
Toward Automatic Generation of Scientific
Software Artifacts

Spencer Smith, Jacques Carette, Dan Szymczak,
Steven Palmer

Computing and Software Department
Faculty of Engineering
McMaster University

SIAM CS19 MS2 Scientific Software: Practices,
Concerns, and Solution Strategies, February 25, 2019

Slide 2 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

Abstract

• Goal – Improve quality of SCS
• Idea – Adapt ideas from SE
• Document Driven Design

• Good – improves quality
• Bad – “manual” approach is too much work

• Solution
• Capture knowledge
• Generate all things
• Complete, consistent and traceable by construction

• Showing great promise
• Significant work yet to do
• Looking for examples/partners/enthusiasm

Scope

Slide 4 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

“Faked” Rational Design
Documentation

SRS

MG

MIS Unit VnV Report

Integration VnV
Report

System VnV Report

Code

Unit VnV Plan

Integration VnV Plan

System VnV Plan

Slide 5 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

The Challenge/Problem

• Documentation provides advantages
• Improves verifiability, reusability, reproducibility, etc.
• From Parnas (2010)

• easier reuse of old designs
• better communication about requirements
• more useful design reviews
• etc.

• New doc found 27 errors (Smith and Koothoor, 2016)
• Developers see advantage (Smith et al., 2016)

• But documentation is felt to be ...
• Too long
• Too difficult to maintain
• Not amenable to change
• Too tied to waterfall process
• Reports counterproductive (Roache, 1998)

• The Solution?

Knowledge Capture and
Generation

Drasil

https://github.com/JacquesCarette/Drasil

https://github.com/JacquesCarette/Drasil

Slide 8 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

Existing Approaches
• Literate programming

• Only code and its documentation
• Knowledge and documentation interleaved
• Not particularly popular

• Jupyter notebook
• One particular view of code and documentation
• Should be able to generate this view

• Code generation (ATLAS, Spiral, Dolphin, etc)
• Emphasis on code

• Model driven development
• Focus on abstract model of software design, not as

much on domain knowledge
• Knowledge engineering

• Modelling domain is not enough, need to use the
knowledge

• As model is formalized, structure is revealed

Slide 9 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

Development of Drasil
• Continual refactoring of generation to reproduce 5

“manual” case studies
• Solar water heating system with PCM
• Solar water heating system without PCM
• Game physics
• Glass pane safety analysis
• Slope stability analysis

• Start with simple automations
• Table of symbols
• Cross-references, etc,
• Scientists makes design decisions
• etc.

• Later move to more difficult automations
• Algorithm selection automation
• Specified reader characteristics determine detail level

of documentation
• etc.

Slide 10 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

Implementation of Drasil
;

Concept

QuantityIdea;

CI;
cid : UID
ni : NP

ab : String

ConceptChunk;
idea : IdeaDict

dad : DefnAndDomain

CommonConcept;
comm : CI

def : Sentence
dom : [UID]

HasDerivation

ConceptInstance;
cc : ConceptChunk
shnm : ShortName

DefnAndDomain;
defn’ : Sentence
cdom’ : [UID]

HasShortNameHasUID

AssumpChunk;
aid : UID

assuming : Sentence
refName : ShortName

Citation;
id : UID

citeID : EntryID
externRefT : CitationKind

fields : [CiteField]

Reason;

TheoryConstraint;

Constraint;

ConstraintReason;

Scope;

ScopeType:

Change;
id : UID

chngType : ChngType
chng : Sentence

refName : ShortName

QDefinition;
qua : QuantityDict

equat : Expr
ref : References

deriv : Derivation
refName : ShortName

notes : Maybe [Sentece]

DataDefinition;
qd : QDefinition
scp : ScopeType
ref : References
deri : Derivation
lbl : ShortName

notes : Maybe [Sentence]

InstanceModel;
rc : RelationConcept

imInputs : Inputs
inCons : InputConstraints

imOutput : Output
outCons : OutputConstraints

ref : References
deri : Derivation

refName : ShortName
notes : Maybe [Sentence]

DefinedQuantityDict;
con : ConceptChunk

symb : Stage ! Symbol
spa : Space

unit’ : Maybe UnitDefn
deri : Derivation

UnitaryConceptDict;
unitary : UnitaryChunk
dad : DefnAndDomain

VarChunk;
ni : IdeadDict

vsymb : Stage ! Symbol
vtyp : Space

QuantityDict;
id’ : IdeaDict
typ’ : Space

symb’ : Stage ! Symbol
unit’ : Maybe UnitDefn

ConstrConcept;
defq : DefinedQuantityDict

constr’ : [Constraint]
reasV : Maybe Expr

ConstrainedChunk;
qd : QuantityDict

constr : [Constraint]
reasV : Maybe Expr

Unitary;

UnitalChunk;
defq’ : DefinedQuantityDict

uni : UnitDefn

UncertainQuantity;

UncertainChunk;
conc : ConstrainedChunk

unc’ : Maybe Double

UncertQ;
conc : ConstrConcept
unc’ : Maybe Double

UnitaryChunk;
quant : QuantityDict

un : UnitDefn

has
a

has
a

has
a

has
a

has
a

• DSLs embedded in Haskell
• Separation of concerns

• Scientific knowledge
• Computing knowledge
• Documentation knowledge
• Programming language knowledge (GOOL)

Relationship Between SRS
Knowledge

refined

may ref

may ref

Theoretical Models
may ref

refined

may ref

may ref

General Definitions
may ref

may ref

may ref

may ref

Instanced Models

may ref may ref may ref

may ref

Data Definitions

Assumptions
may ref

may ref

Likely Changes

Slide 12 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

Jtol in SRS.pdf

Refname DD:tolLoad

Label q̂tol

Units

Equation q̂tol = q̂tol

�
Jtol,

a
b

�

Description q̂tol is the tolerable load
q̂tol is the tolerable load
Jtol is the stress distribution factor (Function) based on Pbtol
a is the plate length (long dimension)
b is the plate width (short dimension)

Refname DD:sdf.tol

Label Jtol

Units

Equation Jtol = log

✓
log

⇣
1

1�Pbtol

⌘
(a

1000
b

1000)
m�1

k
⇣
(E⇤1000)(h

1000)
2
⌘m

⇤LDF

◆

Description Jtol is the stress distribution factor (Function) based on Pbtol
Pbtol is the tolerable probability of breakage
a is the plate length (long dimension)
b is the plate width (short dimension)
m is the surface flaw parameter
k is the surface flaw parameter
E is the modulus of elasticity of glass
h is the actual thickness
LDF is the load duration factor

6.2.5 Instance Models

This section transforms the problem defined in Section 6.1 into one which is expressed in
mathematical terms. It uses concrete symbols defined in Section 6.2.4 to replace the abstract
symbols in the models identified in Section 6.2.2 and Section 6.2.3.

17

Jtol in SRS.tex
\noindent \begin{minipage}{\textwidth}
\begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}}
\toprule \textbf{Refname} & \textbf{DD:sdf.tol}
\phantomsection
\label{DD:sdf.tol}
\\ \midrule \\
Label & J_{tol}
\\ \midrule \\
Units &
\\ \midrule \\
Equation & J_{tol} = $\log\left(\log\left(\frac{1}{1-P_

{btol}}\right)\frac{\left(\frac{a}{1000}\frac{b
}{1000}\right)ˆ{m-1}}{k\left(\left(E*1000\right)\left
(\frac{h}{1000}\right)ˆ{2}\right)ˆ{m}*LDF}\right)$

\\ \midrule \\
Description & J_{tol} is the stress distribution factor

(Function) based on
Pbtol\newlineP_{btol} is the tolerable

probability of breakage ...
\end{minipage}\\

Jtol in SRS.html

<div class="equation">
J_{tol} = log(log(<div class="fraction">

1

1 − P_{btol}

</div>)<div class="fraction">

(<div class="fraction">

a

1000

</div><div class="fraction">
...

Jtol in Python

def calc_j_tol(inparams):
j_tol = math.log((math.log(1.0 / (1.0 - inparams.

pbtol))) * ((((inparams.a / 1000.0) * (inparams.b
/ 1000.0)) ** (inparams.m - 1.0)) / ((inparams.k
* (((inparams.E * 1000.0) * ((inparams.h /

1000.0) ** 2.0)) ** inparams.m)) * inparams.ldf))
)

return j_tol

Jtol in Java

public static double calc_j_tol(InputParameters inparams)
{

double j_tol = Math.log((Math.log(1.0 / (1.0 -
inparams.pbtol))) * ((Math.pow((inparams.a /
1000.0) * (inparams.b / 1000.0), inparams.m -
1.0)) / ((inparams.k * (Math.pow((inparams.E
* 1000.0) * (Math.pow(inparams.h / 1000.0,

2.0)), inparams.m))) * inparams.ldf)));
return j_tol;

}

Code with Comments

CHOICE: FUNCTION COMMENTING
15

def func_B(inParams, J):
function 'func_B': risk of failure
parameter 'inParams':
parameter 'J': stress distribution factor (Function)

return ((((2.86 * (10 ** (-(53)))) / ((inParams.a * inParams.b) **
(7 - 1))) * ((((7.17 * (10 ** 7)) * 1000) *
(inParams.h ** 2)) ** 7)) * ((3 / 60) ** (7 / 16))) *
(math.exp(J))

Code with Logging

CHOICE: FUNCTION LOGGING
def func_B(inParams, J):

function 'func_B': risk of failure
parameter 'inParams':
parameter 'J': stress distribution factor (Function)

outfile = open("log.txt", "w")
print("function func_B(", end='', file=outfile)
print(inParams, end='', file=outfile)
print(", ", end='', file=outfile)
print(J, end='', file=outfile)
print(") called", file=outfile)
outfile.close()

return ((((2.86 * (10 ** (-(53)))) / ((inParams.a * inParams.b) **
(7 - 1))) * ((((7.17 * (10 ** 7)) * 1000) *
(inParams.h ** 2)) ** 7)) * ((3 / 60) ** (7 / 16))) *
(math.exp(J))

16

Jtol in Drasil (Haskell)

tolStrDisFac_eq :: Expr
tolStrDisFac_eq = ln (ln (1 / (1 - (sy pb_tol)))

* (((((sy plate_len)/1000.0) * ((sy plate_width)
/1000.0)) $ˆ (sy sflawParamM - 1) /

((sy sflawParamK) * (((sy mod_elas * 1000.0) *
(square ((sy min_thick)/1000.0))))) $ˆ (sy

sflawParamM) * (sy lDurFac)))))

Jtol without Unit Conversion

tolStrDisFac_eq :: Expr
tolStrDisFac_eq = ln (ln (1 / (1 - (sy pb_tol)))

* ((((sy plate_len) * (sy plate_width)) $ˆ (sy
sflawParamM - 1) /

((sy sflawParamK) * ((sy mod_elas *
(square (sy min_thick)))) $ˆ (sy sflawParamM) * (sy

lDurFac)))))

Complete and Consistent

1/24/2019 Software Requirements Specification for Solar Water Heating Systems Incorporating PCM

file:///Users/smiths/Repos/Drasil/code/build/SWHS/Website/SWHS_SRS.html 1/20

Software Requirements Specification for Solar Water Heating Systems Incorporating
PCM

Thulasi Jegatheesan, Brooks MacLachlan, and W. Spencer Smith

Reference Material
This section records information for easy reference.

Table of Units
The unit system used throughout is SI (Système International d'Unités). In addition to the basic units, several derived units are also used. For each unit,
the table lists the symbol, a description and the SI name.

Symbol Description

°C temperature (centigrade)

J energy (joule)

kg mass (kilogram)

m length (metre)

s time (second)

W power (watt)

Table of Symbols
The table that follows summarizes the symbols used in this document along with their units. The choice of symbols was made to be consistent with the
heat transfer literature and with existing documentation for solar water heating systems. The symbols are listed in alphabetical order.

Symbol Description Units

AC Heating coil surface area m2

Ain Surface area over which heat is transferred in m2

Aout Surface area over which heat is transferred out m2

AP Phase change material surface area m2

C Specific heat capacity J/(kg⋅°C)

C
L Specific heat capacity of a liquid J/(kg⋅°C)

C
S Specific heat capacity of a solid J/(kg⋅°C)

C
V Specific heat capacity of a vapour J/(kg⋅°C)

CW Specific heat capacity of water J/(kg⋅°C)

CP
L Specific heat capacity of PCM as a liquid J/(kg⋅°C)

CP
S Specific heat capacity of PCM as a solid J/(kg⋅°C)

D Diameter of tank m

E Sensible heat J

EP Change in heat energy in the PCM J

EW Change in heat energy in the water J

EPmelt
init Change in heat energy in the PCM at the instant when melting begins J

g Volumetric heat generation per unit volume W/m3

h Convective heat transfer coefficient W/(m2⋅°C)

hC Convective heat transfer coefficient between coil and water W/(m2⋅°C)

Hf Specific latent heat of fusion J/kg

hmin Minimum thickness of a sheet of PCM m

hP Convective heat transfer coefficient between PCM and water W/(m2⋅°C)

Complete and Consistent
Cont’d

1/24/2019 Software Requirements Specification for Solar Water Heating Systems Incorporating PCM

file:///Users/smiths/Repos/Drasil/code/build/SWHS/Website/SWHS_SRS.html 5/20

Solar water heating tank, with heat flux into the water from the coil of qC and heat flux into the PCM from water of qP

Goal Statements

Given the temperature of the heating coil, initial conditions for the temperature of the water and the temperature of the phase change material, and
material properties, the goal statements are:

GS1: Predict the temperature of the water over time.

GS2: Predict the temperature of the phase change material over time.

GS3: Predict the change in heat energy in the water over time.

GS4: Predict the change in heat energy in the PCM over time.

Solution Characteristics Specification
The instance models that govern SWHS are presented in Section: Instance Models. The information to understand the meaning of the instance models
and their derivation is also presented, so that the instance models can be verified.

Assumptions

This section simplifies the original problem and helps in developing the theoretical model by filling in the missing information for the physical system.
The numbers given in the square brackets refer to the Theoretical Models Section: Theoretical Models, General Definitions Section: General
Definitions, Data Definitions Section: Data Definitions, Instance Models Section: Instance Models, Likely Changes Section: Likely Changes, or
Unlikely Changes Section: Unlikely Changes, in which the respective assumption is used.

Thermal-Energy-Only: The only form of energy that is relevant for this problem is thermal energy. All other forms of energy, such as mechanical
energy, are assumed to be negligible. TM: consThermE.

Heat-Transfer-Coeffs-Constant: All heat transfer coefficients are constant over time. GD: nwtnCooling.

Constant-Water-Temp-Across-Tank: The water in the tank is fully mixed, so the temperature of the water is the same throughout the entire tank.
GD: rocTempSimp DD: ht_flux_P.

Temp-PCM-Constant-Across-Volume: The temperature of the phase change material is the same throughout the volume of PCM. GD:
rocTempSimp LC: Uniform-Temperature-PCM DD: ht_flux_P.

Density-Water-PCM-Constant-over-Volume: The density of water and density of PCM have no spatial variation; that is, they are each constant
over their entire volume. GD: rocTempSimp.

Specific-Heat-Energy-Constant-over-Volume: The specific heat capacity of water, specific heat capacity of PCM as a solid, and specific heat
capacity of PCM as a liquid have no spatial variation; that is, they are each constant over their entire volume. GD: rocTempSimp.

Newton-Law-Convective-Cooling-Coil-Water: Newton's law of convective cooling applies between the heating coil and the water. DD:
ht_flux_C.

Temp-Heating-Coil-Constant-over-Time: The temperature of the heating coil is constant over time. LC: Temperature-Coil-Variable-Over-Day
DD: ht_flux_C.

Temp-Heating-Coil-Constant-over-Length: The temperature of the heating coil does not vary along its length. LC: Temperature-Coil-Variable-
Over-Length DD: ht_flux_C.

Law-Convective-Cooling-Water-PCM: Newton's law of convective cooling applies between the water and the PCM. DD: ht_flux_P.

Charging-Tank-No-Temp-Discharge: The model only accounts for charging of the tank, not discharging. The temperature of the water and
temperature of the phase change material can only increase, or remain constant; they do not decrease. This implies that the initial temperature A:

Traceability Graph

Figure 2: Traceability Matrix Showing the Connections Between Items of Di↵erent Sections

Figure 3: Traceability Matrix Showing the Connections Between Requirements, Instance
Models, and Data Constraints

29

Slide 24 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

Advantages of Drasil

• Supports changing requirements and design
• Generation
• Complete by construction
• Consistent by construction
• Automated traceability

• Supports duplication
• Knowledge is entered once, generated/transformed
• Eases maintenance
• If incorrect, incorrect everywhere

Slide 25 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

Concluding Remarks

• SCS has the opportunity to lead other software fields
• Document driven design is feasible
• Requires an investment of time
• Documentation does not have to be painful
• Develop/refactor via practical case studies
• Ontology may naturally emerge
• Future work

• Design language
• Testing

• Guards on input
• Sanity checks
• Metamorphic testing
• Computational variability testing

Slide 26 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

References I

David Lorge Parnas. Precise documentation: The key to
better software. In The Future of Software Engineering,
pages 125–148, 2010. doi:
10.1007/978-3-642-15187-3 8. URL http:
//dx.doi.org/10.1007/978-3-642-15187-3_8.

Patrick J. Roache. Verification and Validation in
Computational Science and Engineering. Hermosa
Publishers, Albuquerque, New Mexico, 1998.

W. Spencer Smith and Nirmitha Koothoor. A
document-driven method for certifying scientific
computing software for use in nuclear safety analysis.
Nuclear Engineering and Technology, 48(2):404–418,
April 2016. ISSN 1738-5733. doi:
http://dx.doi.org/10.1016/j.net.2015.11.008. URL
http://www.sciencedirect.com/science/
article/pii/S1738573315002582.

http://dx.doi.org/10.1007/978-3-642-15187-3_8
http://dx.doi.org/10.1007/978-3-642-15187-3_8
http://www.sciencedirect.com/science/article/pii/S1738573315002582
http://www.sciencedirect.com/science/article/pii/S1738573315002582

Slide 27 of 27

Motivation

Solution: Drasil

Bottom-up
Example

Complete,
Consistent,
Traceable

Concluding
Remarks

References

References II

W. Spencer Smith, Thulasi Jegatheesan, and Diane F.
Kelly. Advantages, disadvantages and
misunderstandings about document driven design for
scientific software. In Proceedings of the Fourth
International Workshop on Software Engineering for
High Performance Computing in Computational Science
and Engineering (SE-HPCCE), November 2016. 8 pp.

	Scope and Motivation
	Solution: Drasil
	Bottom-up Example
	Complete and Consistent
	Concluding Remarks
	References

