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Smoluchowski’s coagulation equations (1916)

Key statistic: Number density f.-.j(.t) of aggregates of size j

Net rate of aggregation (and binary breakup): R = aj ) ¢icr — bjrCiik
1 J—1 oC

Rates of gain & loss of j-clusters:  d¢;(1) = - Z Rixn Z R
= k=1

For aggregation of Brownian clusters:  a; . = (51/° + kY3) (573 + k=13

Explicit solution for a; ; = 2 and monomer initial data




Great variety of scientific applications

materials science: polymerization, ripening of nanoscale structures
aerosol physics: formation of clouds, smog, ink fog

astrophysics: agglomeration of planetesimals, star clusters, galaxies
probability: random graph growth, random shock-wave clustering
biology: telomere maintainance, Alzheimer's disease

population biology: branching of ancestral trees, animal group dynamics
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Just another (countable) bunch of ODEs?

e Coagulaton-fragmentation equations:

;—l

(L) ‘} E R k.k E ;. i, Rix = 0;%CiCh— bixCiik

e Navier-Stokes equations in a periodic box

O ;(t) Z k- oty — i jpy — v|j|ta j-4;,=0.
kecZ3

e Some coagulation rates a; arising in applications:
(jl’fa i kl_ﬁﬁ}(._};—lfﬂ | k—l},-"ﬂ} ( -1/3 f{ul "*'n) ( - —1 y ke~ )1,-"2 (jl,fﬂ 1 '.]I{rll.fﬂ)ﬂ
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(7° + B (k)2 (5 + k)~V? (j + e)(k + c) (G—Fk)(G+ k)

Effects: Brownian motion, shear flow, gravitational settling, turbulence, inertia,
large mean-free-path, fractal aggregates.




Dynamical phenomena and issues

e Existence (or not) of unique mass-conserving solutions depends upon
growth conditions for rate coefficients, moment conditions for initial data

e Loss of mass to infinite size (gelation) can occur:

- in infinite time (Ball-Carr-Penrose 1986, Becker-Doring over a critical density),
- in finite time (MacLeod 1962, Jeon 1998, Escobedo etal 2002),

- instantaneously (Carr-da Costa 1992, Laurencot 1999, Bechor 2017)

e Loss of mass to zero size (shattering) occurs in continuous-size models with
strong fragmentation

e Scaling dynamics for pure coagulation, continuous-size models:
- Self-similar solutions often exist (Fournier-Laurencot, Escobedo et al 2004)

- Uniqueness results are rare (see Laurencot 2018 JSP)
- Convergence to self-similar form is understood only for solvable cases (Menon-P)

e Equilibration for coagulation-fragmentation is analyzed almost exclusively in the
case when equilibria have detailed balance: R, = a;¢;ci — b 1cjp = 0.

e Forthcoming book: 2 volumes by Banasiak, Lamb, Laurencot




Outline of today’s talk

Coagulation-fragmentation dynamics - Prologue.
Solvable models. Branching, Bernstein functions

Becker-Doring equations: dy¢; = R;j 11— R;1. Nature of the semigroup.
Equilibration rates, cutoff phenomenon, norm-dependent spectrum.

Animal group size distributions modeled after studies of H.-S. Niwa
Equilibration without detailed balance
Self-similar spreading with fat tails
Role of Bernstein and Pick (Herglotz) functions
A discrete Pick representation theorem. Hausdorff moment problem.

A jump-process model of merging-splitting group dynamics
(Other talk) A coagulation-fragmentation model exhibiting temporal oscillations

Recurring theme: improvements in math tools, problem-motivated
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Collaborators, references

e Ryan Murray (Becker-Doring equilibration, cutoff phenomenon)
SIAM J Math Anal 48 (2016) 2819, Comm Math Sci 15 (2017) 1685

e Jian-Guo Liu, Pierre Degond, Maximillian Engel

(animal group size, Hausdorff moment problem, jump processes)
J Nonl Sci 27 (2017) 379, Trans Amer Math Soc 368 (2016) 8499

e Barbara Niethammer, J.J.L. Velazquez (fat tails, oscillations) in preparation

e Nick Leger, Gautam lyer (branching processes and ‘chaotic’ scaling dynamics)
Ann Appl Prob 25 (2015) 675, Adv Appl Prob (2018) to appear

e Govind Menon (scaling dynamics, random shocks, min-catalyzed merging)




Weak form. Solvable cases.

A solution should satisfy a generalized moment identity

@t-z fici(t) = < Z (fi+k — F5 — Jr) (ajk cj(t)e(t) — bjkCitr)
= j =1

for all test sequences ( f;) (bounded or cg, say).

Choosing f; = (1 — e~ %)j?, for o(q,t) = Z(l — e )jPc;(t) one finds:
j=1

(g, t) = —p? forp=0, a;,=2
hp(q,t) —@Oyp=—p forp=0, ajr=7+k

0up(q,t) —p0yp =0 forp=1, a;ir=jk

Remark: ¢ — ¢(q,t) is a Bernstein function. (More on this later.)

Solution formulae in contour integrals & series: W.T. Scott 1968 J Atmos Sci
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Branching processes and solvable coagulation equations

Bertoin & Le Gall 2006 — solvable Smoluchowski-like equations for CSBP

" F .-'{ F F e
Galton-Watson branching process: X, .1 =" Y., Y, ~1ppiidon Ny

i

X, ~ C,(7) for a dual merging process on iid sequences (C,,(1),C,,(2),...):

ﬁ":l_j,u

Coy1(i)= ). Culk), Njn—Nj_1nr~wp iid

k=1 f"""_-;' L.n

The law v, of C),(7) or X, satisfies a discrete, multiple-coagulation equation:

™ .1 S | . m _ .
Un41 — Vn = L -"":;E Tﬁ'(ﬂn)z Pn — ZUH-(‘I)-. rk‘(ﬂ) — Z Hﬂ(?”)( )(l_ﬂ)m :

k>2 7 =0 >k

o Pn(g) =) (

j=1

In the continuum limit for critical GW branching: dlg, t) = —V(p)

—

f'_qj)f-“'n. (J) satisfies 'ﬁ-{r‘ﬂ 1-1("?) 'ir&n(ff) — q]('“f-;;??-('rf))




Bernstein transforms and the topology of Lévy triples

2010 book: Bernstein Functions, by Schilling, Song & Vondracek
Defn ¢ : (0,00) — [0, o0) is Bernstein if p is C* and sgnp!"TH = (-1)" Vn
e Theorem ¢ is Bernstein <= for some Lévy triple (ag, o, 1), with

0
ap. Qoo = () and f [:-'-? A 1),‘1((35) < 00,
0

=
we have the representation o(q) = apg + ax —|-/ (1 —e ) u(ds)
0

e Nice properties: (a) Bernstein functions are stable under pointwise convergence
(b) The composition of Bernstein functions is Bernstein.

(c) If ©(q) = |, (r)dr for some Bernstein ¢ > 0, then 1)=* is Bernstein.

e Associated k-measure on [0,00]| :  k(ds) = agdy + GoncOne + (8 A 1)p1(ds)
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Continuity theorem for Bernstein transforms

Let (”ﬂm ase’, 1™)) be a sequence of Lévy triples, associated with ("), k(™).

Then the following are equivalent:

(1) lim ¢ (q) =: ¢(q) exists for each ¢ > 0.

= OC

(i) '™ converges weak-+ to some measure x on [0, 00|, meaning

(f, ™) = (f, k) for all fe C(|0,0]).

If the conditions hold, ©, x are associated with a unique Lévy triple (ag. @, jt):

uh” do+ (s A1 '),.'f.“”(rf.-a) + f'!(__:;}f?,x_ = agdo + (s A 1)p(ds) + tocdoc

( This is restated from Menon-P 2008; a simple proof is in Leger-lyer-P 2018)




e Becker-Doring equilibration dynamics

Becker-Doring equations:  dy¢; = e 11— 81 By = 0;6C;—0:09C45:
a b
. . . 7141 ] . < < 9
Typical assumptions: » 1, ¥ Zai 1S @50 S
”'..F ”-_Jr
- - Ci+1 _ bj4a ~
Subcritical equilibrium: ~— = —"*——l; c;' =62, € =2z<2q4
¢ a; -
J J

e Jabin-Niethammer 2003: |‘"_;(”) . r';”i i . b — ||f( = r”'|| e ,.E \¢1/3
o Cafiizo-Lods 2013: Actually [c(t) — *%x, < e (llellx, = 53, [i*e;| )

Method: (i) Estimate spectral gap in se/f-adjoint form from detailed balance;
(ii) “Lift" the semigroup decay estimate to X; (ala Mouhot in kinetic theory)

e Murray-P 2017 (cf. Cafizo-Einav-Lods 2017): For perturbatlﬂns (0) — ¢*™
small in Xz, Jle(t) = ¢®|x,, S (A 4t)~" "™ k_2>m>1

Method: (i) new (Banach-space) dissipation estimates to prove X, stability
(1) interpolation between X; and exponentially weighted spaces (ala Engler)
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Cutoff phenomenon and card shuffling

For certain Markov chains of size n — oc: Measured in ¢!, equilibration is rapid
only after a time delay, despite existence of an (° spectral gap.

Classic example of Bayer-Diaconis 1992: Shuffling n cards by k& riffle shuffles
achieves randomization after k ~ 3log,n shuffles (“7 shuffles suffices")

See discussion in Trefethen & Embree, Spectra & Pseudospectra:

Random walk on {0, 1}"

L

“A  probability wave
must propagate from one
place to another before
convergence can occur.”

00 © | = nd. of balls in Um 1

K E M8 nUMDer
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1 = no. of balls in Um 1
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Shuffling n cards by k riffle shuffles
shuffles ("7 shuffles suffices”)

2'”
Spectra & Pseudospectra:

S

K = slep number

Cutoff phenomenon and card shuffling
For certain Markov chains of size n — oo: Measured in ¢!, equilibration is rapid
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Cutoff phenomenon for Becker-Doring equilibration

Linearized Becker-Doring equilibration in X is similarly delayed by advection.
Takeeg. a;=j% b;=a; (,-':.,_.T + f;.-/_-jl_-"f), a,3 € (0,1)

Writing  ¢;" =¢;27, ¢ = f.-.__';.q(l + h;), the linearized equations are

l:)f_h-j = (Lh)j = q";‘.—ji“lj.kl ey haj — h-l) = hj(hl -+ hj_l 3= h‘j)

Lifshitz-Slyozov-like continuum analog:

it = p(@)ue + (@i With (@) ~ (2 — 2)a%  q(z) ~ 7
Zl—u

Characteristics: 0;Z ~ ~ (2o, — 2)Z%  Persistence time: T ~ ? “ )
“er T A

Complications: Linearized mass conservation » r:;“jh._.;- = (). Coupling to h;.




Norm-dependence for Becker-Doring equilibration

Write [|k]lx, =) ¢ hyl5*.  Compare with [[A]|3 = 5[h,|>

s -]
e In Y, Canizo-Lods show L is self-adjoint with compact resolvent, all eigenvalues
are real and negative, and e*! is analytic with [|e*| z(y) < Ce™?".

e In X, the resolvent set of L contains {Re A > 0} and |le"!||z(x,) <C Vit >0,

Theorem Assume a; —+ oo and |a; —a;—1|+ |b; —bj—1| — 0.
Then the spectrum of L in X}, contains the entire imaginary axis.

Theorem Assume a; ~ 7, a € (0,1). Then Ve > 0, 30 > 0 such that
for all large enough Z;, there exists hY ¢ X, with h;’ =0Vj > Z, satisfying

0<t<8Z) 1—¢ < ||eRx, < e (t>62).

By consequence |le"!||z(x,) =1 VE> 0

Method of proof: sub/super-solutions for discrete primitives, Duhamel estimates.

Remark: OQur results leave room for improvement...




e Animal group size: Universal scaling in fisheries science

H.-S. Niwa (2003 JTB) proposed
a simple scaling law for the
distribution of group size s:

— the average group size
experienced by individuals

- Data analysis for pelagic fish indicate universal, non-Gaussian statistics
- SDE model of individual’s group size: dS; = (S} — S;)dt + o exp(S:/S;)dW
- Simulated a coagulation-fragmentation process to estimate variance o

e Solved the SDE to predict: ®(s) =s 'exp(— s+ %s:v"‘)




Empirical school-size distribution of pelagic fish
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I'ig. 5. Empirical school-size distribution of pelagic fishes (the same
data sets as Fig. 1). The scaled distributions W, {N ), are plotted
against the scaled school sizes N;/{ N »p. The scaled data collapse
onto a single curve that corresponds to Eq. (11) with normalization
factor Eq. (13).
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The Niwa-MJS model lacks detailed balance—No //-theorem!
e Open Qs for the Niwa-MJS model: Unique equilibrium? Stability? ¢ — oo
(Fournier-Mischler 2004 handle small data)

e Niwa argues explicitly against detailed-balance models of Gueron & Levin (1995)

e An equilibrium (¢;) has detailed balance if the forward/backward reaction rates
balance for each reaction (j) + (k) & (7 + k)

0= Rj.k._ — @j | CjCl — f?'j-k Cj+k

Laurencot-Mischler 2003 (size-continuous models), Cafiizo 2008 (size-discrete): If
a detailed-balance equilibrium exists, then there is an H-theorem, and all solutions
with subcritical mass converge strongly to equilibrium.

Relative free energy F = Z ,;T:J,_f_.{' (u;logu; —u; + 1), w; = ¢, /(e c{ ),
J

Dissipation B == Zud,‘ﬁj{{H(uj 1) (logu; — log w4 )
J




Discrete-size model X (X for Xmas miracle!)

Uniform likelihood among the 7—1 7 + 1 splitting outcomes

0, 3% (L —=1) (2,7 —=2) 05 (s —1,1),(7,0)

| J X Vv
Bom ity —in . _ _ ) — Dy — Jt+k
f):‘ C-J(f) 9 Z H_j—h‘.ﬁ.‘ Z HJ..L'& H_j.}-: ZCiCy f i |
k= k=0 :
»o
The (discrete) Bernstein transform (g, L) = Z(l e~ UM ei(t)  satisfies
1=1
‘ 9 _ . h 4 . R
ip(q,t) = —° — p+ 2An(0), An(d)(q,t) = 7 i O(q,t)e 1" dq.
—e 1" Jo

A nonlocal logistic equation — which transforms exactly to model C below!

In the continuum limit & — 0 we get...




Continuous-size coagulation-fragmentation model C

The distribution v,(ds) ~ n(s,t)ds of group size s € (0, o) satisfies (Vf):

/ f(s) vi(ds) / / (s+ 8) — f(s) — f(3)) ve(d8) v (ds)

T - 15— 9) - 16) Lugas
I/

T his model has constant coagulation and overall fragmentation rates, with
uniform distribution of fragments.

The Bernstein transform satisfies a nonlocal logistic equation:

T & “f
Y = / (1 — e T)i(ds) — pp = _‘1’32 — @+ :/ p(t, q)dq
0 q.Jo

e Scaling symmetry: p(t,q) — @(t, Cq) leaves the equation invariant.




New universal size-distribution profile

T e ——  Niwal||




A theorem from Bernstein function theory, curiously strong
Defn ¢ : (0.00) — |0, 00) is completely monotone if g is C'"*° and

son gF) = ( 1)A' Ve=0,1,2,...

"R

Bernstein's theorem: ¢ is completely monotone < ¢(s) = |~ ¢ pu(dx)

JA)

CBF Representation Theorem (S5V chap. 6) The following are equivalent:

e =

(i) @ is Bernstein, with  ©(¢) = apq + a0 + / (1 —e ) y(s)ds

(1

where ag, a~ > 0 and the density + is completely monotone.

(ii) ¢ is Bernstein, and holomorphically extends globally to C \ (—oc, 0],
mapping the upper half-plane to itself: Tm p(q) > 0 for Imqg > 0.

Remark: (ii) means ¢ is a Pick function analytic and nonnegative on (0, 00).




.‘EH

Equilibrium states for the continuous-size model C

e Theorem For fixed finite mq = / JSV-E(dS] (scaled to = 1),
0

there is a unique equilibrium, having a very nice density:

_As
Veq(ds) = Neq(s) ds = y(s) exp ( 2;) ds

where v is completely monotone and satisfies

|

da 2 _ 5—2/3 & 0

v(s) 3T(4/3) ° sk
9

| —3/92
‘NS s - - 5 a8 § — O0.




Long-time behavior of Model C

e Theorem (i) Suppose / s vg(ds) = 1. Then (weakly-x on [0, o)
0

(8 A D)vy(ds) = (8 A 1)veq(ds) as t — oc.

(.

(ii) Suppose / s vo(ds) = oo. Then (weakly-x on [0, oc])
0

n; -

(s A1)e(ds) = 0 as t — 0.

Method of proof: Prove p(q,t) = peq(q), using comparison principles
p(q.to) < ©lg,tn) = wlq,t) < @lg,t)

Invoke Bernstein-transform continuity theorem.




Scaling limits with fat tails

(with J.-G. Liu and B. Niethammer, in preparation)

e Theorem (Self-similar spreading solutions for model C)
For each «v € (0, 1) model C admits a unique self-similar solution

1 —ex

S

ve(ds) = Do(e Ptds)  with / Z Vp(dz) ~ (s = o0).
0

1l — o

The measure v, has a completely monotone density [, satisfying

=y

ftt('-g) ™~ 'S_H_l (5 — CC-)., &LE'S_U ('5 — ﬂ)

e Theorem (Large-t behavior with algebraic tails) Suppose the initial data

/L zg(dz) ~ / z0,(dz) (s — o0).
0

0

Then on [0, cc] we have 14 (eftds) = D, (ds). t— .




Discrete analog of the CBF representation theorem

Definition ¢ = (¢, )72 1S a completely monotone sequence if its

differences alternate sign: Vk, sgn(S — f}""r-_j = (-1)*, (5¢); = ¢4

1
¢ Theorem (Hausdorff) ¢ is completely monotone <= ¢, = / t" dy(t)
)

for some finite measure dy on [0, 1].

¢ Theorem (Liu-Pego) Let ¢ = (¢,,)2°, be a bounded real sequence, and

o

Fiz) = 2: G Fi(z) = zF(z) = 2: i g T

ri=I\) ri=1()

Then the following are equivalent:
(1) ¢ is completely monotone

(i1) F'is a Pick function analytic and nonnegative on (—oc, 1)

(i) F is a Pick function analytic on (—oc, 1)




Discrete analog of the CBF representation theorem

Definition ¢ = (¢, );— I1s a completely monotone sequence If its

differences alternate sign: Vk, sgn(S — I)fc; = (=1)*, (Sc¢); = c¢ji1.
1

e Theorem (Hausdorff) ¢ is completely monotone «— ¢, = / t" du(t)
Jo

for some finite measure dp on [0, 1].

e Theorem (Liu-Pego) Let ¢ = (¢,,);%L, be a bounded real sequence, and

[
F(z) = Z Cos2 . Fi(z) = zF(z)] = Z Gz,

n=0 n=0
Then the following are equivalent:
(i) ¢ is completely monotone
(i1) F'is a Pick function analytic and nonnegative on (—o0, 1)

(i) £ is a Pick function analytic on (—o0, 1)
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Infinite divisibility, convolution groups

e Theorem If (¢;) is a probability distribution on Ny and (¢;) is completely
monotone, then (c;) is infinitely divisible.

Proof: For any n € [N, ¢ can be expressed as an n-fold convolution ¢ = a™ of the
sequence a = (a,;) with generating function A(z) = F(z)/™
Because z — z'/" is a Pick function and F' is Pick and nonnegative on (—oc, 1),

the composition A is Pick and nonnegative on (—00, 1).

e The map t — F(z)" (t € R) determines a convolution group of sequences a'")
with generating functions A'*) satisfying

AW = Fz)t a\% % a'® = alt+e),
e Li-Liu 2018, Li-Liu-Feng-Xu 2018:

— structure theorem for the deconvolving sequence a'=%/.
— desingularized Caputo fractional derivative with Gronwall estimates
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(c) Occupation time, t € [0, 10”] (d) Autocorrelation, N = 10°
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