Dynamics in models of coagulation and fragmentation

Bob Pego (Carnegie Mellon)

Dedicated to the memory of Jack Carr

Supported by NSF, Center for Nonlinear Analysis, KI-Net, Simons

Smoluchowski's coagulation equations (1916)

$$(j) + (k) \stackrel{a_{j,k}}{\rightleftharpoons} (j+k)$$

Key statistic: Number density $c_j(t)$ of aggregates of size j

Net rate of aggregation (and binary breakup): $R_{j,k} = a_{j,k} c_j c_k - b_{j,k} c_{j+k}$

Rates of gain & loss of j-clusters: $\partial_t c_j(t) = \frac{1}{2} \sum_{k=1}^{j-1} R_{j-k,k} - \sum_{k=1}^{\infty} R_{j,k}$

For aggregation of Brownian clusters: $a_{j,k}=(j^{1/3}+k^{1/3})(j^{-1/3}+k^{-1/3})$

Explicit solution for $a_{i,j}=2$ and monomer initial data

Great variety of scientific applications

- materials science: polymerization, ripening of nanoscale structures
- aerosol physics: formation of clouds, smog, ink fog
- astrophysics: agglomeration of planetesimals, star clusters, galaxies
- probability: random graph growth, random shock-wave clustering
- biology: telomere maintainance, Alzheimer's disease
- population biology: branching of ancestral trees, animal group dynamics

Smoluchowski's coagulation equations (1916)

$$(j) + (k) \stackrel{a_{j,k}}{\underset{b_{j,k}}{\rightleftharpoons}} (j+k)$$

Key statistic: Number density $c_j(t)$ of aggregates of size j

Net rate of aggregation (and binary breakup): $R_{j,k} = a_{j,k} c_j c_k - b_{j,k} c_{j+k}$

Rates of gain & loss of j-clusters: $\partial_t c_j(t) = \frac{1}{2} \sum_{k=1}^{j-1} R_{j-k,k} - \sum_{k=1}^{\infty} R_{j,k}$

For aggregation of Brownian clusters: $a_{j,k}=(j^{1/3}+k^{1/3})(j^{-1/3}+k^{-1/3})$

Explicit solution for $a_{i,j}=2$ and monomer initial data

Great variety of scientific applications

- materials science: polymerization, ripening of nanoscale structures
- aerosol physics: formation of clouds, smog, ink fog
- astrophysics: agglomeration of planetesimals, star clusters, galaxies
- probability: random graph growth, random shock-wave clustering
- biology: telomere maintainance, Alzheimer's disease
- population biology: branching of ancestral trees, animal group dynamics

Just another (countable) bunch of ODEs?

Coagulaton-fragmentation equations:

$$\partial_t c_j(t) = \frac{1}{2} \sum_{k=1}^{j-1} R_{j-k,k} - \sum_{k=1}^{\infty} R_{j,k}, \qquad R_{j,k} = a_{j,k} c_j c_k - b_{j,k} c_{j+k}$$

Navier-Stokes equations in a periodic box

$$\partial_t \hat{\mathbf{u}}_{\mathbf{j}}(t) = -\sum_{\mathbf{k} \in \mathbb{Z}^3} i \,\mathbf{k} \cdot \hat{\mathbf{u}}_{\mathbf{j}-\mathbf{k}} \hat{\mathbf{u}}_{\mathbf{k}} - i \,\mathbf{j} \,\hat{p}_{\mathbf{j}} - \nu |\mathbf{j}|^2 \hat{\mathbf{u}}_{\mathbf{j}}, \qquad \mathbf{j} \cdot \hat{\mathbf{u}}_{\mathbf{j}} = 0.$$

• Some coagulation rates $a_{j,k}$ arising in applications:

$$(j^{1/3} + k^{1/3})(j^{-1/3} + k^{-1/3}) \qquad (j^{1/3} + k^{1/3})^2(j^{-1} + k^{-1})^{1/2} \qquad (j^{1/3} + k^{1/3})^3$$

$$(j^{1/3} + k^{1/3})^2|j^{2/3} - k^{2/3}| \qquad (j^{1/3} + k^{1/3})^2|j^{1/3} - k^{1/3}| \qquad (j^{1/3} + k^{1/3})^{7/3}$$

$$(j^{1/3} + k^{1/3})(jk)^{1/2}(j + k)^{-3/2} \qquad (j + c)(k + c) \qquad (j - k)^2(j + k)^{-1}$$

Effects: Brownian motion, shear flow, gravitational settling, turbulence, inertia, large mean-free-path, fractal aggregates.

Dynamical phenomena and issues

- Existence (or not) of unique mass-conserving solutions depends upon growth conditions for rate coefficients, moment conditions for initial data
- Loss of mass to infinite size (gelation) can occur:
- in infinite time (Ball-Carr-Penrose 1986, Becker-Döring over a critical density),
- in finite time (MacLeod 1962, Jeon 1998, Escobedo etal 2002),
- instantaneously (Carr-da Costa 1992, Laurençot 1999, Bechor 2017)
- Loss of mass to zero size (shattering) occurs in continuous-size models with strong fragmentation
- Scaling dynamics for pure coagulation, continuous-size models:
- Self-similar solutions often exist (Fournier-Laurençot, Escobedo et al 2004)
- Uniqueness results are rare (see Laurençot 2018 JSP)
- Convergence to self-similar form is understood only for solvable cases (Menon-P)
- Equilibration for coagulation-fragmentation is analyzed almost exclusively in the case when equilibria have **detailed balance**: $R_{j,k} = a_{j,k}\hat{c}_j\hat{c}_k b_{j,k}\hat{c}_{j+k} = 0$.
- Forthcoming book: 2 volumes by Banasiak, Lamb, Laurençot

Outline of today's talk

- Coagulation-fragmentation dynamics Prologue.
 Solvable models. Branching, Bernstein functions
- Becker-Döring equations: $\partial_t c_j = R_{j-1,1} R_{j,1}$. Nature of the semigroup. Equilibration rates, cutoff phenomenon, norm-dependent spectrum.
- Animal group size distributions modeled after studies of H.-S. Niwa
 Equilibration without detailed balance
 Self-similar spreading with fat tails
 Role of Bernstein and Pick (Herglotz) functions
 A discrete Pick representation theorem. Hausdorff moment problem.
- A jump-process model of merging-splitting group dynamics
- (Other talk) A coagulation-fragmentation model exhibiting temporal oscillations
- Recurring theme: improvements in math tools, problem-motivated

Dynamical phenomena and issues

- Existence (or not) of unique mass-conserving solutions depends upon growth conditions for rate coefficients, moment conditions for initial data
- Loss of mass to infinite size (gelation) can occur:
- in infinite time (Ball-Carr-Penrose 1986, Becker-Döring over a critical density),
- in finite time (MacLeod 1962, Jeon 1998, Escobedo etal 2002),
- instantaneously (Carr-da Costa 1992, Laurençot 1999, Bechor 2017)
- Loss of mass to zero size (shattering) occurs in continuous-size models with strong fragmentation
- Scaling dynamics for pure coagulation, continuous-size models:
- Self-similar solutions often exist (Fournier-Laurençot, Escobedo et al 2004)
- Uniqueness results are rare (see Laurençot 2018 JSP)
- Convergence to self-similar form is understood only for solvable cases (Menon-P)
- Equilibration for coagulation-fragmentation is analyzed almost exclusively in the case when equilibria have **detailed balance**: $R_{j,k} = a_{j,k}\hat{c}_j\hat{c}_k b_{j,k}\hat{c}_{j+k} = 0$.
- Forthcoming book: 2 volumes by Banasiak, Lamb, Laurençot

Outline of today's talk

- Coagulation-fragmentation dynamics Prologue.
 Solvable models. Branching, Bernstein functions
- Becker-Döring equations: $\partial_t c_j = R_{j-1,1} R_{j,1}$. Nature of the semigroup. Equilibration rates, cutoff phenomenon, norm-dependent spectrum.
- Animal group size distributions modeled after studies of H.-S. Niwa
 Equilibration without detailed balance
 Self-similar spreading with fat tails
 Role of Bernstein and Pick (Herglotz) functions
 A discrete Pick representation theorem. Hausdorff moment problem.
- A jump-process model of merging-splitting group dynamics
- (Other talk) A coagulation-fragmentation model exhibiting temporal oscillations
- Recurring theme: improvements in math tools, problem-motivated

Collaborators, references

- Ryan Murray (Becker-Döring equilibration, cutoff phenomenon)
 SIAM J Math Anal 48 (2016) 2819, Comm Math Sci 15 (2017) 1685
- Jian-Guo Liu, Pierre Degond, Maximillian Engel (animal group size, Hausdorff moment problem, jump processes)
 J Nonl Sci 27 (2017) 379, Trans Amer Math Soc 368 (2016) 8499
- Barbara Niethammer, J.J.L. Velazquez (fat tails, oscillations) in preparation
- Nick Leger, Gautam Iyer (branching processes and 'chaotic' scaling dynamics)
 Ann Appl Prob 25 (2015) 675, Adv Appl Prob (2018) to appear
- Govind Menon (scaling dynamics, random shocks, min-catalyzed merging)

Weak form. Solvable cases.

A solution should satisfy a generalized moment identity

$$\partial_t \sum_{i=1}^{\infty} f_i c_i(t) = \frac{1}{2} \sum_{j,k=1}^{\infty} (f_{j+k} - f_j - f_k) (a_{j,k} c_j(t) c_k(t) - b_{j,k} c_{j+k})$$

for all test sequences (f_i) (bounded or c_0 , say).

Choosing
$$f_j=(1-e^{-qj})j^p$$
, for $\varphi(q,t)=\sum_{j=1}^{\infty}(1-e^{-qj})j^pc_j(t)$ one finds:

$$\partial_t \varphi(q,t) = -\varphi^2$$
 for $p = 0$, $a_{j,k} = 2$
 $\partial_t \varphi(q,t) - \varphi \, \partial_q \varphi = -\varphi$ for $p = 0$, $a_{j,k} = j + k$
 $\partial_t \varphi(q,t) - \varphi \partial_q \varphi = 0$ for $p = 1$, $a_{j,k} = jk$

Remark: $q \mapsto \varphi(q, t)$ is a *Bernstein function*. (More on this later.)

Solution formulae in contour integrals & series: W.T. Scott 1968 J Atmos Sci

Collaborators, references

- Ryan Murray (Becker-Döring equilibration, cutoff phenomenon)
 SIAM J Math Anal 48 (2016) 2819, Comm Math Sci 15 (2017) 1685
- Jian-Guo Liu, Pierre Degond, Maximillian Engel (animal group size, Hausdorff moment problem, jump processes)
 J Nonl Sci 27 (2017) 379, Trans Amer Math Soc 368 (2016) 8499
- Barbara Niethammer, J.J.L. Velazquez (fat tails, oscillations) in preparation
- Nick Leger, Gautam Iyer (branching processes and 'chaotic' scaling dynamics)
 Ann Appl Prob 25 (2015) 675, Adv Appl Prob (2018) to appear
- Govind Menon (scaling dynamics, random shocks, min-catalyzed merging)

Branching processes and solvable coagulation equations

Bertoin & Le Gall 2006 – solvable Smoluchowski-like equations for CSBP

Galton-Watson branching process: $X_{n+1} = \sum_{j=1}^{X_n} Y_{j,n}$, $Y_{j,n} \sim \nu_0$ iid on \mathbb{N}_0

 $X_n \sim C_n(j)$ for a dual merging process on iid sequences $(C_n(1), C_n(2), \ldots)$:

$$C_{n+1}(j) = \sum_{k=1+N_{j-1,n}}^{N_{j,n}} C_n(k), \qquad N_{j,n} - N_{j-1,n} \sim \nu_0 \quad \text{iid}$$

The law ν_n of $C_n(j)$ or X_n satisfies a discrete, multiple-coagulation equation:

$$\nu_{n+1} - \nu_n = \sum_{k \ge 2} \nu_n^{*k} \, r_k(\rho_n), \quad \rho_n = \sum_{j > 0} \nu_n(j), \quad r_k(\rho) = \sum_{m \ge k} \nu_0(m) \binom{m}{k} (1 - \rho)^{m-k}$$

• $\hat{\varphi}_n(q) = \sum_{j \ge 1} (1 - e^{-qj}) \nu_n(j)$ satisfies $\hat{\varphi}_{n+1}(q) - \hat{\varphi}_n(q) = -\hat{\Psi}(\hat{\varphi}_n(q))$

In the continuum limit for critical GW branching: $\partial_t \varphi(q,t) = -\Psi(\varphi)$

$$\partial_t \varphi(q,t) = -\Psi(\varphi)$$

Bernstein transforms and the topology of Lévy triples

2010 book: Bernstein Functions, by Schilling, Song & Vondraček

Defn $\varphi:(0,\infty)\to [0,\infty)$ is *Bernstein* if φ is C^∞ and $\operatorname{sgn}\varphi^{(n+1)}=(-1)^n \quad \forall n$

• **Theorem** φ is Bernstein \iff for some Lévy triple (a_0, a_∞, μ) , with

$$a_0, a_\infty \ge 0$$
 and $\int_0^\infty (s \wedge 1)\mu(ds) < \infty,$

we have the representation

$$\varphi(q) = a_0 q + a_\infty + \int_0^\infty (1 - e^{-qs}) \mu(ds)$$

- Nice properties: (a) Bernstein functions are stable under pointwise convergence
- (b) The composition of Bernstein functions is Bernstein.
- (c) If $\psi(q) = \int_0^q \varphi(r) dr$ for some Bernstein $\varphi > 0$, then ψ^{-1} is Bernstein.
- Associated κ -measure on $[0,\infty]$: $\kappa(ds) = a_0\delta_0 + a_\infty\delta_\infty + (s\wedge 1)\mu(ds)$

Continuity theorem for Bernstein transforms

Let $(a_0^{(n)}, a_\infty^{(n)}, \mu^{(n)})$ be a sequence of Lévy triples, associated with $\varphi^{(n)}, \kappa^{(n)}$.

Then the following are equivalent:

- (i) $\lim_{n\to\infty} \varphi^{(n)}(q) =: \varphi(q)$ exists for each q>0.
- (ii) $\kappa^{(n)}$ converges weak-* to some measure κ on $[0,\infty]$, meaning

$$\langle f, \kappa^{(n)} \rangle \to \langle f, \kappa \rangle$$
 for all $f \in C([0, \infty])$.

If the conditions hold, φ , κ are associated with a unique Lévy triple (a_0, a_∞, μ) :

$$a_0^{(n)}\delta_0 + (s \wedge 1)\mu^{(n)}(ds) + a_\infty^{(n)}\delta_\infty \stackrel{\star}{\rightharpoonup} a_0\delta_0 + (s \wedge 1)\mu(ds) + a_\infty\delta_\infty$$

(This is restated from Menon-P 2008; a simple proof is in Leger-Iyer-P 2018)

Becker-Döring equilibration dynamics

Becker-Döring equations: $\partial_t c_j = R_{j-1,1} - R_{j,1}$, $R_{j,1} = a_j c_1 c_j - b_{j+1} c_{j+1}$.

Typical assumptions:
$$\frac{a_{j+1}}{a_j} o 1$$
, $\frac{b_j}{a_j} o z_{\rm cr}$, $1 \lesssim a_j, b_j \lesssim j$

Subcritical equilibrium:
$$\frac{\hat{c}_{j+1}}{\hat{c}_j} = \frac{b_{j+1}}{a_j \cdot 1}$$
, $c_j^{\mathrm{eq}} = \hat{c}_j z^j$, $c_1^{\mathrm{eq}} = \mathbf{z} < \mathbf{z}_{\mathrm{cr}}$

- Jabin-Niethammer 2003: $|c_j(0)-c_j^{\mathrm{eq}}|\lesssim e^{-bj} \implies \|c(t)-c^{\mathrm{eq}}\|_{X_1}\lesssim e^{-\lambda t^{1/3}}$
- Cañizo-Lods 2013: Actually $\|c(t)-c^{\mathrm{eq}}\|_{X_1}\lesssim e^{-\lambda t}$ ($\|c\|_{X_k}=\sum_j |j^kc_j|$)

Method: (i) Estimate spectral gap in self-adjoint form from detailed balance; (ii) "Lift" the semigroup decay estimate to X_1 (ala Mouhot in kinetic theory)

• Murray-P 2017 (cf. Cañizo-Einav-Lods 2017): For perturbations $c(0) - c^{eq}$ small in X_k , $||c(t) - c^{eq}||_{X_m} \lesssim (1+t)^{-(k-m-1)}$, k-2 > m > 1

Method: (i) new (Banach-space) dissipation estimates to prove X_1 stability (ii) interpolation between X_1 and exponentially weighted spaces (ala Engler)

Continuity theorem for Bernstein transforms

Let $(a_0^{(n)}, a_\infty^{(n)}, \mu^{(n)})$ be a sequence of Lévy triples, associated with $\varphi^{(n)}, \kappa^{(n)}$.

Then the following are equivalent:

- (i) $\lim_{n\to\infty} \varphi^{(n)}(q) =: \varphi(q)$ exists for each q>0.
- (ii) $\kappa^{(n)}$ converges weak-* to some measure κ on $[0,\infty]$, meaning

$$\langle f, \kappa^{(n)} \rangle \to \langle f, \kappa \rangle$$
 for all $f \in C([0, \infty])$.

If the conditions hold, φ , κ are associated with a unique Lévy triple (a_0, a_∞, μ) :

$$a_0^{(n)}\delta_0 + (s\wedge 1)\mu^{(n)}(ds) + a_\infty^{(n)}\delta_\infty \stackrel{\star}{\rightharpoonup} a_0\delta_0 + (s\wedge 1)\mu(ds) + a_\infty\delta_\infty$$

(This is restated from Menon-P 2008; a simple proof is in Leger-Iyer-P 2018)

Cutoff phenomenon and card shuffling

For certain Markov chains of size $n \to \infty$: Measured in ℓ^1 , equilibration is rapid only after a *time delay*, despite existence of an ℓ^2 spectral gap.

Classic example of Bayer-Diaconis 1992: Shuffling n cards by k riffle shuffles achieves randomization after $k \sim \frac{3}{2}\log_2 n$ shuffles ("7 shuffles suffices")

See discussion in Trefethen & Embree, Spectra & Pseudospectra:

Random walk on $\{0,1\}^n$

"A probability wave must propagate from one place to another before convergence can occur."

Cutoff phenomenon and card shuffling

For certain Markov chains of size $n \to \infty$: Measured in ℓ^1 , equilibration is rapid only after a *time delay*, despite existence of an ℓ^2 spectral gap.

Classic example of Bayer-Diaconis 1992: Shuffling n cards by k riffle shuffles achieves randomization after $k \sim \frac{3}{2}\log_2 n$ shuffles ("7 shuffles suffices")

See discussion in Trefethen & Embree, Spectra & Pseudospectra:

Random walk on $\{0,1\}^n$

"A probability wave must propagate from one place to another before convergence can occur."

Cutoff phenomenon for Becker-Döring equilibration

Linearized Becker-Döring equilibration in X_k is similarly delayed by advection.

Take e.g.
$$a_j = j^{\alpha}$$
, $b_j = a_j \left(z_{cr} + \gamma/j^{1-\beta} \right)$, $\alpha, \beta \in (0, 1)$

Writing $c_j^{\rm eq}=\hat{c}_jz^j$, $c_j=c_j^{\rm eq}(1+h_j)$, the linearized equations are

$$\partial_t h_j = (Lh)_j = a_j z (h_{j+1} - h_j - h_1) - b_j (h_1 + h_{j-1} - h_j)$$

Lifshitz-Slyozov-like continuum analog:

$$u_t = p(x)u_x + q(x)u_{xx}$$
 with $p(x) \sim (z_{cr} - z)x^{\alpha}$, $q(x) \sim x^{\alpha}$

Characteristics: $\partial_t Z \sim -(z_{\rm cr}-z)Z^{\alpha}$ Persistence time: $T \sim \frac{Z_0^{1-\alpha}}{(z_{\rm cr}-z)}$

Complications: Linearized mass conservation $\sum c_j^{eq} j h_j = 0$. Coupling to h_1 .

Norm-dependence for Becker-Döring equilibration

Write
$$\|h\|_{X_k} = \sum_j c_j^{\mathrm{eq}} |h_j| j^k$$
. Compare with $\|h\|_Y^2 = \sum_j c_j^{\mathrm{eq}} |h_j|^2$.

- In Y, Cañizo-Lods show L is self-adjoint with compact resolvent, all eigenvalues are real and negative, and e^{Lt} is analytic with $\|e^{Lt}\|_{\mathcal{L}(Y)} \leq Ce^{-at}$.
- In X_k , the resolvent set of L contains $\{\operatorname{Re} \lambda > 0\}$ and $\|e^{Lt}\|_{\mathcal{L}(X_k)} \leq C \quad \forall t \geq 0$.

Theorem Assume $a_j \to \infty$ and $|a_j - a_{j-1}| + |b_j - b_{j-1}| \to 0$. Then the spectrum of L in X_k contains the entire imaginary axis.

Theorem Assume $a_j \sim j^{\alpha}$, $\alpha \in (0,1)$. Then $\forall \varepsilon > 0$, $\exists \delta > 0$ such that for all large enough Z_0 , there exists $h^0 \in X_1$ with $h_j^0 = 0 \ \forall j > Z_0$ satisfying

$$(0 < t < \delta Z_0^{1-\alpha}) \quad 1 - \varepsilon \leq \|e^{Lt}h^0\|_{X_1} \leq \varepsilon \quad (t > \delta Z_0).$$

By consequence $||e^{Lt}||_{\mathcal{L}(X_1)} \ge 1 \quad \forall t > 0$

Method of proof: sub/super-solutions for discrete primitives, Duhamel estimates.

Remark: Our results leave room for improvement...

Animal group size: Universal scaling in fisheries science

H.-S. Niwa (2003 JTB) proposed a simple scaling law for the distribution of group size s:

$$n_{\rm eq}(s) \sim \frac{1}{s_{\rm av}} \Phi\left(\frac{s}{s_{\rm av}}\right)$$

$$s_{\rm av} = \sum s^2 n_{\rm eq}(s) / \sum s n_{\rm eq}(s)$$

= the average group size experienced by individuals

- Data analysis for pelagic fish indicate universal, non-Gaussian statistics
- SDE model of individual's group size: $dS_t = (\overline{S}_t S_t)dt + \sigma \exp(S_t/\overline{S}_t)dW$
- Simulated a coagulation-fragmentation process to estimate variance σ
- Solved the SDE to predict: $\Phi(s) = s^{-1} \exp\left(-s + \frac{1}{2}se^{-s}\right)$

Empirical school-size distribution of pelagic fish

Fig. 5. Empirical school-size distribution of pelagic fishes (the same data sets as Fig. 1). The scaled distributions $W_i \langle N \rangle_P$ are plotted against the scaled school sizes $N_i/\langle N \rangle_P$. The scaled data collapse onto a single curve that corresponds to Eq. (11) with normalization factor Eq. (13).

Animal group size: Universal scaling in fisheries science

H.-S. Niwa (2003 JTB) proposed a simple scaling law for the distribution of group size s:

$$n_{\rm eq}(s) \sim \frac{1}{s_{\rm av}} \Phi\left(\frac{s}{s_{\rm av}}\right)$$

$$s_{\rm av} = \sum s^2 n_{\rm eq}(s) / \sum s n_{\rm eq}(s)$$

= the average group size experienced by individuals

- Data analysis for pelagic fish indicate universal, non-Gaussian statistics
- SDE model of individual's group size: $dS_t = (\overline{S}_t S_t)dt + \sigma \exp(S_t/\overline{S}_t)dW$
- Simulated a coagulation-fragmentation process to estimate variance σ
- Solved the SDE to predict: $\Phi(s) = s^{-1} \exp\left(-s + \frac{1}{2}se^{-s}\right)$

Empirical school-size distribution of pelagic fish

Fig. 5. Empirical school-size distribution of pelagic fishes (the same data sets as Fig. 1). The scaled distributions $W_i \langle N \rangle_P$ are plotted against the scaled school sizes $N_i/\langle N \rangle_P$. The scaled data collapse onto a single curve that corresponds to Eq. (11) with normalization factor Eq. (13).

Animal group size: Universal scaling in fisheries science

H.-S. Niwa (2003 JTB) proposed a simple scaling law for the distribution of group size s:

$$n_{\rm eq}(s) \sim \frac{1}{s_{\rm av}} \Phi\left(\frac{s}{s_{\rm av}}\right)$$

$$s_{\rm av} = \sum s^2 n_{\rm eq}(s) / \sum s n_{\rm eq}(s)$$

= the average group size experienced by individuals

- Data analysis for pelagic fish indicate universal, non-Gaussian statistics
- SDE model of individual's group size: $dS_t = (\overline{S}_t S_t)dt + \sigma \exp(S_t/\overline{S}_t)dW$
- Simulated a coagulation-fragmentation process to estimate variance σ
- Solved the SDE to predict: $\Phi(s) = s^{-1} \exp\left(-s + \frac{1}{2}se^{-s}\right)$

Empirical school-size distribution of pelagic fish

Fig. 5. Empirical school-size distribution of pelagic fishes (the same data sets as Fig. 1). The scaled distributions $W_i \langle N \rangle_P$ are plotted against the scaled school sizes $N_i/\langle N \rangle_P$. The scaled data collapse onto a single curve that corresponds to Eq. (11) with normalization factor Eq. (13).

Discrete-size coagulation-fragmentation model

(Ma, Johansson, Sumpter 2011)

$$\partial_t c_j(t) = \frac{1}{2} \sum_{k=1}^{j-1} R_{j-k,k} - \sum_{k=1}^{\infty} R_{j,k}, \qquad R_{j,k} = 2c_j c_k - \frac{2c_{j+k}}{j+k-1}$$

Fig. 2. Comparison of simulated group size distribution (the crosses, with the total population $\phi = 10\,000$, moving rate q = 1, the total number of sites $s = 10\,000$, simulation time step $T = 400\,000$. Every group has size 10 for the initial state), evolution equation (the solid line), and Niwa's distribution as in Eq. (5) (the dashed line). (a) p = 0.5. (b) p = 0.1. (c) p = 0.5. (d) p = 1.

The Niwa-MJS model lacks detailed balance-No H-theorem!

- Open Qs for the Niwa-MJS model: Unique equilibrium? Stability? $t \to \infty$? (Fournier-Mischler 2004 handle small data)
- Niwa argues explicitly against detailed-balance models of Gueron & Levin (1995)
- An equilibrium (\hat{c}_j) has *detailed balance* if the forward/backward reaction rates balance for each reaction $(j) + (k) \rightleftharpoons (j+k)$:

$$0 = R_{j,k} = a_{j,k} \, \hat{c}_j \hat{c}_k - b_{j,k} \, \hat{c}_{j+k}$$

Laurençot-Mischler 2003 (size-continuous models), Cañizo 2008 (size-discrete): If a detailed-balance equilibrium exists, then there is an H-theorem, and all solutions with subcritical mass converge strongly to equilibrium.

Relative free energy
$$F = \sum_j \hat{c}_j c_1^j (u_j \log u_j - u_j + 1), \qquad u_j = c_j/(\hat{c}_j c_1^j),$$

Dissipation
$$-\partial_t F = D = \sum_j a_{j,1} \hat{c}_j c_1^{j+1} (u_j - u_{j+1}) (\log u_j - \log u_{j+1})$$

Discrete-size model X (X for Xmas miracle!)

Uniform likelihood among the $j \rightarrow 1$ j + 1 splitting outcomes

$$(0,j), (1,j-1), (2,j-2), \ldots, (j-1,1), (j,0)$$

$$\partial_t c_j(t) = \frac{1}{2} \sum_{k=0}^j R_{j-k,k} - \sum_{k=0}^\infty R_{j,k}, \qquad R_{j,k} = 2c_j c_k - \frac{2c_{j+k}}{j+k+1}$$

The (discrete) Bernstein transform $\phi(q,t) = \sum_{j=1}^{\infty} (1 - e^{-qjh})c_j(t)$ satisfies

$$\partial_t \phi(q,t) = -\phi^2 - \phi + 2A_h(\phi), \qquad A_h(\phi)(q,t) = \frac{h}{1 - e^{-qh}} \int_0^q \phi(\hat{q},t) e^{-\hat{q}h} d\hat{q}.$$

A nonlocal logistic equation — which transforms exactly to model C below! In the continuum limit $h \to 0$ we get...

Continuous-size coagulation-fragmentation model C

The distribution $\nu_t(ds) \sim n(s,t) ds$ of group size $s \in (0,\infty)$ satisfies $(\forall f)$:

$$\partial_t \int_0^\infty f(s) \, \nu_t(ds) = \int_0^\infty \int_0^\infty \left(f(s+\hat{s}) - f(s) - f(\hat{s}) \right) \nu_t(d\hat{s}) \, \nu_t(ds)$$
$$- \int_0^\infty \int_0^s \left(f(s) - f(s-\hat{s}) - f(\hat{s}) \right) \, \frac{d\hat{s}}{s} \, \nu_t(ds)$$

This model has constant coagulation and overall fragmentation rates, with uniform distribution of fragments.

The Bernstein transform satisfies a nonlocal logistic equation:

$$\varphi = \int_0^\infty (1 - e^{-qs}) \nu_t(ds) \implies \partial_t \varphi = -\varphi^2 - \varphi + \frac{2}{q} \int_0^q \varphi(t, \hat{q}) \, d\hat{q}$$

• Scaling symmetry: $\varphi(t,q) \to \varphi(t,Cq)$ leaves the equation invariant.

New universal size-distribution profile

$$n_{\text{eq}}(s) = s^{-2/3} \sum_{n=0}^{\infty} \frac{(-1)^n}{3\Gamma(\frac{4}{3} - \frac{2}{3}n)} \frac{s^{n/3}}{n!}$$

A theorem from Bernstein function theory, curiously strong

Defn $g:(0,\infty)\to [0,\infty)$ is completely monotone if g is C^∞ and

$$\operatorname{sgn} g^{(k)} = (-1)^k \quad \forall k = 0, 1, 2, \dots$$

Bernstein's theorem: g is completely monotone $\Leftrightarrow g(s) = \int_0^\infty e^{-sx} \mu(dx)$

CBF Representation Theorem (SSV chap. 6) The following are equivalent:

(i) φ is Bernstein, with $\varphi(q) = a_0 q + a_\infty + \int_0^\infty (1 - e^{-qs}) \gamma(s) ds$

where $a_0, a_\infty \geq 0$ and the density γ is completely monotone.

(ii) φ is Bernstein, and holomorphically extends globally to $\mathbb{C} \setminus (-\infty, 0]$, mapping the upper half-plane to itself: $\operatorname{Im} \varphi(q) \geq 0$ for $\operatorname{Im} q \geq 0$.

Remark: (ii) means φ is a *Pick function* analytic and nonnegative on $(0, \infty)$.

Equilibrium states for the continuous-size model C

• Theorem For fixed finite $m_1 = \int_0^\infty s \, \nu_t(ds)$ (scaled to = 1),

there is a unique equilibrium, having a very nice density:

$$\nu_{\rm eq}(ds) = n_{\rm eq}(s) \, ds = \gamma(s) \exp\left(\frac{-4s}{27}\right) \, ds$$

where γ is *completely monotone* and satisfies

$$\begin{array}{lll} \gamma(s) & \sim & \frac{1}{3\,\Gamma(4/3)} \ s^{-2/3} & \text{as } s \to 0, \\ \\ \gamma(s) & \sim & \frac{9}{8\,\Gamma(1/2)} \ s^{-3/2} & \text{as } s \to \infty. \end{array}$$

$$\gamma(s) \sim \frac{9}{8\Gamma(1/2)} s^{-3/2} \quad \text{as } s \to \infty$$

Long-time behavior of Model C

• **Theorem** (i) Suppose $\int_0^\infty s\, \nu_0(ds)=1.$ Then (weakly-* on $[0,\infty]$)

$$(s \wedge 1)\nu_t(ds) \stackrel{\star}{\rightharpoonup} (s \wedge 1)\nu_{eq}(ds)$$
 as $t \to \infty$.

(ii) Suppose $\int_0^\infty s\, \nu_0(ds) = \infty.$ Then (weakly-* on $[0,\infty]$)

$$(s \wedge 1)\nu_t(ds) \stackrel{\star}{\rightharpoonup} \delta_{\infty}$$
 as $t \to \infty$.

Method of proof: Prove $\varphi(q,t) \to \varphi_{eq}(q)$, using comparison principles

$$\varphi(q, t_0) \le \hat{\varphi}(q, t_0) \implies \varphi(q, t) \le \hat{\varphi}(q, t)$$

Invoke Bernstein-transform continuity theorem.

Scaling limits with fat tails

(with J.-G. Liu and B. Niethammer, in preparation)

• **Theorem** (Self-similar spreading solutions for model C) For each $\alpha \in (0,1)$ model C admits a *unique self-similar solution*

$$u_t(ds) = \hat{\nu}_{\alpha}(e^{-\beta t}ds) \quad \text{with} \quad \int_0^s z \, \hat{\nu}_{\alpha}(dz) \sim \frac{s^{1-\alpha}}{1-\alpha} \quad (s \to \infty).$$

The measure $\hat{\nu}_{\alpha}$ has a completely monotone density f_{α} satisfying

$$f_{\alpha}(s) \sim s^{-\alpha - 1} \quad (s \to \infty), \qquad \hat{c}_{\alpha} s^{-\hat{\alpha}} \quad (s \to 0).$$

Theorem (Large-t behavior with algebraic tails) Suppose the initial data

$$\int_0^s z \, \nu_0(dz) \sim \int_0^s z \, \hat{\nu}_\alpha(dz) \quad (s \to \infty).$$

Then on $[0,\infty]$ we have $\nu_t(e^{\beta t}ds) \stackrel{\star}{\rightharpoonup} \hat{\nu}_{\alpha}(ds)$, $t \to \infty$.

Discrete analog of the CBF representation theorem

Definition $c = (c_n)_{n=0}^{\infty}$ is a completely monotone sequence if its differences alternate sign: $\forall k$, $\operatorname{sgn}(S-I)^k c_j = (-1)^k$, $(Sc)_j = c_{j+1}$.

- **Theorem** (Hausdorff) c is completely monotone $\iff c_n = \int_0^1 t^n d\mu(t)$ for some finite measure $d\mu$ on [0,1].
- Theorem (Liu-Pego) Let $c=(c_n)_{n=0}^{\infty}$ be a bounded real sequence, and

$$F(z) = \sum_{n=0}^{\infty} c_n z^n, \qquad F_1(z) = z F(z) = \sum_{n=0}^{\infty} c_n z^{n+1}.$$

Then the following are equivalent:

- (i) c is completely monotone
- (ii) F is a Pick function analytic and nonnegative on $(-\infty, 1)$
- (iii) F_1 is a Pick function analytic on $(-\infty, 1)$

Discrete analog of the CBF representation theorem

Definition $c = (c_n)_{n=0}^{\infty}$ is a completely monotone sequence if its differences alternate sign: $\forall k$, $\operatorname{sgn}(S-I)^k c_j = (-1)^k$, $(Sc)_j = c_{j+1}$.

- **Theorem** (Hausdorff) c is completely monotone $\iff c_n = \int_0^1 t^n \, d\mu(t)$ for some finite measure $d\mu$ on [0,1].
- Theorem (Liu-Pego) Let $c=(c_n)_{n=0}^{\infty}$ be a bounded real sequence, and

$$F(z) = \sum_{n=0}^{\infty} c_n z^n, \qquad F_1(z) = z F(z) = \sum_{n=0}^{\infty} c_n z^{n+1}.$$

Then the following are equivalent:

- (i) c is completely monotone
- (ii) F is a Pick function analytic and nonnegative on $(-\infty,1)$
- (iii) F_1 is a Pick function analytic on $(-\infty, 1)$

Infinite divisibility, convolution groups

• **Theorem** If (c_j) is a probability distribution on \mathbb{N}_0 and (c_j) is completely monotone, then (c_j) is *infinitely divisible*.

Proof: For any $n \in \mathbb{N}$, c can be expressed as an n-fold convolution $c = a^{*n}$ of the sequence $a = (a_j)$ with generating function $A(z) = F(z)^{1/n}$.

Because $z\mapsto z^{1/n}$ is a Pick function and F is Pick and nonnegative on $(-\infty,1)$, the composition A is Pick and nonnegative on $(-\infty,1)$.

• The map $t \mapsto F(z)^t$ $(t \in \mathbb{R})$ determines a *convolution group* of sequences $a^{(t)}$ with generating functions $A^{(t)}$ satisfying

$$A^{(t)}(z) = F(z)^t$$
, $a^{(t)} * a^{(s)} = a^{(t+s)}$.

- Li-Liu 2018, Li-Liu-Feng-Xu 2018:
- structure theorem for the deconvolving sequence $a^{(-1)}$.
- desingularized Caputo fractional derivative with Gronwall estimates

(c) Occupation time, $t \in [0, 10^5]$

(b) Random rates, $N=2\cdot 10^4$, t=20

(d) Autocorrelation, $N=10^5$

(c) Occupation time, $t \in [0, 10^5]$

(b) Random rates, $N=2\cdot 10^4$, t=20

(d) Autocorrelation, $N=10^5$