The Dynamic Likelihood Filter Filtering for Sparsely Observed, Hyperbolic Systems

JUAN M. RESTREPO

Department of Mathematics and Department of Statistics, and Physics of Oceans and Atmospheres

Oregon State University

2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

IMPROVING HURRICANE PREDICTIONS

Property Damage (\$USD)

- ► Maria \$ 102B ?
- ► Harvey/Irma \$190B

イロト イ理ト イヨト イヨト

3

Dac

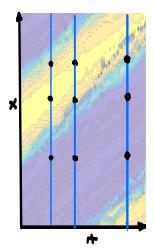
- ► Katrina \$108B
- ► Sandy \$65B
- ► Ike \$30B
- ► Andrew \$27B

• • • •

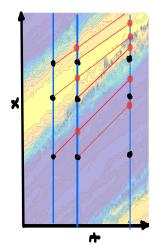
- L_1 SHARPENING
- DISPLACEMENT CORRECTION

See S. Rosenthal, S. Venkataramani, J.M.R., A. Mariano, Displacement Data Assimilation, J. Comp. Phys. 2016

IMPROVING PREDICTIONS USING SPARSE OBSERVATIONS



IMPROVING PREDICTIONS USING SPARSE OBSERVATIONS



< <p>I

DYNAMIC LIKELIHOOD DATA ASSIMILATION

Stochastic One-Way Wave Equation:

$$u_{t} - C(x,t)u_{x} = F(x,t), \quad t > 0, x \in [0,L],$$

$$u(x,0) = U(x), \quad x \in [0,L],$$

$$F(x,t) = f(x,t) + N_{f}(t), \quad C(x,t) = c(x,t) + N_{c}(t)$$

$$\Phi_{\ell}(0) = U(x_{\ell}), \quad \ell = 1, 2, ..., N$$

$$d\Phi = f(\Phi)dt + A(t)dW_{t}^{(f)},$$

$$\Phi(0) = U(x_{\ell}),$$

$$dx = c(x,t)dt + B(t)dW_{t}^{(c)},$$

$$x(0) = x_{\ell},$$

<ロト < 同ト < 三ト < 三ト < 三ト < 回 < つ < ○</p>

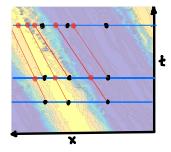
J.M.R., Dynamic Likelihood Approach to Filtering, Q. J. Roy. Met. Soc, 2017, P. Krause, J.M.R. Using the Diffusion Kernel Filter in Lagrangian Data Assimilation, Mon. Wea. Rev, 2009

DATA ASSIMILATION STATEMENT

Given MODEL outcomes $\varphi(t_n)$, Model: $\varphi_{n+1} = M\varphi_n + N_f(t_n)[0, A]$, n = 0, 1, 2, ...and DATA $Y(t_n)$ Observations: $Y_m = H_m\varphi_m + N_d(t_m)[0, R]$, m = 0, 1, 2, ...Propagated: $Y(\zeta_n, t_n)$

Find the time dependent mean and the uncertainty of the posterior $P(\varphi|Y)(t_0 \le t_n \le t_f)$. Found by minimizing trace of the posterior covariance in model space.

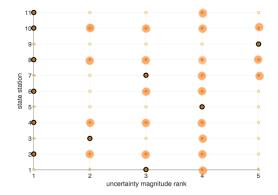
DATA: Observed • Propagated •



$$\begin{aligned} \zeta_{n+1} &= \Delta t c(\zeta_n, t_n) + \zeta_n, \\ \Upsilon(\zeta_{n+1}, t_{n+1}) &= \Upsilon(\zeta_n, t_n), \\ \mathbb{R}_m^{n+1} &\approx A_n(t) [A_n(t)]^T \Delta t + \mathbb{R}^n, \end{aligned}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

OBSERVATIONS AND PROJECTED DATA



Pick projected data with the least uncertainty

FORMULATING THE DLF

In KF: at measuring times *t_m*:

$$\mathbf{Y}_m = H_m \mathbf{V}_n + \boldsymbol{\epsilon}_m,$$

In DLF: at times $t_n \ge t_m$,

$$\mathcal{H}_m^n \mathbf{Y}_m^n = \mathbf{V}_n + \mathcal{H}_m^n \boldsymbol{\epsilon}_m^n,$$

where ϵ_m^m is equal to ϵ_m , with covariance

$$R_m^{n+1} \approx A_n(t) [A_n(t)]^T \Delta t + R^n, \quad t_n \ge t_m.$$

< □ > < @ > < E > < E > E のQ@

FORMULATING THE DLF

The multi-analysis stage in DLF is

$$\langle \mathbf{V} \rangle_n = \tilde{\mathbf{V}} + \mathcal{K}_m(\mathcal{H}_m \mathbf{Y}_m - \tilde{\mathbf{V}}).$$

Compare to $\langle \mathbf{V} \rangle_n = \tilde{\mathbf{V}} + \mathbf{K}_m (\mathbf{Y}_m - \mathbf{H}_m \tilde{\mathbf{V}})$, for KF.

Finding the Kalman Gain:

The covariance $\mathbf{P}_n = \langle (\langle \mathbf{V}_n - \langle \mathbf{V} \rangle_n) (\langle \mathbf{V}_n - \langle \mathbf{V} \rangle_n)^\top \rangle$. with

$$\operatorname{Tr}[\mathbf{P}_m] = \operatorname{Tr}[\tilde{\mathbf{P}}] - 2\operatorname{Tr}[\mathcal{K}_m\tilde{\mathbf{P}}] + \operatorname{Tr}[\mathcal{K}_m(\tilde{\mathbf{P}} + \mathcal{H}_m\mathbf{R}_m\mathcal{H}_m^{ op})\mathcal{K}_m^{ op}].$$

Differentiating with respect to \mathcal{K}_m and setting the derivate to zero, the minimizer of the trace is

$$\mathcal{K}_m = \tilde{\mathbf{P}}(\tilde{\mathbf{P}} + \mathcal{H}_m \mathbf{R}_m \mathcal{H}_m^{\top})^{-1}$$

Hence, the update to the covariance is

$$\mathbf{P}_n = (\mathbf{I} - \mathcal{K}_n) \tilde{\mathbf{P}}.$$

Forecast (Like Kalman Filter):

$$V = L_{n-1} \langle V \rangle_{n-1} + \Delta t f_{n-1}, \quad n = 1, 2, \dots, N_f - 1.$$

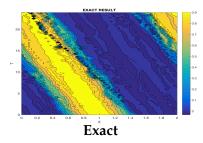
$$\tilde{P} = L_{n-1} P_{n-1} L_{n-1}^T + Q_{n-1}, \quad n = 1, 2, \dots, N_f - 1.$$

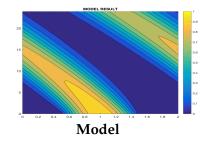
Multi-analysis (Dynamic Likelihood): project onto state space...

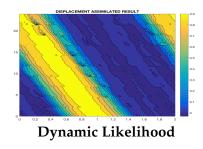
$$\begin{split} \langle V \rangle_n &= \tilde{V}_n + \mathcal{K}_n \sum_{m' \in m} (\mathcal{H}_{m'}^n \mathcal{Y}_{m'}^n - \tilde{V}_n) \delta_{m',n}, \\ \mathcal{K}_n &= \tilde{P}_n [\tilde{P}_n + \sum_{m' \in m} \mathcal{H}_{m'}^n \mathcal{R}_{m'}^n [\mathcal{H}_{m'}^n]^T \delta_{m',n}]^{-1}, \\ P_n &= (I - \mathcal{K}_n) \tilde{P}_n. \end{split}$$

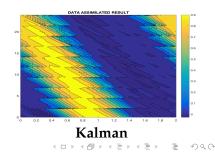
< □ > < @ > < E > < E > E のQ@

DYNAMIC LIKELIHOOD DATA ASSIMILATION

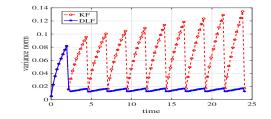




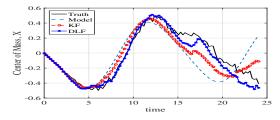




Evolution of Uncertainty:



Center of Mass Estimate:



THE DLF METHOD'S FEATURES

- Applies to hyperbolic/strongly advective dynamics
- Can be incorporated into any Bayesian assimilation scheme
- Works best when data has low uncertainty
- Better than conventional assimilation when data is sparse

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Shaper posterior uncertainties possible
- Makes use of data between observation times
- Can project observations into the future

FURTHER INFORMATION

Juan M. Restrepo http://www.math.oregonstate.edu/~restrepo

With funding from

National Science Foundation WHERE DISCOVERIES BEGIN