Toward Automatic Generation of Scientific
Software Artifacts

Spencer Smith, Jacques Carette, Dan Szymczak,
Steven Palmer

Computing and Software Department
Faculty of Engineering
McMaster University

SIAM CS19 MS2 Scientific Software: Practices,
Concerns, and Solution Strategies, February 25, 2019

W Abstract

Slide 2 of 27

Goal — Improve quality of SCS
Idea — Adapt ideas from SE
Document Driven Design

® Good — improves quality

® Bad — “manual” approach is too much work
Solution

e Capture knowledge

® Generate all things

® Complete, consistent and traceable by construction
e Showing great promise

¢ Significant work yet to do
® Looking for examples/partners/enthusiasm

%\/I_CMastg
Jniversity *

Slide 4 of 27

Motivation
Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

SRS

MG

“Faked” Rational Design

Documentation

System VnV Plan

)

System VnV Report

5| Integration VnV

w

Mis

Report

|

Unit VnV Report J

A

> Code

o

i The Challenge/Problem

Slide 5 of 27
Votivation * Documentation provides advantages
* |Improves verifiability, reusability, reproducibility, etc.
® From Parnas (2010)
® easier reuse of old designs
® better communication about requirements
® more useful design reviews
® etc.
® New doc found 27 errors (Smith and Koothoor, 2016)
® Developers see advantage (Smith et al., 2016)
e But documentation is felt to be ...
® Too long
* Too difficult to maintain
* Not amenable to change
® Too tied to waterfall process
® Reports counterproductive (Roache, 1998)

e The Solution?

Knowledge Capture and
Generation

GENERATE

Drasil

(SRS (Lafex) | [SRS (htmi) |

uncertaint
typical val- he is the heat
ues etc. transfer coeff
T between clad
and coolant

https://github.com/JacquesCarette/Drasil

https://github.com/JacquesCarette/Drasil

2 Existing Approaches

Slide 8 of 27

Literate programming

® Only code and its documentation
* Knowledge and documentation interleaved
® Not particularly popular

Jupyter notebook

® One particular view of code and documentation
® Should be able to generate this view

Code generation (ATLAS, Spiral, Dolphin, etc)
® Emphasis on code
Model driven development

® Focus on abstract model of software design, not as
much on domain knowledge
Knowledge engineering
® Modelling domain is not enough, need to use the
knowledge
® As model is formalized, structure is revealed

Solution: Drasil

¥ Development of Drasil
Slide 9 of 27
e Continual refactoring of generation to reproduce 5
“‘manual” case studies

Solar water heating system with PCM
Solar water heating system without PCM
Game physics
Glass pane safety analysis
Slope stability analysis
e Start with simple automations

® Table of symbols
Cross-references, etc,
Scientists makes design decisions

* etc.
e [ater move to more difficult automations

® Algorithm selection automation

® Specified reader characteristics determine detail level
of documentation
® etc.

Solution: Drasil

o

e

Slide 10 of 27

Implementation of Drasil

Solution: Drasil

e DSLs embedded in Haskell
e Separation of concerns

e Scientific knowledge
e Computing knowledge
* Documentation knowledge

® Programming language knowledge (GOOL)

Relationship Between SRS
Knowledge

— yr

Theoretical Models refined———>»| General Definitions refined Instanced Models
[€——may ref: ‘may ref
may ref_j Lrnay ref Lrnay ref
may ref may ref may ref

may ref may ref .
Likely Changes

Data Definitions

Assumptions

McMaster
University g2

¥

Slide 12 of 27

Bottom-up
Example

Jiol in SRS.pdf

Refname DD:sdf.tol
Label Jrol
Units
Equation Jiot = log <log (17113“ l) (ﬁ%ﬁo);;)
ot) k((£41000)(fs5)”) " +LDF
Description Jior 1s the stress distribution factor (Function) based on Pbtol

Py is the tolerable probability of breakage
a is the plate length (long dimension)

b is the plate width (short dimension)

m is the surface flaw parameter

k is the surface flaw parameter

E is the modulus of elasticity of glass

h is the actual thickness

LDF is the load duration factor

Jo| in SRS.tex

\noindent \begin{minipage}{\textwidth}
\begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}}
\toprule \textbf{Refname} & \textbf{DD:sdf.tol}
\phantomsection

\label{DD:sdf.tol}

\\ \midrule \\

Label & $J {tol}$

\\ \midrule \\

Units &

\\ \midrule \\

Equation & J_{tol} = $\log\left (\log\left (\frac{l}{1-P_
{btol}}\right) \frac{\left (\frac{a}{1000}\frac{b
}{1000}\right) "{m-1}}{k\left (\left (Ex1000\right) \left
(\frac{h}{1000}\right) "{2}\right) "{m}*LDF}\right) $

\\ \midrule \\

Description & J_{tol} is the stress distribution factor

(Function) based on
Pbtol\newlineP_{btol} is the tolerable
probability of breakage ...

\end{minipage}\\

Jtol in SRS.himl

<div class="equation">
J_{tol} = log(log(<div class="fraction">

1

1 − P_{btol}

</div>)<div class="fraction">

(<div class="fraction">

a

1000

</div><div class="fraction">

Jio| In Python

def calc_j_tol(inparams):
j_tol = math.log((math.log(1.0 / (1.0 - inparams.
pbtol))) * ((((inparams.a / 1000.0) * (inparams.b
/ 1000.0)) ** (inparams.m - 1.0)) / ((inparams.k
* (((inparams.E * 1000.0) * ((inparams.h /
1000.0) ** 2.0)) ** inparams.m)) * inparams.ldf))
)

return j_tol

Jtol in Java

public static double calc_3j_tol (InputParameters inparams)
{
double j_tol = Math.log((Math.log(1.0 / (1.0 -
inparams.pbtol))) * ((Math.pow((inparams.a /
1000.0) * (inparams.b / 1000.0), inparams.m -
1.0)) / ((inparams.k * (Math.pow((inparams.E
* 1000.0) * (Math.pow(inparams.h / 1000.0,
2.0)), inparams.m))) * inparams.ldf)));
return j_tol;

Code with Comments

def func_B(inParams, J):
function 'func_B': risk of failure

parameter 'inParams':
parameter 'J': stress distribution factor (Function)

return ((((2.86 * (10 *x (-(53)))) / ((inParams.a * inParams.b) *%
(7 = 1))) * ((((7.17 % (10 *x 7)) % 1000) =
(inParams.h ** 2)) *%x 7)) * ((3 / 60) *xx (7 / 16))) *
(math.exp(J))

Code with Logging

def func_B(inParams, J):
function 'func_B': risk of failure
parameter 'inParams':
parameter 'J': stress distribution factor (Function)

outfile = open("log.txt", "w'")

print("function func B(", end='', file=outfile)
print(inParams, end='', file=outfile)

print(", ", end='', file=outfile)

print(J, end='"', file=outfile)

print(") called", file=outfile)

outfile.close()

return ((((2.86 x (10 xx (=(53)))) / ((inParams.a * inParams.b) **
(7 = 1))) * ((((7.17 * (10 *x 7)) *x 1000) *
(inParams.h ** 2)) *x 7)) x ((3 / 60) *x (7 / 16))) *
(math.exp(J))

Jio| in Drasil (Haskell)

tolstrDisFac_eq :: Expr
tolStrDisFac_eq = 1n (1n (1 / (1 - (sy pb_tol)))
* (((((sy plate_len)/1000.0) * ((sy plate_width)
/1000.0)) $"° (sy sflawParamM - 1) /
((sy sflawParamK) * (((sy mod_elas x 1000.0) =
(square ((sy min_thick)/1000.0))))) $" (sy
sflawParamM) * (sy lDurFac)))))

Jtol without Unit Conversion

tolStrDisFac_eq :: Expr
tolStrDisFac_eq = 1n (1n (1 / (1 - (sy pb_tol)))
* ((((sy plate_len) * (sy plate_width)) $° (sy
sflawParamM - 1) /
((sy sflawParamK) * ((sy mod elas x
(square (sy min_thick)))) $° (sy sflawParamM) * (sy
1DurFac)))))

Complete and Consistent

Symbol Description Units

Ac Heating coil surface area m2

A Surface area over which heat is transferred in m?2

Aour Surface area over which heat is transferred out m2

Ap Phase change material surface area m2

C Specific heat capacity J/(kg°C)

ck Specific heat capacity of a liquid J/(kgC)

cs Specific heat capacity of a solid J/(kg-°C)

cv Specific heat capacity of a vapour J/(kg-°C)

Cy Specific heat capacity of water Ji(kg-°C)

CPL Specific heat capacity of PCM as a liquid J/(kg°C)

s Specific heat capacity of PCM as a solid Ji(kg-°C)

D Diameter of tank m
Sensible heat J

Ep Change in heat energy in the PCM J

Ey Change in heat energy in the water J

Complete and Consistent
Contd

Assumptions

This section simplifies the original problem and helps in developing the theoretical model by filling in the missing information for the physical system.
The numbers given in the square brackets refer to the Theoretical Models Section: Theoretical Models, General Definitions Section: General
Definitions, Data Definitions Section: Data Definitions, Instance Models Section: nce Models, Likely Changes Section: Likely Changes, or
Unlikely Changes Section: Unlikely Changes, in which the respective assumption is used.

Thermal-Energy-Only: The only form of energy that is relevant for this problem is thermal energy. All other forms of energy, such as mechanical
energy, are assumed to be negligible. TM: consThermE.

Heat-Transfer-Coeffs-Constant: All heat transfer coefficients are constant over time. GD: nwtnCooling.

Constant-Water-Temp-Across-Tank: The water in the tank is fully mixed, so the temperature of the water is the same throughout the entire tank.
GD: rocTempSimp DD: ht_flux _P.

Temp-PCM-Constant-Acros

Volume: The temperature of the phase change material is the same throughout the volume of PCM. GD:

Density-Water-PCM-Constant-over-Volume: The density of water and density of PCM have no spatial variation; that is, they are each constant
over their entire volume. GD: rocTempSimp.

Specific-Heat-Energy-Constant-over-Volume: The specific heat capacity of water, specific heat capacity of PCM as a solid, and specific heat
capacity of PCM as a liquid have no spatial variation; that is, they are each constant over their entire volume. GD: rocTempSimp.

Newton-Law-Convective-Cooling-Coil-Water: Newton's law of convective cooling applies between the heating coil and the water. DD:
ht flux C.

Traceability Graph

AB ALL A13 ats| [a16 a8| [a19
h
|

=
M1 M2 @E II:/I% =
3 A

o

it Advantages of Drasil

Slide 24 of 27

e Supports changing requirements and design
® Generation
® Complete by construction
Concluding ® Consistent by construction
Remarks e Automated traceability

e Supports duplication

® Knowledge is entered once, generated/transformed
® Eases maintenance
e If incorrect, incorrect everywhere

e Concluding Remarks

Slide 25 of 27

SCS has the opportunity to lead other software fields
Document driven design is feasible

Requires an investment of time

Documentation does not have to be painful
Develop/refactor via practical case studies

Ontology may naturally emerge

Future work
® Design language
e Testing
® Guards on input
Sanity checks
Metamorphic testing
Computational variability testing

Concluding
Remarks

W References |

Slide 26 of 27
David Lorge Parnas. Precise documentation: The key to

better software. In The Future of Software Engineering,
pages 125-148, 2010. doi:
10.1007/978-3-642-15187-3.8. URL http:
//dx.doi.org/10.1007/978-3-642-15187-3_8.

Patrick J. Roache. Verification and Validation in
Computational Science and Engineering. Hermosa
References Publishers, Albuquerque, New Mexico, 1998.

W. Spencer Smith and Nirmitha Koothoor. A
document-driven method for certifying scientific
computing software for use in nuclear safety analysis.
Nuclear Engineering and Technology, 48(2):404-418,
April 2016. ISSN 1738-5733. doi:
http://dx.doi.org/10.1016/j.net.2015.11.008. URL
http://www.sciencedirect.com/science/
article/pii/S1738573315002582.

http://dx.doi.org/10.1007/978-3-642-15187-3_8
http://dx.doi.org/10.1007/978-3-642-15187-3_8
http://www.sciencedirect.com/science/article/pii/S1738573315002582
http://www.sciencedirect.com/science/article/pii/S1738573315002582

- References I

Slide 27 of 27

W. Spencer Smith, Thulasi Jegatheesan, and Diane F.
Kelly. Advantages, disadvantages and
misunderstandings about document driven design for
scientific software. In Proceedings of the Fourth
References International Workshop on Software Engineering for
High Performance Computing in Computational Science
and Engineering (SE-HPCCE), November 2016. 8 pp.

	Scope and Motivation
	Solution: Drasil
	Bottom-up Example
	Complete and Consistent
	Concluding Remarks
	References

