
UT Austin

Ben Crestel
Element AI

Tobin Isaac
Georgia Tech

George Biros
UT Austin

Hesheng Bao
Mgmt Sci Assoc

Judy Hill
ORNL

Jamie Bramwell
LLNL

Hongyu Zhu
UTRC

O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 2 / 59



Postdocs/research scientists in geophysical inversion

Carsten Burstedde
Univ Bonn

Lucas Wilcox
Naval Postgrad School

Ilona Ambartsumyan
UT Austin

Georg Stadler
NYU

Hossein Aghakhani
CGG US Imaging

Umberto Villa
Washington Univ

Hari Sundar
Univ Utah

Alen Alexanderian
NC State

Loukas Kallivokas
UT Austin

Jeonghun Lee
Baylor Univ

Tan Bui
UT Austin

Noemi Petra
UC Merced

Hejun Zhu
UT Dallas

Eldar Khattatov
UT Austin

Peng Chen
UT Austin

O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 3 / 59



The central role of inverse problems in the geosciences

High fidelity predictive models of geophysical phenomena are often
characterized by uncertainties in initial/boundary conditions,
constitutive parameters, source terms, subgrid/closure models, etc.

Rapidly growing abilities to instrument, sense, and remotely observe
the Earth have give rise to expanding volumes of observational data
that can be used to reduce uncertainties

Sustained growth in high performance computing, networking, storage

Advances in mathematical and computational inverse theory and
algorithms

SIAM Geosciences community has long been a fountain of inverse
problems research
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First SIAM Geosciences conference: Sept 1989 in Houston
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Inverse problems within SIAM Geosciences community

SIAG/GS Career Prize
winners active in
inverse problems

Mary Wheeler (2009)

William Symes (2011)

Clint Dawson (2013)

Jérôme Jaffré (2015)

Juan Restrepo (2017)

Inverse Problems at GS19
IP3: Anatoly Baumstein

IP5: Yunyue “Elita” Li

IP6: Patrick Heimbach

MS3/MS18: Extended-model Versus Reduced-model
Strategies for Full Waveform Inversion

MS4: Use of Adjoint Models in the Geosciences

MS5/MS17: Scalable Methods for Coupling Water
Resources Modeling & Parameter Estimation

MS8: Scientific Machine Learning for Subsurface Geoscience

MS13/26: Optimal Transport for Imaging in Geosciences

MS25/MS35: Practical Aspects of Large-scale
Sparsity-promoting Seismic Inversion

MS30: Uncertainty Quantification in Subsurface Flow and
Transport

MS41: Advances in Bayesian Estimation Strategies in
Subsurface Processes

MS45: Uncertainty Quantification for Geophysical Inverse
Problems
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Outline

1 The inverse problem: Integrating data and models

2 Examples of Bayesian inverse problems

3 Target: Flow of the Antarctic ice sheet

4 Large-scale Bayesian inverse problems

5 Application to Antarctic ice sheet flow inverse problem

O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 7 / 59



Anatomy of an inverse problem

Input parameters, computational
model, and output observables

The forward problem

Given model parameters m, solve forward
model F to yield output observables d

F(m) −→ d

Well-posed: solution exists, is unique, and
is stable to perturbations in inputs

Causal: later-time solutions depend only on
earlier time solutions

Local: the forward operator includes
derivatives that couple nearby solutions in
space and time
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Anatomy of an inverse problem

Input parameters, computational
model, and output observables

The inverse problem

Given output observations dobs and forward
model F, infer model parameters m

m←− F−1dobs

Ill-posed: observations are usually sparse
and forward operator often smoothing;
many different parameter values may be
consistent with the data

Non-causal: the inverse operator couples
earlier time solutions with later time ones

Global: the inverse operator couples
solution values across all of space and time
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Anatomy of an inverse problem

Input parameters, computational
model, and output observables

Tikhonov’s approach to ill-posedness

Employ regularization to penalize unwanted
solution features, guarantee unique solution:

min
m

1
2 ‖F(m)− dobs ‖2W +α

2 ‖m−mref ‖2R

Bayesian approach to ill-posedness

Describe probability of all models that are
consistent with the data and any prior knowledge
of the parameters:

π(m|dobs) ∝
exp
(
− 1

2 ‖F(m)−dobs ‖2C−1
d

− 1
2 ‖m−mpr ‖2C−1

m

)
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Tarantola’s Bayesian inversion vision

Twin challenges of Bayesian inversion

Geophysical forward problems often highly
complex (nonlinear, wide range of
spatiotemporal scales, complex geometry,
heterogeneous/anisotropic, coupled, ...)

Model parameters often infinite-dimensional
fields (ICs, BCs, sources, material properties,
geometry
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Outline

1 The inverse problem: Integrating data and models

2 Examples of Bayesian inverse problems

3 Target: Flow of the Antarctic ice sheet

4 Large-scale Bayesian inverse problems

5 Application to Antarctic ice sheet flow inverse problem
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Some Bayesian inverse problems of interest

Antarctic ice sheet flow (+ ocean dynamics)

Joint with Patrick Heimbach, Tom Hughes, Tobin Isaac (Georgia
Tech), Tom O’Leary-Roseberry, Noemi Petra (UC-Merced), Georg
Stadler (NYU), Umberto Villa (WashU), Alice Zhu (UTRC)

Global and regional seismic inversion, joint seismic–EM inversion, inverse
scattering

Joint with Hossein Aghakhani (CCG), Nick Alger, Tan Bui, Ben Crestel
(Element AI), David Keyes (KAUST), George Turkiyyah (AUB), Georg
Stadler (NYU), Umberto Villa (WashU)

Global mantle convection

Joint w/ Mike Gurnis (Caltech), Johann Rudi (ANL), Georg Stadler
(NYU)

Poroelastic subsurface flow inversion and management of induced seismicity

Joint with Amal Alghamdi, Ann Chen, Marc Hesse, Georg Stadler
(NYU), Umberto Villa (WashU), Karen Willcox

Reservoir inversion

Joint with George Biros, Tan Bui, Clint Dawson, Sam Estes, John Lee
(Baylor), Umberto Villa (WashU)

O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 11 / 59



Inversion for mantle properties in global mantle convection
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Figure 5: Ultra-high resolution mantle convection combining local and global scales [41]. Top, left: Global view
centered on the Pacific hemisphere of dynamic prediction from Rhea; velocity vectors overlaying viscosity. Top, right:
A closeup of the Rhea prediction in the tectonically active area around Fiji in the SW Pacific. For the first time,
a dynamic model predicts (black vectors) the rapid back-arc opening associated with subduction. White vectors
show no-net-rotation kinematic model [1] augmented with micro-plate motions [6]. The thick red line shows the
cross-section used below, right. Bottom, left: Enlarged cross-section showing the refinement that occurs both around
plate boundaries and dynamically in response to the nonlinear viscosity and plastic failure in the region around Fiji
in the SW Pacific using Rhea. The AMR refinement has 7 levels, in which the finest resolution is �1 km. Bottom,
right: Orientation of the deviatoric stress axis. For the first time, we are able to predict the fine-scale details of the
state of stress that can be related directly to earthquake focal mechanism. The results show tension in the trench
and compression as the slab enters the lower mantle.

5.3.3 Results from global runs

Computations with the resolutions required to accurately predict plate motions and the deformation
of slabs with realistic rheologies required the development of AMR methods that can scale to tens of
thousands of cores, which we have recently accomplished with ALPS and p4est. We have recently
reached the requisite ⇧1 local km resolutions in global models [41] and found that both the global-
scale kinematics of the plates along with the fine-scale deformation of slabs emerged simultaneously.
We achieved rapid back-arc extension along with the fine details of slab stress consistent with deep
earthquakes (Figure 5). We discovered, in contrast to recent simplified models, that the bending of
the plate in subduction zones released a much smaller proportion of the energy of mantle convection.
The models have opened a new line of research in which many local and regional seismic and geodetic
constraints can be used to directly constrain global models. Figure 5 shows first results from these
ultra-high resolution global simulations.

9
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Bayesian inversion for basal friction field in Antarctica
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Bayesian global seismic inversion
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Bayesian poroelastic inversion
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Outline

1 The inverse problem: Integrating data and models

2 Examples of Bayesian inverse problems

3 Target: Flow of the Antarctic ice sheet

4 Large-scale Bayesian inverse problems

5 Application to Antarctic ice sheet flow inverse problem
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Motivation: Flow of the Antarctic ice sheet

Interactions between ice sheet, solid earth, ocean, and atmosphere
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Motivation: Flow of the Antarctic ice sheet

Ice flows from interior of polar ice sheets to ocean is primary
contributor to sea level rise (200 billion tons/yr currently)

Flow rates of outlet glaciers in Antarctica have been increasing over
past several decades

Thinning of ice shelves due to increased mixing in ocean driven by
intensification of polar winds, bringing warmer water to surface;

Ice shelf thinning leads to loss of buttressing effect and retreat of ice
sheet

0.5 m sea level rise by 2070 estimated to jeopardize 136 largest port
cities, with 150M inhabitants and $35 trillion in assets

We need to develop predictive models, with quantified uncertainties,
to better anticipate future sea level rise
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Motivation: Flow of the Antarctic ice sheet II

Recent evidence suggests that sea level rose abruptly at the end of
the last interglacial (∼118 kyr ago) by ∼5-6m; the likely cause is
catastrophic collapse of polar ice sheets

Ice sheet collapse following a prolonged period of stable sea level
during the last interglacial, MJ O’Leary, PJ Hearty, WG Thompson,
ME Raymo, JX Mitrovica, JM Webster, Nature Geoscience, 6,
796800, 2013.

Recent work indicates that retreat of the Amundsen Sea Embayment
(a portion of the West Antarctic ice sheet) is accelerating with no
major bed obstacles to prevent draw down of the entire basin.

Widespread, rapid grounding line retreat of Pine Island, Thwaites,
Smith and Kohler glaciers, West Antarctica from 1992 to 2011, E.
Rignot, J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl,
Geophysical Research Letters, 41(10):3502–3509, 2014.
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Dynamics of the Antarctic ice sheet and sea level rise
Glaciers flow thousands of miles from the continent’s deep interior to its coast

Credit: NASA Goddard Space Flight Center/JPL-Caltech
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Challenges in modeling ice sheet dynamics
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Observed surface velocity (Rignot et al., 2011) Fretwell et al., 2013

strong nonlinearities and complex rheology
highly ill-conditioned due to widely-varying coefficients
complex, high aspect ratio geometry
wide range of length scales: from O(m) to O(103 km)
uncertainties in: basal boundary conditions, basal topography, rheology,
geothermal heat flux
diverse observational data (InSAR, laser altimetry, GRACE satellite, ice
cores, ground-penetrating radar)
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The Forward Ice Sheet Model

Balance of linear momentum, mass, and energy

−∇ ·
σu︷ ︸︸ ︷

[2η(u, θ) ε̇u − Ip] = ρg [ε̇u = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρcu ·∇θ −∇ · (K∇θ) = η(u, θ) tr(ε̇2
u)

Constitutive relation

η(u, θ) =
1

2

{
A0 exp

(
− Q

Rθ

)}− 1
n (

1
2 tr(ε̇2

u)
) 1−n

2n

Boundary conditions

σun = 0 θ = θs on Γt

u · n =
M

ρLi
T := I − n⊗ n, Tσun+ βTu = 0 on Γb

K∇θ · n = G−M + βTu · Tu, θ ≤ θm, M ≥ 0, M(θ − θm) = 0 on Γb
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The Forward Ice Sheet Model

Balance of linear momentum, mass, and energy

−∇ ·
σu︷ ︸︸ ︷

[2η(u, θ) ε̇u − Ip] = ρg [ε̇u = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρcu ·∇θ −∇ · (K∇θ) = η(u, θ) tr(ε̇2
u)

Constitutive relation rheology parameter n = 3

η(u, θ) =
1

2

{
A0 exp

(
− Q

Rθ

)}− 1
n (

1
2 tr(ε̇2

u)
) 1−n

2n

Boundary conditions

σun = 0 θ = θs on Γt

u · n =
M

ρLi
T := I − n⊗ n, Tσun+ βTu = 0 on Γb

K∇θ · n = G−M + βTu · Tu, θ ≤ θm, M ≥ 0, M(θ − θm) = 0 on Γb
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The Forward Ice Sheet Model

Balance of linear momentum, mass, and energy

−∇ ·
σu︷ ︸︸ ︷

[2η(u, θ) ε̇u − Ip] = ρg [ε̇u = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρcu ·∇θ −∇ · (K∇θ) = η(u, θ) tr(ε̇2
u)

Constitutive relation Arrhenius-type thinning

η(u, θ) =
1

2

{
A0 exp

(
− Q

Rθ

)}− 1
n (

1
2 tr(ε̇2

u)
) 1−n

2n

Boundary conditions

σun = 0 θ = θs on Γt

u · n =
M

ρLi
T := I − n⊗ n, Tσun+ βTu = 0 on Γb

K∇θ · n = G−M + βTu · Tu, θ ≤ θm, M ≥ 0, M(θ − θm) = 0 on Γb
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The Forward Ice Sheet Model

Balance of linear momentum, mass, and energy

−∇ ·
σu︷ ︸︸ ︷

[2η(u, θ) ε̇u − Ip] = ρg [ε̇u = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρcu ·∇θ −∇ · (K∇θ) = η(u, θ) tr(ε̇2
u)

Constitutive relation shear thinning with the second strain rate invariant

η(u, θ) =
1

2

{
A0 exp

(
− Q

Rθ

)}− 1
n (

1
2 tr(ε̇2

u)
) 1−n

2n

Boundary conditions

σun = 0 θ = θs on Γt

u · n =
M

ρLi
T := I − n⊗ n, Tσun+ βTu = 0 on Γb

K∇θ · n = G−M + βTu · Tu, θ ≤ θm, M ≥ 0, M(θ − θm) = 0 on Γb
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The Forward Ice Sheet Model

Balance of linear momentum, mass, and energy

−∇ ·
σu︷ ︸︸ ︷

[2η(u, θ) ε̇u − Ip] = ρg [ε̇u = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρcu ·∇θ −∇ · (K∇θ) = η(u, θ) tr(ε̇2
u)

Constitutive relation

η(u, θ) =
1

2

{
A0 exp

(
− Q

Rθ

)}− 1
n (

1
2 tr(ε̇2

u)
) 1−n

2n

Boundary conditions unknown parameter fields

σun = 0 θ = θs on Γt

u · n =
M

ρLi
T := I − n⊗ n, Tσun+ βTu = 0 on Γb

K∇θ · n = G−M + βTu · Tu, θ ≤ θm, M ≥ 0, M(θ − θm) = 0 on Γb
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The Forward Ice Sheet Model

Balance of linear momentum, mass, and energy

−∇ ·
σu︷ ︸︸ ︷

[2η(u, θ) ε̇u − Ip] = ρg [ε̇u = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρcu ·∇θ −∇ · (K∇θ) = η(u, θ) tr(ε̇2
u)

Constitutive relation

η(u, θ) =
1

2

{
A0 exp

(
− Q

Rθ

)}− 1
n (

1
2 tr(ε̇2

u)
) 1−n

2n

Boundary conditions complementarity conditions

σun = 0 θ = θs on Γt

u · n =
M

ρLi
T := I − n⊗ n, Tσun+ βTu = 0 on Γb

K∇θ · n = G−M + βTu · Tu, θ ≤ θm, M ≥ 0, M(θ − θm) = 0 on Γb

O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 22 / 59



Outline

1 The inverse problem: Integrating data and models

2 Examples of Bayesian inverse problems

3 Target: Flow of the Antarctic ice sheet

4 Large-scale Bayesian inverse problems

5 Application to Antarctic ice sheet flow inverse problem
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Bayesian inversion: Finite dim. w/Gaussian noise & prior

A. Tarantola, Inverse Problem Theory, SIAM, 2005

Given: prior pdf of model parameters m : πpr(m) = exp(− 1
2
‖m−mpr ‖2

Γ−1
pr

)

prior pdf of the observables d : πobs(d) = exp(− 1
2
‖ d− dobs ‖2Γ−1

d

)

conditional pdf relating d and m : πmodel(d|m) = exp(− 1
2
‖ f(m)− d ‖2

Γ−1
m

)

Then the posterior pdf of model parameters (solution of Bayesian inverse problem) is given by:

πpost(m)
def
= πpost(m|dobs) ∝ πpr(m)

∫
D

πobs(d)πmodel(d|m) dd

∝ πpr(m)πlike(dobs|m)

Posterior pdf for Gaussian additive noise (with Γnoise = Γd + Γm) and Gaussian prior

πpost(m) ∝ exp

(
− 1

2
‖ f(m)− dobs ‖2Γ−1

noise
− 1

2
‖m−mpr ‖2

Γ−1
pr

)
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MAP estimate and linearized Bayesian formulation

Maximum a posteriori (MAP) estimate given by maximizing posterior pdf, or
equivalently minimizing − log πpost(m)

mmap := arg min
m∈Rn

1
2‖f(m)− dobs‖2Γ−1

noise

+ 1
2‖m−mpr‖2Γ−1

pr

Linearize the parameter-to-observable map about mmap:

f(m) ≈ f(mmap) + F (m−mmap)

F is Fréchet derivative of f at mmap; its action involves solution of
linearized forward problem

Posterior is Gaussian pdf N(mmap,Γpost) with

Γpost =
(
F ∗Γ−1

noiseF + Γ−1
pr

)−1
:= H−1

Γpost is the inverse of the Hessian H of the negative log posterior

Cannot form Hessian; each column requires a (linearized) forward solve

But action of Hessian requires a pair of linearized forward and adjoint solves
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Employ infinite dimensional framework of A. Stuart
(Acta Numerica, 2010)

Gaussian random field prior, µ0 := N(m0,A
−2) on L2(Ω)

covariance operator is given by the inverse of differential operator A2,
where A(m) := −α∇ · (Θ∇m) + αm

invert for m ∈ E, Cameron-Martin space with inner product
(·, ·)E := (A·,A·)
Bayesian solution of the inverse problem defined as conditional
measure µd of m given the data dobs ∈ Rq, where

dµd

dµ0
=

1

Z
πlike(dobs|m) ∝ exp

(
−1

2
‖f(m)− dobs‖2Γ−1

noise

)
is the Radon-Nikodym derivative of µd w.r.t. µ0, f(m) is the
parameter-to-observable map, and Γnoise the noise covariance operator

leads to well-posed Bayesian inverse problem; exploits fast elliptic
solvers
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Finite dimensional discretization

Care must be taken when discretizing to ensure convergence to
infinite dimensional posterior: since m ∈ L2, finite dimensional
approximation inherits L2-inner product; model coefficient vector
endowed with weighted inner product (·, ·)M , where M is a mass
matrix; this gives rise to mass matrix weightings when drawing
samples, computing variances, etc.

Also, adjoint of an operator is not the same as the transpose;
covariance matrix not symmetric w.r.t. Euclidean inner product (but
it is w.r.t. L2-inner product and is therefore self-adjoint)

Details in:
T. Bui-Thanh, O. Ghattas, J. Martin, G. Stadler, A computational framework for
infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with
applications to global seismic inversion, SIAM Journal on Scientific Computing,
35(6):A2494–A2523, 2013.
N. Petra, J. Martin, G. Stadler, O. Ghattas, A computational framework for
infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC
with application to ice sheet inverse problems, SIAM Journal on Scientific
Computing, 36(4):A1525–A1555, 2014.
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Making large-scale Hessians tractable

H is sum of Hessian of data misfit, which is often a compact operator, and
the inverse of a prior, which we take as an elliptic differential operator:

H =

Hessian of data misfit︷ ︸︸ ︷
F ∗Γ−1

noiseF +

Hessian of prior︷︸︸︷
Γ−1

pr

Factor out Γ1/2
pr to expose prior-preconditioned data misfit Hessian, H̃data:

H = Γ−1/2
pr (Γ1/2

pr F
∗Γ−1

noiseF Γ1/2
pr︸ ︷︷ ︸

H̃data

+ I)Γ−1/2
pr

For many ill-posed inverse problems, eigenvalues of H̃data decay rapidly:
data have limited ability to inform parameter field, due to:

limited number of observations (rank of H̃data ≤ q)
smoothness of parameter-to-observable map

Construct low rank approximation of H̃data

Cannot form H̃data; must use matrix-free methods such as Lanczos or
randomized SVD that require only actions of H̃data

each H̃data action entails a pair of Poisson solves (with operator A)
and a pair of linearized forward/adjoint solves (with F and F ∗)
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Randomized SVD for low rank approximation of H̃ data

Computing H̃data is intractable using
conventional algorithms
Randomized SVD constructs low rank
approximation of H̃data with
matrix-free algorithm: cost is 2r
products with random vectors (r is
numerical rank of H̃data)
Resulting cost is 2r incremental
forward/adjoint solves and 4r Poisson
solves (Steps 2 and 4)

Randomized SVD (double pass algorithm)

1 Generate i.i.d. Gaussian matrix R ∈ Rn×r

with r = numerical rank of H̃data (r � n)

2 Form Y = H̃dataR

3 Compute Q = orthonormal basis for Y

4 Define B ∈ Rr×r := QT H̃dataQ

5 Decompose B = ZΛZT

6 Low-rank approximation:
H̃data ≈ V ΛV T , where
V ∈ Rn×r := QZ

Prior operator is compact and Hessian is often so (consequence of smoothing
of p2o map: limited ability to infer parameter modes from data)
Thus r is finite dimensional and r � n
Randomized SVD can construct accurate low rank approximation of
prior-preconditioned Hessian at cost measured in (linearized) PDE
solves that is independent of parameter dimension, and depends only on
number of parameter modes that are informed by the data
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Randomized SVD for low rank approximation of H̃ data

N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions,
SIAM Review, 53(2)217–288, 2011

Note that for deterministic SVD,

( n∑
j=r+1

λj

)1/2

is the minimal Frobenius

norm error in approximating A with a rank-r matrix

Result for randomized SVD (with Gaussian test matrix R): oversample with
p random vectors:

E ‖ H̃data − H̃
r+p

data ‖F ≤
(

1 +
r

p− 1

)1/2( n∑
j=r+1

λj

)1/2

p need not be too large to produce expected error within a small constant
factor of optimal

Concentration of measure for random matrices:
−→ Variance of ‖H̃data − H̃

r+p

data ‖ is small
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Low rank approximation of data misfit Hessian

Use Sherman-Morrison-Woodbury to invert/factor:

Γpost = H−1

=
(
F ∗Γ−1

noiseF + Γ−1
pr

)−1

= Γ1/2
pr

(
Γ1/2

pr F
∗Γ−1

noiseF Γ1/2
pr︸ ︷︷ ︸

≈VrΛrV ∗
r

+I
)−1

Γ1/2
pr

= Γ1/2
pr

[
I − V rDrV

∗
r + O

(
n∑

i=r+1

λi
λi + 1

)]
Γ1/2

pr

≈ Γpr − Γ1/2
pr V rDrV

∗
r Γ1/2

pr

where V r,Λr are truncated eigenvector/values of prior-preconditioned data
misfit Hessian, and Dr = diag(λi/(λi + 1))
Optimality of the low rank Hessian approximation:
A. Spantini, et al., SISC 2015
Can bound error between exact and approximate Γpost independent of mesh
size for specific model problems (P. Flath dissertation, 2013)
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Low-rank-based posterior covariance

Posterior covariance is given by prior covariance less information gained from
data; it is a low rank update to the prior:

Γpost ≈ Γpr︸︷︷︸
rank n

−Γ1/2
pr V rDrV

∗
rΓ

1/2
pr︸ ︷︷ ︸

rank r

The data term is the only place where the forward PDE is involved
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1/2
pr F ∗Γ−1

noiseF Γ
1/2
pr )

Spectra of prior-preconditioned data misfit spectrum
for a large-scale problem using three different mesh refinement levels
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Dimension-independence (scalability) of entire process

Never necessary to form dense operators:

H = Γ−1/2
pr

[
V rΛrV

∗
r + I

]
Γ−1/2

pr

H−1g = Γ1/2
pr

{
V r

[
(Λr + Ir)

−1 − Ir

]
V ∗

r + I
}
Γ1/2

pr g (Newton step)

H−1/2x = Γ1/2
pr

{
V r

[
(Λr + Ir)

−1/2 − Ir

]
V ∗

r + I
}
M−1/2x (Sample generation)

cpost(x,x) = cprior(x,x)−
r∑

k=1

dk
([

Γ1/2
pr vk

]
(x)
)2

(Pointwise variance field)

Complexity of these operations is scalable (i.e. requires a number of forward PDE solves
that is independent of the parameter and data dimensions) when:

prior-preconditioned data misfit Hessian is compact with mesh/data independent
dominant spectrum (ill-posed inverse problem)

dominant spectrum captured in O(r) matvecs; use randomized SVD

Matrix-free adjoint-based Hessian-vector products ⇒ two (linearized) PDE solves

fast O(n) elliptic solvers used for Γ
1/2
pr z (e.g., multigrid)

note M is a well-behaved operator (with spectrum close to the identity), so
M−1/2x can be computed in O(n) using iterative techniques (Y. Saad, et al.
SISC 2011)
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What about non-Gaussian posteriors?
Hessian still plays an important role

Importance sampling: generate samples from Hessian-based Gaussian
at MAP, re-weight using true posterior values

Stochastic Newton: use Hessian-based Gaussian as proposal for
MCMC (Martin, Wilcox, Burstedde, & Ghattas, SISC 2012)

Dimension-Independent Likelihood-Informed (DILI) method (Cui,
Law, & Marzouk, arXiv 2014)

Optimal transport (Marzouk et al.)

Riemannian manifold Langevin, Hamiltonian Monte Carlo (Girolami &
Calderhead, JRSS 2011; Bui-Thanh & Girolami, Inverse Problems
2014)

Randomized Maximum Likelihood (Oliver, 2008),
Randomized-then-Optimize (Bardsley, SISC 2012)

Inf-dim Geometric MCMC (Beskos, Girolami, Lan, Farrell, Stuart,
JCP 2017)
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Markov chain Monte Carlo sampling of πpost(m)

For Gaussian additive noise ∼ N(0,Γnoise) and Gaussian prior ∼ N(mpr,Γpr)

πpost(m) ∝ exp
(
−1

2 ‖ f(m)− dobs ‖2Γ−1
noise
−1

2 ‖m−mpr ‖2Γ−1
pr

)

example probability density

How do we explore this distribution?

Often high dimensional

Computationally expensive
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Markov chain Monte Carlo sampling of πpost(m)

For Gaussian additive noise ∼ N(0,Γnoise) and Gaussian prior ∼ N(mpr,Γpr)

πpost(m) ∝ exp
(
−1

2 ‖ f(m)− dobs ‖2Γ−1
noise
−1

2 ‖m−mpr ‖2Γ−1
pr

)

sampled probability density

The MCMC approach

Replace π(m) by sample chain {mk}
Compute using ergodic averages

E[f(M)] =

∫
Rn

f(m)π(dm)

≈ 1

N

N∑
j=1

f(mk)
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Markov Chain Monte Carlo

Metropolis-Hastings MCMC

Initialize m0, πpost(m0)
for k = 0, . . . do

Draw sample y from the proposal density q(mk, · )
Compute the acceptance probability:

α(mk,y) = min

{
1,

πpost(y) q(y,mk)

πpost(mk) q(mk,y)

}
Accept/Reject

end for
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Isotropic Gaussian proposal: Gaussian random walk

−0.5 0 0.5 1
−0.5

0
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1
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y

an isotropic Gaussian gives the random walk method:

q(mk,y) = 1
σn(2π)n/2 exp[−(y −mk)T (y −mk)/(2σ2)]

challenge: devise a proposal density q(mk,y) that is cheap, easy to sample,
and a good representation of the underlying posterior—in high dimensions
and for expensive-to-evaluate likelihoods

must exploit structure of parameter-to-observable map
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Hessian-based Gaussian proposal for MCMC
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−0.5

0
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y

Stochastic Newton method: proposal is a local Gaussian approximation
based on local gradient g & Hessian H of negative log posterior:

q(mk,y) =
detH1/2

(2π)n/2
exp

(
−

1

2

(
y −mk + H−1g

)T
H
(
y −mk + H−1g

))
Can also be derived via inverse Hessian-preconditioned (Metropolized)
Langevin dynamics: mprop

k+1 = mk −H−1∇m(− log π) + N(0,H−1)
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Convergence comparison for 65-parameter problem

Multivariate potential scale reduction factor convergence statistic
unpreconditioned Langevin vs. stochastic Newton vs. Adaptive Metropolis

J. Martin, L.C. Wilcox, C. Burstedde, and O. Ghattas, A Stochastic Newton MCMC
method for large-scale statistical inverse problems with application to seismic inversion,
SIAM Journal on Scientific Computing, 34(3):A1460-A1487, 2012.

See hIPPYlib library: https://hippylib.github.io
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Outline

1 The inverse problem: Integrating data and models

2 Examples of Bayesian inverse problems

3 Target: Flow of the Antarctic ice sheet

4 Large-scale Bayesian inverse problems

5 Application to Antarctic ice sheet flow inverse problem
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Newton-CG for finding MAP points: Gradients & Hessians

Minimize regularized data misfit

min
β

J(β) :=
1

2

∫
Γt

(Bu(β)− dobs)
2 ds+

α

2

∫
Γb

∇Γβ · ∇Γβ ds

Solve Newton system using CG, inexactly and operator-free

H(β)β̃ = −G(β), βnew = β + γβ̃

Gradient given by:

G(β) := exp(β) uΓ(β) · vΓ(β) + α∆Γβ on Γb

u: velocity, v: adjoint velocity, β: log basal sliding coefficient field

dobs: observed surface velocity, α: regularization parameter

B: observation operator, G: gradient operator, H: Hessian operator

Γ: indicates surface tangential component or surface operator
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Gradient computation: adjoint (linear) Stokes equation

u and p satisfy the forward (nonlinear) Stokes equations

∇ · u = 0 in Ω

−∇ · [η(u)(∇u+ ∇uT )− Ip] = ρg in Ω

σun = 0 on Γt

u · n = 0, (σun)Γ + exp(β)uΓ = 0 on Γb

v and q satisfy the adjoint Stokes equations

∇ · v = 0 in Ω

−∇ · σv = 0 in Ω

σvn = −B∗(Bu− dobs) on Γt

v · n = 0, (σvn)Γ + exp(β)vΓ = 0 on Γb

where the adjoint stress σv is

σv := 2η(u)
(
I +

1− n
n

ε̇u ⊗ ε̇u
ε̇u · ε̇u

)
ε̇v − Iq
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Hessian action: 2 additional (linearized) Stokes-like eqns

Action of Hessian operator in direction β̂ evaluated at β

H(β)β̂ := exp(β) (β̂ uΓ · vΓ + ûΓ · vΓ + uΓ · v̂Γ) + α∆Γβ̂

where û and p̂ satisfy the incremental forward equations

∇ · û = 0 in Ω

−∇ · σû = 0 in Ω

σûn = 0 on Γt

û · n = 0, (σûn)Γ + exp(β)ûΓ = −β̂ exp(β)uΓ on Γb

with σû := 2η(u)
(
I + 1−n

n
ε̇u⊗ε̇u

ε̇u· ε̇u

)
ε̇û − I p̂

N. Petra, H. Zhu, G. Stadler, T.J.R. Hughes, O. Ghattas, A scalable adjoint-based inexact
Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice
sheet model, Journal of Glaciology, 58(211):889903, 2012.
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Hessian action: 2 additional (linearized) Stokes-like eqns

Action of Hessian operator in direction β̂ evaluated at β

H(β)β̂ := exp(β) (β̂ uΓ · vΓ + ûΓ · vΓ + uΓ · v̂Γ) + α∆Γβ̂

where ṽ, q̃ satisfy the incremental adjoint equations

∇ · v̂ = 0 in Ω

−∇ · σv̂ = −∇ · τû in Ω

σv̂n = −B∗Bû− τûn on Γt

v̂ · n = 0, (σv̂n)Γ + exp(β)v̂Γ = −(τûn)Γ on Γb

with σv̂ := 2η(u)
(
I + 1−n

n
ε̇u⊗ε̇u

ε̇u· ε̇u

)
ε̇v̂ − I q̂, and τû = 2η(u)Ψε̇û, where

Ψ = (1 +
1− n
n

ε̇u · ε̇u)I +
1− n
n

[
ε̇u ⊗ ε̇u
ε̇u · ε̇u

+ 2
ε̇u ⊗ ε̇v
ε̇u · ε̇u

+
1− 3n

n

ε̇u ⊗ ε̇u
(ε̇u · ε̇u)2

]
N. Petra, H. Zhu, G. Stadler, T.J.R. Hughes, O. Ghattas, A scalable adjoint-based inexact
Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice
sheet model, Journal of Glaciology, 58(211):889903, 2012.
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Scalability of inexact Newton-CG
Pine Island Glacier region

#sdof #pdof #N #CG avgCG #Stokes
95,796 10,371 42 2718 65 7031

233,834 25,295 39 2342 60 6440
848,850 91,787 39 2577 66 6856

3,372,707 364,649 39 2211 57 6193
22,570,303 1,456,225 40 1923 48 5376

#sdof : number of degrees of freedom for the state variables

#pdof : number of degrees of freedom for the inversion parameter field

#N : number of Newton iterations for the inverse problem

#CG : total number of CG iterations for the inverse problem

#avgCG : average number of CG iterations per Newton iteration

#Stokes : total number of linear(ized) Stokes solves

refinements obtained by decreasing max area of an element by a factor of 4

convergence = reduction of gradient by factor of 105

cost (measured by # of forward solves) is independent of parameter dimension and data
dimension (CG performance consequence of preconditioned Hessian operator of form
compact perturbation of identity)
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Antarctic synthetic inversion for β: setup & performance

Spatial discretization (all on same mesh):

velocity (state, adjoint, incremental state, incremental adjoint): Q2

pressure (state, adjoint, incremental state, incremental adjoint): Qdisc
0

log basal sliding coefficient and its increment: Q2 (biquadratic)

inexact Newton-CG, preconditioned by L-BFGS

# state parameters: 4,085,841

# inversion parameters: 409,545

# elements: 99,984

# of processor cores: 1024

noise level used to synthesize data: 1%

reduction in norm of gradient: 10−6

# of Gauss-Newton iterations: 18

average # of CG iterations per Gauss-Newton iteration: 85

total # of (linearized) Stokes solves: 2600
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Antarctic ice sheet inversion for basal sliding field:
Synthetic data

Left: Synthetic surface velocity observations
Right: “Truth” basal sliding field

O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 46 / 59



Antarctic ice sheet inversion for basal sliding field:
Synthetic data

Left: Reconstructed surface velocity field
Right: Inferred basal sliding field
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InSAR observed surface ice velocity dataset

E. Rignot, J. Mouginot, and B. Scheuchl, Ice Flow of the Antarctic
Ice Sheet, Science, 333(6048):1427–1430, 2011.

Available from http://nsidc.org/data/nsidc-0484.html

Assembled from multiple satellite interferometric synthetic-aperture
radar data from 2007–2009

Data set integrates 900 satellite tracks and more than 3,000 orbits
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Left: InSAR-based Antarctica ice surface velocity observations
Right: Inferred basal sliding field

More details: T. Isaac, N. Petra, G. Stadler, O. Ghattas, Scalable and efficient
algorithms for the propagation of uncertainty from data through inference to prediction
for large-scale problems, with application to flow of the Antarctic ice sheet, Journal of
Computational Physics, 296(1):348–368, 2015.
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Left: Reconstructed ice surface velocity field
Right: Inferred basal sliding field

More details: T. Isaac, N. Petra, G. Stadler, O. Ghattas, Scalable and efficient
algorithms for the propagation of uncertainty from data through inference to prediction
for large-scale problems, with application to flow of the Antarctic ice sheet, Journal of
Computational Physics, 296(1):348–368, 2015.
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

InSAR-based Antarctica ice surface velocity observations
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Reconstructed ice surface velocity field
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Error in velocity observations
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Antarctic ice sheet inversion for basal sliding field:
InSAR data (Ronne ice shelf region)

Left: InSAR-based Antarctica ice surface velocity observations
Right: Inferred basal sliding field
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Antarctic ice sheet inversion for basal sliding field:
InSAR data (Ronne ice shelf region)

Left: Reconstructed ice surface velocity observations
Right: Inferred basal sliding field
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Samples from prior and (Gaussianized) posterior

Top: samples from prior

Bottom: samples from posterior

Difference between top and bottom reflects information gained (and
uncertainty reduction) from data
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Posterior mean and samples for Antarctic inversion

mean (left); sample from the posterior pdf (right)
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Posterior mean and samples for Antarctic inversion

mean (left); sample from the posterior pdf (right)
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Posterior mean and samples for Antarctic inversion

mean (left); sample from the posterior pdf (right)
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Posterior mean and samples for Antarctic inversion

mean (left); sample from the posterior pdf (right)
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Prior and posterior standard deviation of parameter field

Prior standard deviation of log basal sliding parameter
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Prior and posterior standard deviation of parameter field

Posterior standard deviation of log basal sliding parameter
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Spectrum of the prior-preconditioned data misfit Hessian
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409,545 parameters

1,190,403 parameters

Spectrum of Γ1/2
pr F TΓ−1

noiseF Γ1/2
pr for Antarctica inverse problem with 410K

and 1.19M basal sliding parameters (observed to decay like i−3)

4000 dominant modes, independent of parameter and data dimension

intrinsic problem dimension depends on information content of data
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Eigenvector 1 of prior-preconditioned data misfit Hessian
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Eigenvector 2 of prior-preconditioned data misfit Hessian
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Eigenvector 3 of prior-preconditioned data misfit Hessian

eigenvector 3O. Ghattas (UT Austin) Large-scale Bayesian Inversion for Geoscience SIAM GS19 – 12 Mar 19 56 / 59



Eigenvector 4 of prior-preconditioned data misfit Hessian
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Eigenvector 5 of prior-preconditioned data misfit Hessian
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Eigenvector 6 of prior-preconditioned data misfit Hessian
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Eigenvector 7 of prior-preconditioned data misfit Hessian
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Eigenvector 8 of prior-preconditioned data misfit Hessian
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Eigenvector 9 of prior-preconditioned data misfit Hessian
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Eigenvector 10 of prior-preconditioned data misfit Hessian
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Eigenvector 100 of prior-preconditioned data misfit Hessian
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Eigenvector 200 of prior-preconditioned data misfit Hessian
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Eigenvector 500 of prior-preconditioned data misfit Hessian
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E-vector 1000 of prior-preconditioned data misfit Hessian
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E-vector 2000 of prior-preconditioned data misfit Hessian
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E-vector 4000 of prior-preconditioned data misfit Hessian
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Summary

Regularized inversions of surface velocity InSAR data for basal sliding field
point to weaknesses that stretch deep into interior of Antarctic ice sheet

But we need to quantify the uncertainty in these inversions, which leads to a
large-scale Bayesian inverse problem governed by nonlinear, anisotropic,
heterogeneous ice sheet flow model

Linearization of the parameter-to-observable map leads to a Gaussianized
approximation that builds on large-scale optimization algorithms

Hessian manipulations can be made tractable by low-rank approximation of
(prior-preconditioned) Hessian of the data misfit term, leading to several
orders of magnitude effective dimensionality reduction

Cost (in terms of forward/adjoint PDE solves) is independent of parameter
dimension, data dimension, and state dimension

Preliminary Gaussianized Bayesian inversions for Antarctica point to lower
uncertainties in large velocity gradient regions

Even with Gaussianized approximation of posterior and scalable algorithms,
117,578 linearized forward/adjoint Stokes solves are required
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Open questions

Can compactness of the Hessian of the data-misfit be proven for broader
classes of problems?

Can convergence of the discretized posterior to the infinite dimensional
measure be proven for broader classes of problems?

What to do when the data misfit Hessian does not admit a low-rank
approximation?

Freezing the Hessian at the MAP point vs. approximately recomputing the
Hessian at each sample point

What is the meaning of adaptive mesh refinement for inverse problems?

How to be exploit hierarchies of available forward models (multifidelity
methods)?

How to best account for forward model error?

Full MCMC sampling of Antarctic posterior

Mechanistic sub-basal models? Glacial and sub-glacial hydrology?

Two-way coupling with ocean models: continuum coupling?
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