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Gaussian processes and maximum likelihood
estimation



Spatial processes

Many natural processes evolve over space in some way that
depends on other locations.
Notation:
» Let n denote the number of observations.
P> At spatial location x, denote the value of the process at x
with Z(x).
> Enumerate observations as y := {y;}]_; and {x;}?_;
P> Let K denote the parametric kernel function used to model
covariance with parameters 8:

Cov(yj, yk) = K(xj, x; ).

We require that K be positive definite.



Why model spatial processes?

» Inference: Processes often
modeled as

Z(x) := fa(x) +¢.

» Interpolation: Optimally
“fill-in" missing values.

Figure: A field with missing values.



Gaussian processes

If in the process model above fy(x) = p(x) and e ~ N (0, X), then
the data is distributed as

y~N(p, X).
We call this a Gaussian Process (GP) model.

We often model the elements of X' using a kernel function K, and
are often parameterized in basic settings as

x_
i = Klxj. xi0) = oog(‘l 01y!l> |

with g a nice kernel function: x+ p,(x)e™, x> (1 + x)?k, etc.



Why Gaussian processes models?

» Easy to specify: Just
pick functions p and K.
1 often assumed to be
zero!

» Tractable math: Easy
expressions for
interpolants, forecasts,
etc.

» Flexible: Captures a
huge variety of local and
global behaviors.

Figure: Some simulated processes.
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Estimation for Gaussian processes

Most often, we compute Maximum Likelihood Estimators (MLEs)
by maximizing the log-likelihood. Here

(6) = — log | 5(6)| — 5y — 1) 5(8) My — ) ~ | log(2m).

Asymptotic theory suggests that MLEs have good statistical
behavior for large sample sizes (Stein 1999).

For the rest of this talk, assume p = 0, let X always denote 3(6),
and suppress the constant term at the end of /().

So: can we always compute the MLE?



Estimation for Gaussian processes

...Not so easily: The linear o
algebra required for evaluating it
/(6) scales very poorly.

=17k =67k =193k

» cubic time complexity

» quadratic storage complexity deskiop

laptop

» difficult numerics with
condition number of X

=32k =64k =388k

» difficulty with optimization
for certain covariance Figure: Sample time (top) and
functions storage (bottom) complexity for LU
factorization with some level
perspectives.



Some culture: historical attempts to compute or
approximate MLEs

There have been many attempts to approximate /(@) in a scalable
way. Some highlights include:

» Vecchia-type methods: block sparsity in X' (Vecchia 1988).
» Markov Random Fields: sparsity in X1 (Rue and Held 2005).

» Estimating equations: solve the score equations
1 -1 ! 751 -1
(VI(6)); = —5tr (Z713)) + >y ¥ lyxly,
where X := 8%1,2(0). Can use matrix free methods like circulant

embedding or FMM (Anitescu, Chen, and Wang 2011; Stein,
Chen, and Anitescu 2013).



Hierarchical matrices, low-rank approximations,
and likelihood approximations



Low-rank structure of off-diagonal blocks

A key insight: for functions that are smooth away from the origin,
off-diagonal blocks of resulting kernel matrices will have low
numerical rank.

Some very brief history:

» Fast Multiple Method (Greengard and Rokhlin 1987)

» matvec only

» Hierarchical matrices (Hackbusch 1999)
» direct methods for solve, determinant, factorization

> Many others..



A visualization:
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» Easy to reason about complexity (if rank structure is known).

» This particular format is referred to as HODLR (Ambikasaran
and Darve 2013), or weakly admissible. There are many other
compression structures.



How to compress low-rank off-diagonal blocks?

Let A;, denote the block of A corresponding to indices /and J,
and let |/| denote the size of the index set.

» Truncated SVD:
Ay~ UL VT, Ue RM*P
» optimal
> slow

» Adaptive Cross Approximation (ACA) (Bebendorf 2000):
A[’_j ~ UVT, U e R™%P
» fast, accurate, and adaptive
» not differentiable

» Nystrom approximation (Williams and Seeger 2001):
ALy~ A/,PAE,IPAP,J, Pl =p
» global, non-adaptive

P guarantees positive-definiteness of approximation
» differentiable



A HODLR approximation for covariance matrices

Let X the HODLR approximation of X' with the Nystrom approx.
Our approximated likelihood looks like

1 e~ 1 <~
01(0) := — log ‘Z) —Zy'xly
2 2
X is differentiable, with gj,(LJ) = B%J_E‘U(G) given by
TP Zpp2ps— Z1pZp X TppZr s+ TipEp pi(p.):

ij is a sum of 3 identically shaped HODLR matrices!

Recall the gradient:

—_

-~ 1 7o e~
(VIn(8)); = —=tr (2 12j) +5y TR,

N

All we need is the trace of 5’_12}...



Stochastic trace estimation

Hutchinson (1990) gave us a stochastic trace estimator:
tr( ) Z u'x" 1ZJu

Since we can factorize X = WW?’, we can do better: the
covariance matrix of the estimates

w(275) —w(wimw )~ quTmr Sw Ty

has a bound that is free of the condition number of X (Stein,
Chen, and Anitescu 2013)!



A stable gradient estimator

Combining the exact derivative with the symmetrized trace
estimator, we obtain a good estimator for V/4(8);:

quite a good approximation

Away from the MLE when the error in the trace term doesn't
dominate the magnitude, this estimator reliably has relative error
below 0.03%.



A stable Hessian estimator

We also obtain a good estimator for the Hessian Hly(6);:

w (55505~ (5715,) + 1y (;ekilijil) y.

expected Fisher matrix Z; data-correction to expected information

We can use the exact same methods to obtain a similar
symmetrized estimator for the expected information and observed
information (Hessian).



Qasilinear complexity

Under appropriate conditions, all of these expressions are
computable in quasilinear complexity.

» p (rank of off-diagonal blocks) fixed
» Dyadic level grows with O(log n).

But: we can’t control pointwise precision || 3 — X||.

So is /4 a useful approximation under the above conditions?



Numerical results
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Time complexity
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Figure: Time scaling for £14(0) (left), VEy(0) (middle), and Hly(0)
(right) on log, x-axis; exact times in blue.

All operations scale quasilinearly.



Accuracy of stochastic approximations away from the MLE

n=210 1 p=201p=212| p=213
20 -3.78 -3.46 -3.51 -3.60
) -4.22 -3.89 -3.71 -3.79

» Away from the MLE, average relative precision (on log;q
scale) is pretty good!

» Near the MLE, choosing the right precision metric is less
straightforward.



Accuracy of stochastic approximations at the MLE

n:210 n:211 n:212 n:213
Em) -0.62 -1.42 -0.98 -1.75
€ @) -2.37 -1.86 -2.13 -2.04
Ng -0.92 -0.93 -0.73 -0.96
Nz -1.77 -1.82 -1.86 -2.21

Here, we define

o —

Ng i= ||V/H(9) - V/H(O)HI(O)*1
for the gradient and

N = tr { (Z(0) — Z(6)) (Z(6)* — Z(6)7Y) }1/2

for the Hessian.



Accuracy of approximated MLEs
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Fitting successively larger samples from the same dataset:
approximated point estimates and confidence intervals (red) agree
well with exactly computed ones (blue).



Conclusions and Discussion

DA



Summary:

» Differentiable matrix compression/approximation.
» (y(0) actually has derivatives, and you can compute them!
» Optimization is flexible and scalable.

» Disregarding rank structure concerns, geometry-, kernel-, and
dimension-independent.

» Julia software ready-to-go at
https://bitbucket.org/cgeoga/kernelmatrices.jl.git



Some thoughts:

» Somewhere between numerical and model approximation.
» The code will run in any dimension..but should it?

» Prioritizing computability over approximation control.
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The future:

» Nonstationary models.
» Strong admissibility?

» Smarter optimization?



Thank you very much for listening!
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