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IMPROVING HURRICANE PREDICTIONS

Property Damage ($USD)
I Maria $ 102B ?
I Harvey/Irma $190B
I Katrina $108B
I Sandy $65B
I Ike $30B
I Andrew $27B
I · · ·

I L1 SHARPENING
I DISPLACEMENT CORRECTION

See S. Rosenthal, S. Venkataramani, J.M.R., A. Mariano, Displacement Data Assimilation, J. Comp. Phys. 2016
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DYNAMIC LIKELIHOOD DATA ASSIMILATION

Stochastic One-Way Wave Equation:

ut − C(x, t)ux = F(x, t), t > 0, x ∈ [0,L],

u(x, 0) = U(x), x ∈ [0,L],

F(x, t) = f (x, t) + Nf (t), C(x, t) = c(x, t) + Nc(t)

Φ`(0) = U(x`), ` = 1, 2, ...,N

dΦ = f (Φ)dt + A(t)dW(f )
t ,

Φ(0) = U(x`),

dx = c(x, t)dt + B(t)dW(c)
t ,

x(0) = x`,
J.M.R., Dynamic Likelihood Approach to Filtering, Q. J. Roy. Met. Soc, 2017,
P. Krause, J.M.R. Using the Diffusion Kernel Filter in Lagrangian Data Assimilation, Mon. Wea. Rev, 2009



DATA ASSIMILATION STATEMENT

Given MODEL outcomes ϕ(tn),
Model: ϕn+1 = Mϕn + Nf (tn)[0,A], n = 0, 1, 2, ...
and DATA Y(tn)
Observations: Ym = Hmϕm + Nd(tm)[0,R], m = 0, 1, 2, ...
Propagated: Y(ζn, tn)

Find the time dependent mean and the uncertainty of the posterior
P(ϕ|Y)(t0 ≤ tn ≤ tf ). Found by minimizing trace of the posterior
covariance in model space .



DATA:
OBSERVED •
PROPAGATED •

 

ζn+1 = ∆tc(ζn, tn) + ζn, tn ≥ tm,

Y(ζn+1, tn+1) = Y(ζn, tn),

Rn+1
m ≈ An(t)[An(t)]T∆t + Rn, tn ≥ tm,



OBSERVATIONS AND PROJECTED DATA

Pick projected data with the least uncertainty



FORMULATING THE DLF

In KF: at measuring times tm:

Ym = HmVn + εm,

In DLF: at times tn ≥ tm,

Hn
mYn

m = Vn + Hn
mε

n
m,

where εm
m is equal to εm, with covariance

Rn+1
m ≈ An(t)[An(t)]T∆t + Rn, tn ≥ tm.



FORMULATING THE DLF
The multi-analysis stage in DLF is

〈V〉n = Ṽ + Km(HmYm − Ṽ).

Compare to 〈V〉n = Ṽ + Km(Ym −HmṼ), for KF.

Finding the Kalman Gain:
The covariance Pn = 〈(〈Vn − 〈V〉n)(〈Vn − 〈V〉n)>〉.
with

Tr[Pm] = Tr[P̃]− 2Tr[KmP̃] + Tr[Km(P̃ + HmRmH>m)K>m].

Differentiating with respect to Km and setting the derivate to
zero, the minimizer of the trace is

Km = P̃(P̃ + HmRmH>m)−1

Hence, the update to the covariance is

Pn = (I−Kn)P̃.



Forecast (Like Kalman Filter):

Ṽ = Ln−1〈V〉n−1 + ∆tfn−1, n = 1, 2, . . . ,Nf − 1.

P̃ = Ln−1Pn−1LT
n−1 + Qn−1, n = 1, 2, . . . ,Nf − 1.

Multi-analysis (Dynamic Likelihood): project onto state space...

〈V〉n = Ṽn +Kn
∑

m′∈m

(Hn
m′Yn

m′ − Ṽn)δm′,n,

Kn = P̃n[P̃n +
∑

m′∈m

Hn
m′Rn

m′ [Hn
m′ ]Tδm′,n]−1,

Pn = (I −Kn)P̃n.



DYNAMIC LIKELIHOOD DATA ASSIMILATION

Exact Model

Dynamic Likelihood Kalman



Evolution of Uncertainty:
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Center of Mass Estimate:
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THE DLF METHOD’S FEATURES

I Applies to hyperbolic/strongly advective dynamics
I Can be incorporated into any Bayesian assimilation

scheme
I Works best when data has low uncertainty
I Better than conventional assimilation when data is sparse
I Shaper posterior uncertainties possible
I Makes use of data between observation times
I Can project observations into the future
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