Loving Your Local Mason

What masons want but are often afraid to ask

Atkinson Noland & Associates

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© Atkinson-Noland & Assoc. 2021

Learning Objectives

After completing this webinar, attendees should have a better understanding of the following:

- 1. What types of detailing and drawings are most beneficial to masons
- 2. Where bar congestion is most problematic
- 3. Why coordination between masons and other trades can be problematic

3

Outline – Loving Your Local Mason

- Detailing
- Bar Congestion
- Different Materials and Trades
- Other Stuff

Are big, strong masons really afraid of ME?!

Detailing

What drawings help masons? (and YOU)

National Council of Structural Engineers Associations | www.ncsea.com

7

Detailing

- What is often provided:
 - Plan view or section with typical reinforcing (or note)
 - Corner note
 - Bond beam note
 - Shear wall schedule
 - Lintel Schedule (if present)
 - Joint spacing (often text only)
 - Reinforcing adjacent to joints (usually note)
 - Jamb reinforcing (often a note or isolated detail)

How can your design address all of these potential conflicts?

Hint: I just showed you...

Image courtesy of Larsen Structural Design of Fort Collins, Colorado

Detailing: Adequate Detail

Detailing

Include important engineering information

on your drawings!

(When is the last time you saw a mason carrying around a Spec Book?)

- What about partition walls?
- Ambiguous language: "Grout all cells solid" (just the cells shown to be grouted on the drawings or every cell in the structure?)
- Lintel **section** details

Detailing

- f'_m masonry design compressive strength
 - 2013 Code Update What are you using?
 - 2000 psi block (minimum)
 - Type N mortar (minimum/recommended)
 - **f**′_m = **1740** psi (minimum)
 - Grout strength \geq f'_m
- Reinforcement
 - Size
 - Location in plan, elevation, section
 - Location "d" distance within wall thickness
- Control joint **location**, not just spacing

Detailing: Use Resources

www.rmmi.org/top-10-masonry-wall-systems/

Bar Congestion

Those dots are not dots!

Bar Congestion: Manageable Reinforcing

• Survey on bar size and spacing

Bar Size	Spacing (inches on center)	
#3	8	All
#4	16	C C
#5	24	
#6	32	
#7	48	

Bar Congestion: Manageable Reinforcing

• Survey on bar size and spacing

Consider using the same bar size for lintels and bond beams to avoid confusion on site. OR odds/evens

Bar Size	Spacing (inches on	Preferrec Masons	OR odds/ev	n site. / <mark>ens</mark>
	Centery			
#3	8	0%		
#4	16	0%		
#5	24	78%		
#6	32	22%	Second Choice for Most	
#7	48	0%	Laps and Weight	

What Masons Want: Constructible Drawings

• Congestion!

Two #6 vertical bars plus a #6 dowel is TOO MUCH!

- MSJC Section 3.3.3 (cont.)
 Reinforcement requirements and details
 - Reinforcement area <= 4% of cell area

(<= 8% @ splice location)

USE <u>ONE</u> BAR CENTERED IN THE CELL

... or carry a weapon when you visit the jobsite ...

What f'm are you using? Have you updated your lap tables?

Multiple Bars in a Single Cell: (In)efficiency Analysis

• Two scenarios for a 23'-0" wall:

	One #5 Bar Centered in Cell	Two #5 Bars One at Each Face
Lap Length	21"	58"
Capacity	5800 ft-lb	9700 ft-lb 69% Increase
Weight of Rebar	33 lb.	98 lb.
Used		197%
		Increase!!!

Bar Congestion

- "Reinforce all masonry walls with 2 #5 in horizontal bond beams @ 4'-0" O.C."
- Use 1 bar bond beams wherever possible
- Bond beams at 4'-0" O.C. necessary?

Bar Congestion

Different Materials and Trades

Everyone plays nicely together... right?

Different Materials and Trades

• Welding and Embedded Steel

- Potential Conflicts:
- Schedule/coordination Tolerances
- Cutting and Soaps

Different Trades

- Welding / Embedded Steel Framing
 - Different Trade Coordination/Delay
 - How does it affect masonry installation
 - Soaping around framing
 - Bottom Line: Avoid if possible!

• USE MASONRY LINTELS!

- Also helps with thermal bridging and compatibility
- Virtually ANY span is possible

Other Trades – Wood?

Tolerances for Wood Framing?

Other Stuff

Bonus Content!

Other Stuff: Local Materials

- Know your local materials (don't be afraid to ask)
 - Grout 2000 psi or 3000 psi?
 - Block lightweight or normal weight
 - L.W. 28-35 lb. vs. N.W. over 44 lb.!
 - Minimum 20% increase in cost.
 - Worse fire resistance
 - What about water resistance?
 - Typical block compressive strength
 - Self-consolidating grout availability
 - Low-alkali cement?
 - Preblended vs. site-batched mortar
 - Site-batched mortar generally has higher strength per type ... Why?
 - Low-lift vs. High-Lift Grouting?

YOUR

Other Stuff: Testing

- What do Type S and N mortar stand for?
- You should want WEAK mortar!
- Mortar cube testing is NOT REQUIRED and USUALLY COUNTERPRODUCTIVE!

Other Stuff: Testing

- Most "Low Breaks" are due to lab error in our experience.
- NO TESTING is required for unit strength method.
- Read Appendix X1 of ASTM C270, where Type N is the RECOMMENDED mortar for loadbearing walls!

Other Stuff: Modular Construction

- What's wrong with this detail?
- Don't rely on your concrete experience
- Reinf. has to follow modular layout
 - 8" module

Other Stuff: Unit Strength

"Recalibration" of concrete masonry unit strength tables

- Provides greater assembly compressive strength f'_m
- Why?
 - Old tables based on highly variable test data: 1950's 1980's
 - ASTM C1314 unified prism testing beginning in 2000
 - Current data statistically more consistent

From NCMA Research Report

• Unit Strength Table 2: Concrete Masonry

	Net area compressive strength of concrete masonry units, lb/in. ² (MPa)		Net area compressive strength of masonry ^A , lb/in. ² (MPa)	
	Type M or S Mortar	Type N Mortar		
		1,900 (13.10)	1,350 ((9.31)
1	1,900 (13.10)	2,150 (14.82)	1,500 (10.34)
0	2,800 (19.31)	3,050 (21.03)	2,000 (1	13.79)
N	3,750 (25.86)	4,050 (27.92)	2,500 (1	17.24)
	4,800 (33.10)	5,250 (36.20)	3,000 (2	20.69)

^A For units less than 4 in. (102 mm) in height. 85%

sou.

Net area compressive strength of		Net area compressive strength of concrete masonry units, psi (MPa)	
conc	rete masonry, psi (MPa)	Type M or S mortar	Type N mortar
	1,700 (11.72)		1,900 (13.10)
	1,900 (13.10)	1,900 (13.10)	2,350 (14.82)
	2,000 (13.79)	2,000 (13.79)	2,650 (18.27)
	2,250 (15.51)	2,600 (17.93)	3,400 (23.44)
	2,500 (17.24)	3,250 (22.41)	4,350 (28.96)
	2,750 (18.96)	3,900 (26.89)	
	3,000 (20.69)	4,500 (31.03)	

¹For units of less than 4 in. (102 mm) nominal height, use 85 percent of the values listed.

Use Mockups & Include Structure

- Mockups
- Mockups <u>SHOULD BE</u> for Engineers, too!
- MSJC Spec, 1.6 D, Sample Panels:
 - "Retain sample panels at the job site until Work has been accepted"
- Do not destroy it until all contracts have been paid

DON'T put control joints at openings!

Figure 2—Control Joints at Openings

OR don't put in control joints AT ALL?!

- Go to ncma.org
- Find "TEK 10-03 CONTROL JOINTS FOR CONCRETE MASONRY WALLS ALTERNATIVE ENGINEERED METHOD"
- Makes sense for walls with lots of openings.

Table 3—Maximum Spacing of Horizontal Reinforcement to Meet the Criteria As > 0.002An ¹					
Wall	Maximum	Maximum spacing of horizontal			
thickness,	reinfor	cement, in. (m	m)		
in. (mm)	Rein	forcement size			
	No. 6 (M19)	No. 5 (M16)	No.4 (M13)		
Ung	outed or partiall	y grouted walls	5		
6 (152)	48 (1219)	48 (1219)	32 (813)		
8 (203)	48 (1219)	40 (1016)	24 (610)		
10 (254)	48 (1219)	32 (813)	16 (406)		
12 (305)	48 (1219)	24 (610)	8 (203)		
Fully grouted walls					
6 (152)	32 (813)	24 (610)	16 (406)		
8 (203)	24 (610)	16 (406)	8 (203)		
10 (254)	16 (406)	16 (406)	8 (203)		
12 (305)	16 (406)	8 (203)	8 (203)		
1. A _n includes cross-sectional area of grout in bond beams					

