No Snowball Bifurcation on Tidally Locked Planets

Jade Checlair

HICAGC

jadecheclair@uchicago.edu

We founds lots of exoplanets. Which are **habitable**?

Habitable Zone: surface liquid water

Habitable Zone: surface liquid water

Habitable Zone: surface liquid water

70%

20%

 $\alpha = \alpha(T_s)$

Snowball bifurcation

[Budyko, 69; Sellers, 69; Walker+, 81; Kirschvink, 92; Hoffman+, 98]

Snowball Events: O₂ and complexity of life

Cambrian Explosion

Lots of M-stars

15% M-stars host habitable zone target

[Dressing and Charbonneau, 2013]

M-star spectrum reduces albedo contrast

[[]Shields+, 2014]

Habitable zone of small stars is close-in

[Kasting+, 1993, 2013]

Tidal locking of Hab Zone planets around M-stars

© 2011 Pearson Education, Inc.

What happens to the snowball bifurcation on tidally locked planets?

Global Climate Model (GCM) PlaSim

PlaSim GCM simulations

Earth PlaSim has snowball bifurcation

 θ_{TI}

Energy Balance Model (EBM)

[Budyko, 1969; Sellers, 1969]

EBM: rapidly rotating

EBM: tidally locked

Can we recover the bifurcation with a dynamic ocean?

ROCKE-3D with dynamic ocean

Sea Ice Cover

ROCKE-3D with dynamic ocean

Sea Ice Cover

No bifurcation even with a dynamic ocean!

The Snowball bifurcation causes climate limit cycles at the outer edge of the Hab Zone

Andrea Salazar

Silicate-weathering feedback

 $W = W(CO_2, T_s)$

Equilibrium: Weathering (W) = Outgassing (O)

[Walker et al., 1981, Kasting 1993]

Climate cycles in rapidly rotating planets

Cycles only occur at low outgassing

Tidally locked: no hysteresis, no cycles!

No bifurcation No climate cycles No snowball

jadecheclair@uchicago.edu