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Motivation

o 2016/2017/2018 USGS one-year hazard forecasts neglected saltwater disposal
well operational activity

o My goal: =
< Forecast seismicity rates based ) ke 24
upon injection data F\U/f%
< Reservoir engineering approach 4 f_{f/
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< Geomechanics and earthquake
physics

Based on results from the 2014 Based on results from this study
National Seismic Hazard Model Pete rsen et d I )
Chance of damage from an earthquake in 2017 (2017)
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Injection-induced earthquake sequence
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Saltwater disposal well database
. +* 2

o 900 injection wells
% OCC (735), KCC (120), EPA (45)

3751

37.0

o Only wells completed in the
Arbuckle aquifer

36.5

o Active during 1995 - 2018

36.0

0 Injection rate data typically at a
resolution of 1 month .
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Potentially active faults are ubiquitous
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S
Pressure transients in the Arbuckle

Natural fracture

a High permeability pathways = fast pressure transmission
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Ismogenic
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basement section of SHADS core

Near-vertical fracture in

Pressure transients in basement rock
ickly

Quarry in basement rock that outcrops in southern Oklahoma
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N
Fluid pressure model

0 We developed a reservoir model to capture first-order effects
< Pressure changes are dominated by compressibility effects
< Conservative end-member (i.e., likely overestimates pressure changes slightly)

/ Injection rate
q

p S — <4—  F|uid pressurization rate

Bulk volume Porosity

Reservoir compressibility

a Three reasons why the approximations in this model are valid _
1. Wilzetta/Nemaha faults act as no-flow boundaries ’
2. Injection is distributed over a broad extent
« ~300 km wide injection zone
3. Dense well spacing on the order of 2 to 5 km
* Imagine ‘five-spot’ pattern of injector wells o (1995)
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Earthquake nucleation model

o How do faults respond to Arbuckle e Stressing rate on faults
pressurization? iR R [ &
- e R 4 Seismicity rate evolution
dt tc() S0
0 Rate and state friction Tectonic “background”
. . . stressing rate
< Dieterich (1994) in JGR
< Segall and Lu (2015) in JGR
< Barbour et al. (2017) in SRL s=T17—f [(j' — p} ¢ Coulomb stressing rate
. . . q
Q Assumptlons S~pP= Vs G Stressing rate on faults is
. . dominated by pressure
1. A set of potentially active faults changes
2. Basement faults are in direct  E e :
communication with the Arbuckle | te=aoc/$ <+—— Characteristic timescale for
. . . . I seismicity rate transients
3. Arbuckle fluid pressure is main driver L o o & o e e e e e e e e e e e e e oo ]
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Nucleation model: response to stress changes

Step change in Coulomb stress

103

o As; =0.5 MPa (numerical)
As; = 0.5 MPa (analytical) |]

o Asp, = 1.5 MPa (numerical) | ]
—== As> = 1.5 MPa (analytical) |]

t 1 Omori-like decay

R(-)
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Nucleation model: response to stress changes

13 March, 2019
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Step change in stress rate
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Statewide seismicity forecast

1. Combine injection rates for all
wells in area to be analyzed

375

2. Estimate reservoir volume 37.0
(area x thickness) and porosity

36.5

3. Calculated pressurization rate

/

** Represents ‘average’ pressure

Oklahoma
“Area of Interest”

355

Combined total of 780
disposal wells

35.0
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Stressing rate and pressure change

1. Combine injection rates for all

. -1
wells in area to be analyzed = : : - - — 40

— Pressurization rate

=== Background stressing rate
= Arbuckle pressure

2. Estimate reservoir volume

102

bt
o

[\
)
Average pressure in Arbuckle (MPa)

(area x thickness) and porosity —
42.5
3. Calculated pressurization rate 10-3 .
** Represents ‘average’ pressure S=p= Voi

 Background stressing rate

Arbuckle pressurization rate (MPa/month)

40.5
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Statewide seismicity forecast

iR R (3R> —_ )

50

dt  tu
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o Our model captures the onset, peak, and falling rates of seismicity
o No ‘calibration’ against earthquake data required
o Based on known Arbuckle reservoir properties and injection data
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Regional-scale seismicity forecasts
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Local-scale seismicity forecasts
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Local-scale seismicity forecasts
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Seismicity forecasts for hazard analysis
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Implications for managing hazard

Q Selsm|C|ty rate is governed by stressmg rate: s=p= qu

o System tends toward a ‘steady-state’ seismicity rate if injection is constant

< Injection can be carried out such that the seismicity rate remains below tolerable
threshold

a Time lag scales inversely with stressing rate: t. = ao/s

High stressing rate period: ¢,= 230 days
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Forecast accuracy

o Quantified accuracy with a likelihood
testing approach and with RMSE analysis

1. Simple base-case model

* Seismicity rate drawn randomly from set of
observed rates

2. USGS one-year hazard model

e Use last year’s seismicity rate to predict
upcoming year

3. Calibrated statistical model

e Seismicity rate based on injection data
(with time lag and injection threshold)

* Langenbruch and Zoback (2016)
4. Hydromechanical model
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Earthquake catalog
o ComCat earthquake catalog
175t B Full catalog |
- Reported magnitUdeS (Iocal, 150 F = g:flit?ifd(ll(ii?oﬁiiggglalgorithm l
body wave, surface wave, _
duration) were converted to a % 125 } )
consistent set of moment %
magnitudes S 100 :
< CEUS-SSC conversions g
“ M>3.0 B '
g
Z 5 )
o We compared our model ¥
results against a declustered 25t 1
earthquake catalog
<+ Reasenberg (1995) method 20()08 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
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Validation of closed-system assumption

Semi-infinite domain
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Validation of closed-system assumption

k=10 md k=100 md k=1000 md
1.0 1.0 1.0
0.8} ogfF " TTTTTTTTTTTTTT 0.8
—_ . . \\,
Py - r N\
2 0.6} 506 so06F T N
g 5 s AN
= =9 a
E 3 E
= 04} S 04} S 04}
Zg ZE é \ ~\ \
0.2F 0.2 0.2 \\\
0.05 35 S N S S A 0.05 05 10200 0.05 25 50 75 100 13 150 175 200
Radial distance (km)

Radial distance (km) Radial distance (km)

8

)
A\

13 March, 2019




Model parameters

o Only a few physical parameters
< Each can be measured/inferred in the field or lab

o We currently have good estimates
< Largest uncertainty is in the background stressing rate

Parameter Value Unit Description
So 0.7 x 1073 MPa - yr—1 Background stressing rate®
ro 1 earthquake - yr~!  Background seismicity rate (M > 3.0) in the study area®
a 0.0065 - Direct effect parameter®
a 50 MPa Effective normal stress at seismogenic depth?
10) 0.12 - Arbuckle rock porosity®
I} 3.2 x 10~10 Pa~! Total reservoir compressibility®
h 225 m Arbuckle average thickness!

2 The background stressing rate, sg, is taken as an intermediate value based on estimates reported for the central and eastern
United States by Anderson and Weber et al. [21].

b The background rate of M > 3 earthquakes in Oklahoma is based on the ComCat catalog over the period of 1979 through
1999 [22].

¢ The direct effect parameter is consistent with laboratory friction measurements performed on granite samples with gouge
[39] [40] and similar to other recent studies of induced seismicity in granitic rock [24].

4 A characteristic effective normal stress is taken as the mean effective stress at 4 km depth based on the stress gradients
reported for north-central Oklahoma by Walsh and Zoback [19].

¢ As part of a regional study on groundwater flow through the Arbuckle aquifer, Carr et al. [13] inferred average values of
porosity and total compressibility based on analysis of 76 geophysical logs. Carr et al. [13] reported that the values inferred
from the logs are consistent with values measured in the laboratory on whole-core and core-plug Arbuckle rock samples.

f The average reservoir thickness of the Arbuckle aquifer is taken as an intermediate value based on the thicknesses reported

by Carr et al. and Nelson et al. [15].
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Forecast accuracy
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