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Montserrat
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Plymouth 1977
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Pyroclastic Flows
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Plymouth 1998

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 7 / 35



How bad is it?
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The Cast of Characters

This project began as a SAMSI Working Group in the ‘Computer Models’
program 2006-2007. Over the years several wonderful graduate students at
Buffalo, Duke, and Marquette have participated in the effort. The research
has been continuously supported by the NSF through its FRG, BigData,
and CDSE programs.
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Conservation

∇ · u = 0

∂(ρ0u) +∇ · (ρ0u⊗ u) = ∇ · T + ρ0g

Assume H/L� 1 and scale governing equations, and depth average.
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Final System
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Final System

∂U

∂t
+
∂f (U)

∂x
+
∂g(U)

∂y
= S(U)

A system of hyperbolic conservation laws.

Input parameters φb, φint could, in principle, be measured in lab

TITAN2D is a computational environment for solving this system.
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Inputs

TITAN-2D requires a model of the topography at every lat-lon location.

Other inputs include φb, φint , initial volume and location, direction and
velocity of the flow at the start.

Sensitivity analysis: φint less important than φb.
Discover φb = φb(V )!
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Effective Friction

0 2 4 6 8 10 12 14

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Volume

T
a

n
(φ

)

Friction vs. Volume (x 10
6
 m

3
)

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 16 / 35



Volume-Frequency
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Montserrat Computation

Fix φint , choose V , φb, ζ.

Too expensive to do simple MC.E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 18 / 35
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Volume-Frequency
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Volume-Frequency

Pareto volume-frequency f (v |α) = αεα

vα+1

Best estimate: α < 1 which means expected volume of flows, and
expected variance, are both infinity. That is, there is a non-trivial chance
of extremely large event (larger than the total mass of the island!).

Little data out near the shoulder to fit a cut-off.

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 21 / 35



Volume-Frequency

Pareto volume-frequency f (v |α) = αεα

vα+1

Best estimate: α < 1 which means expected volume of flows, and
expected variance, are both infinity. That is, there is a non-trivial chance
of extremely large event (larger than the total mass of the island!).

Little data out near the shoulder to fit a cut-off.

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 21 / 35



Table of Contents

1 PDCs

2 Physics of the Problem

3 Mathematical Challenges

4 Uncertainties

5 A Path Forward

6 Extensions and conclusions

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 22 / 35



Hierarchical Friction Model

φbed = arctan(a + b log(V ))
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A First Step

Consider what happens at a single location on the island

Select initial volume and direction from prescribed distributions
obtained from historical data, make a random selection of φb(V ), and
fix other parameters

Many TITAN2D simulations

Define a “catastrophic curve” ψ(ζ) in this plane, calling more
simulations as necessary

Construct a GaSP emulator

Assume Poisson process in time with rate λ; use a distribution of αs
consistent with the data

Assume uniform distribution of flow directions
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Catastrophic Event

If we define yM(V , ζ) as the TITAN2D output, a catastrophic event is a
yM ∈ ψC where

ψ = ψ(ζ) = inf(V : yM(V , ζ) ≥ hcrit)

Finding ψ is an inverse problem.
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Emulator

GaSP
g(yM(V , ζ)) = δ + mV + Z (V , ζ)

with squared exponential correlation in V and ζ
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GaSP
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Hazard Probability

E (#catastrophic flows in t yrs) =
tλ

2π

∫ 2π

0
ψ(ζ)−αdζ
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Hazard Probability

Then the posterior distribution is given as

P(at least one flow > ψ(ζ) in t yrs) =

1−
∫ ∫

exp(−λt
2π

∫ 2π
0 ψ(ζ)−αdζ)Π(α, λ|data)dλdα
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Hazard Probability

Note: the simulations and GaSP construction are divorced from the
determination of ψ which is divorced from the hazard calculation.
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Map Construction

To compute the hazard probability for many points in a region, compute
the hazard at a point, for many locations.

One large set of simulations (∼2000), done beforehand.

Draws of about 50 runs to construct GaSP for each unique location. Add
some additional simulations if necessary to find ψ curve accurately enough.
This can be done for all locations in parallel.

We also have data on which valleys were hit with which frequency, and
when, showing an intereting switching phenomena after large events.
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Flow Distribution
14 • newstest 2012 SIAM NEWS 

Uncertainty Quantification 2012

By Elaine Spiller

Large granular volcanic events—pyro-
clastic flows—are rare yet potentially dev-
astating for communities situated near vol-
canoes. The typical process for assessing 
pyroclastic flow hazards for areas down-
stream from a volcano relies almost exclu-
sively on expert opinion and historical 
record. To expect behavior we have seen 
previously is human nature, but it is a poor 
basis for hazard assessment and can seri-
ously underestimate the hazard potential.  

Over the last decade, experts have begun 
to supplement their understanding of vol-
canic hazards with realistic geophysical 
flow simulations. One widely used software 
implementation of a granular flow model, 
TITAN-2D, simulates course, depth, and 
velocity for a pyroclastic flow of specified 
volume and initial direction over a region 
whose topography is available as a digital 
elevation map.  (You can run it yourself at 
www.vhub.org.)

Flow simulations are not computation-
ally cheap, and very large-volume events 
that lead to inundation in regions not pre-
viously affected are extremely rare. For 
these reasons, we must consider certain 
questions: What are the right scenarios 
to simulate? What are the right values of 
physical parameters, such as basal and 
internal friction, to use in flow simula-
tions?   

Ultimately, these are questions of uncer-
tainty quantification. In the framework of 
quantifying uncertainties through probabil-
ity distributions, we can state the ques-
tions more precisely: How can we reflect 
aleatoric variability (natural randomness) 
of physical scenarios and epistemic uncer-
tainty (uncertainty in model characteriza-
tion) of such probability distributions in the 
output of flow simulations? How can we use 
flow simulations to calculate the probability 
of volcanic hazards and ultimately produce 
a probabilistic hazard map? How can we 
achieve these objectives in a computation-
ally efficient manner?

A common approach to simulation-based 
geophysical hazard assessment first char-
acterizes the aleatoric variability of physi-
cal scenarios by fitting a probability dis-
tribution; from this distribution, it draws 
“sample” scenarios for which the geophysi-
cal simulations are run, and computes the 
probability of a resulting hazard. (The term 
“samples” is used loosely—they could be 
collocation points for a polynomial chaos 
scheme, inputs for statistical emulators, or 
traditional Monte Carlo samples.)

There are two significant, confounding 
problems with this approach. First, it results 
in sample scenarios and simulations that 
are tied to a single probability distribution. 
To update this distribution as new data or 
information comes online, or to integrate 
the distribution over a prior distribution of 
parameter values as in a Bayesian uncer-
tainty analysis, samples from a different 
distribution, and hence new simulations, are 
required. Secondly, it is the rare tail-events 
from the physical scenario distribution that 
lead to hazards. The strategy used, therefore, 
must be careful to target simulations on the 
tail. The nature of rare events, however, 
dictates that there is little to no data in this 
region; epistemic uncertainty remains large 
in this region of interest, even if not over 
the rest of the distribution. Furthermore, as 
large-scale geophysical simulations are pre-
cious (in terms of man hours and computa-
tion hours), there is a natural desire to avoid 
“wasting” them on scenarios that seem quite 
unlikely.

In our minisymposium at the SIAM UQ 
conference, we proposed a rather different 
strategy that is computationally efficient, 
naturally handles rare events, and allows 
a flexible approach to quantifying epis-
temic uncertainties in geophysical hazard 
assessment. Our impetus for devising this 

approach was the realization that a TITAN-
2D run for a given physical scenario and set 
of physical model parameters will result in 
flow inundation at a map point of interest 
(or not) regardless of how probable that 
scenario and parameterization are.

Our approach seeks to separate state 
space into regions that result in inundation 
at a specific map point and regions that do 
not. The first step in solving this inverse 
problem is to run TITAN-2D with inputs 
chosen by a space-filling design, which 
samples over large swaths of scenario and 
parameter space. We then fit a statistical 
emulator to these flow heights (TITAN-
2D outputs). A statistical emulator can 
be thought of as a cheap surrogate that 

Probabilistic hazard maps for the Belham Valley on the island of Montserrat generated with the hazard-assessment strategy described in the 
article. The color map, from red to green, represents probabilities from 1 to 0 of inundation from a pyroclastic flow over the next 2.5 years. 
Probabilities were calculated at the map points marked with circles. The two sets of calculations use same set of 2048 TITAN-2D runs, with 
O(10 5) Monte Carlo samples for each map point. A uniform distribution (left) and a delta distribution to the north/northwest (right) are used to 
describe aleatoric variability in the initiation angle; the distributions describing variability in frequency and flow volume of events were identical 
for the two cases. Once emulators are constructed, producing these hazard maps takes roughly five minutes on a cluster.

approximates flow height for all scenarios 
between those of the TITAN-2D runs; the 
statistical emulator simultaneously provides 
estimates of the error incurred by using such 
an approximation.

With a low, threshold height as an indica-
tion of inundation, we can invert this emulat-
ed response surface to obtain an inundation 
contour—which separates state space into 
“dangerous” and “safe” scenarios. Because 
the evaluation of emulators is effectively 
free in a computational sense, we can eas-
ily generate contours over a wide range 
of physical parameters. Doing so gives us 
samples from a probability distribution on 
these contours, so that this uncertainty can 
also be quantified and propagated. These 

contours then replace indicator functions in  
probability calculations, which means that 
any Monte Carlo scheme will automatically 
sample the important regions of state space. 
Moreover, for a probability calculation with 
a different distribution representing alea-
toric variability, no new geophysical simu-
lations are required. Such calculations can 
thus be done in minutes instead of hours 
or days. In effect, this methodology allows 
efficient comparisons of different models of 
aleatoric variability.

Elaine Spiller is an assistant professor in 
the Department of Mathematics, Statistics, 
and Computer Science at Marquette Uni-
ersity.

Simulation-based Volcanic Hazard Assessment

PLEASE FEEL FREE TO ADD AUTH-
ORS AND THEIR AFFILIATIONS IF 
YOU WISH OR LEAVE IT AS IS.
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Summary

We have outlined one approach for the rapid construction of a hazard
map, one which separates the flow simulations from the construction
of the hazard map

We turned an inverse problem for parameters into a series of forward
problems

We have discovered uncertain inputs in our models and accounted for
them

We have explored Bayes model averaging – because we don’t know
the correct constitutive relation

We used a GaSP emulator in an interesting construction. Since the
first work we did, Gu and Berger - Parallel Partial Emulation.

Can emulate time series, which we are using to locate rockfall
locations.

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 34 / 35



References

1 Savage and Hutter, JFM 199 (1989)

2 Pitman et al, Phys Fluids 15 (2003)

3 Patra et al, JVGR 139 (2005)

4 Bayarri et al, IJ4UQ 5 (2015)

5 Gu and Berger, Annals Applied Stats 10 (2016)

6 Dalbey, Ph.D. thesis, UB Mechanical and Aerospace Engineering
(2009)

E. Bruce Pitman (UB) Uncertainty Quantification for Volcanic Hazards SIAM Geoscience 35 / 35


	PDCs
	Physics of the Problem
	Mathematical Challenges
	Uncertainties
	A Path Forward
	Extensions and conclusions

