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The Keller-Segel Model

Chemotaxis of a bacteria w(z) towards an attractant u(z) with
logarithmic chemosensitivity in a moving frame z = x — ct:

Uy = ElUz, + CU, — WU

m

WU,
:sz“‘CWz_ﬁ( > 5
u Jz

with (z,t) € (R,RT), 3>1-m 0<m<land0<e< 1l

Wt

_5 =
Figure: Travelling wave solution in the moving frame z = x — ct
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Linearised operator and eigenvalue problem

Set m=0

Perturbation: u(z,t) = i(z) + p(z,t), and w(z, t) = w(z) + q(z, t)
The associated eigenvalue problem:

(o)== (e =) )

with p, g € H}(R)

L,=8 (quz n Wlzz 2wu§> B <2wuz _ Wz>

u? u? u3
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For simplicity we set ¢ = 0 and transform £ — A/ into a 1D system.

Introduce variable s := g,;

p p\" (2 1 0\ /p
TN gl =1|qg] =10 0 1 gl =0
s s F G H s
A(z,\)

Cc

Fog 2wu§  Wplp W . A8 wz 2w, . 2w
u3 u? u?

u u?

Uzz U2 W 2wu, A w
oos(-0) 23 2 )

u u C u u C u

=Pl _ o Pw
u cu
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Spectrum

The spectrum of the operator falls into two parts:

The essential spectrum indicates stability of perturbations 'at infinity’,
i.e. of the asymptotic end states when z — +oc.

The point spectrum indicates the stability of the nonlinear part of the
front and involves the full linearised equation

Definition: Essential Spectrum
Define the matrices AL () :=

lim A(z,A). If either
z—+o0
@ A_(X) and AL()) are both hyperbolic but have a different number of

unstable matrix eigenvalues

@ A_(X) or A{(A) has at least one purely imaginary matrix eigenvalue
then A € 0egs
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Spectrum of KS Model

Define the matrices AL () := Zgrj?oo Az, N);
A1
c ¢ 0
Ar(A):=1[0 0 1
0 X —c

which has characteristic polynomial (cu — A)(u? + cpu — A) =0

A
c c 0
A_(\) = 0 0 1
BA((B-—1)A=c?)  (262-3B+1)A-®8  ¢(B+1)
(B-1)? (B-1) B-1

which has characteristic polynomial

s PN (BEDS) (P 354205 2
/ (B—1)c (8172 c
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Essential Spectrum for Keller-Segel

Set 11 = ik in the characteristic equation
miA) to obtain dispersion relations

A= —k% + ick
’ A= ick
10 -5 5 e
5 5 ,  i(B—2)ck (B +1)c?k?
-10 ick (6C2 - (,B — 1)2k2) .
e

Figure: Essential spectrum
(shaded regions). Arrows denote
orientation with respect to k

For all parameter values the essential
spectrum enters the right half plane
[Nagai et al. 1991]
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Weighted Spaces

Weighting the space restricts the types of perturbations we apply. We
p p

g | and use the weighted space

s

vz

make the substitution =e

n Qo

HL(R) defined by the norm

1Pz = €l = 1Pl -

Using a two-sided weight

v_if z<0
UV =
I/+if Z>0.

gives the operator

T(N) — (A(z,\) +vl)

n Q! N
Il

n QT

n Q! ™
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Absolute Spectrum

@ Absolute spectrum gives an indication of how far the essential
spectrum can be shifted

@ If the absolute spectrum moves into the right half plane it indicates
the onset of an absolute instability

Definition-Absolute Spectrum
For a given A € C we rank and label the spatial eigenvalues by their real
part, i.e.

R(1y) = R(kz) = R(pz)-

The absolute spectrum consists of the values A such that either
§R(N;r) = 3%(,Uék) or R(py ) = R(p3 ), in this case.
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Essential and Absolute Spectrum

Spatial Eigenvalues of A_(\): X
Spatial Eigenvalues of A{()\): @

RN > 1 A € Oess A E O'abs
S(w) S(ut) S(u™)
TR ) R(ut)

To the Right of the

. Essential Spectrum Absolute Spectrum
Essential Spectrum

Image adapted from Kapitula et al 2013
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Absolute Spectrum-Plus Infinity

Characteristic polynomial of A, (\) is (cpu — A)(? + cpu — A) = 0 which
has roots

—c+ V% + 4N —c— V% + 4N
) H3 =
2

_A _
:ul_ca H2 = 5

Absolute spectrum corresponds to R(u2) = R(13) when R(N\) > —c?/2
and R(u1) = R(p3) if R(\) < —c?/2, ie.

2 2
a;bS:{AeR|—C2gA<C}u

=g
2 2
{A:A1+i)\2, AL €R )\1<—%; )\2:1)\1(14—;\21)}.
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Absolute Spectrum-Plus Infinity

2 _
U:bS:{AGR‘—C gAgC}u

2 2
A < - =N <1+A1) .
2 c2

{)\ =X +iA, M, A €R

—c?/4 0

Figure: Absolute spectrum associated with the state z — co. Left: v, =0, Right
vy =c¢/2
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Absolute Spectrum-Minus Infinity

3(N) 3(N) 3(N)
10 10 10

Tabs Tabs

Tabs
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Summary of Results, m =0

Transiently unstable

Absolutely unstable
:8 > :Bcrit ﬁ < ﬁcrit
) Y 30 3N
N ==\ &
% S ) R -
,,,,,, ]
Figure: Figure: Ideally Figure: Figure: Ideally
Unweighted weighted function Unweighted weighted function
function space space function space space
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The branch point is a second order root of the characteristic polynomial of
A_(X) for some purely imaginary A.

Theorem

There exists a value 8 = (B, independent of speed, such that the
essential spectrum can be weighted so Re(\) < 0 for all A € gess when
B < Berit- This value Bt is found as the largest root of

31060 — 32345° + 1711238 — 4910137 + 761803° — 583983° + 100563*
+ 150404% — 96803° + 17165 — 4 = 0.

For e = 0 we have § ~ 1.619

This value is a bifurcation from a conditionally spectrally stable to an
absolutely unstable regime.
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Essential and absolute spectrum for 0 < m < 1

Figure: Ideally weighted essential spectrum for § =2

Critical Parameters
For 0 < m < 1 we have

Bcrlt BCl‘lt(l — )
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Essential and absolute spectrum for m =1

\ 10}
Uess ‘l‘
‘ o'z—bs‘\
i o s R Y
-10
Figure: ldeally weighted essential spectrum for v_ = 0 (left) v_ = —c/ (right)

The absolute spectrum contains A = 0 for all 5 > 1
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Small diffusivity of attractant 0 < ¢ < 1

Keller-Segel Model:

Ut = €Uy, + cuy — wu'™

WU,
Wt:WZZ—i—CWZ—B( ) ,
u z

e For |\| = O(1) the results are to leading
order the same.

e The weighted essential spectrum does
not cross into the right half plane except
for in the region |A\| = O(1) as long as

c(B+m)
v > — B+m—1

For 0 < € < 1 there exists

Figure: Essential and absolute

. spectrum 0 < ¢ < 1 and
Berit = Berit + O(€) B> Berit
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Point Spectrum

The eigenvalue associated with translation invariance (A = 0) is contained
in the essential spectrum in the unweighted space. The eigenvalue is order
2 for all parameter values and we have an eigenvector (u,, w,)';

u(z)\ _
c (WZ(Z)> 0

as a result of the translation invariance and a generalised eigenvector

uc(z)\ _  [uA2)
‘<wc<z)>‘ <wz(z)>

It has been shown numerically that there are no eigenvalues in a large
region of the complex plane-|\| ~ O(10%) in the right half plane
(discluding the absolute spectrum)
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Figure: Location of branchpoints with increasing 8 and m = 0.
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Range of admissable weights

F1.7

= /Bcrit

F1.5

r1.3

F1.1

Figure: Range of weights such that essential spectrum is contained in the left half

plane (solid line)
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