

Connection Design with the NDS and Technical Report 12

Lori Koch, PE Manager, Educational Outreach American Wood Council

Slide 1

КМ3

If you have time, I suggest increase the font sizes throughout the presentation. Maybe this is something that you can have Kim do. Also, check some of slides graphics as they may have the graphics cut off at the bottom of the slides. Kam-Biron, Michelle, 1/25/2017

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© American Wood Council 2017

Course Description

This course will feature techniques for designing connections for wood members utilizing AWC's 2015 National Design Specification® (NDS®) for Wood Construction and Technical Report 12 - General Dowel Equations for Calculating Lateral Connection Values (TR12). Topics will include connection design philosophy and behavior, an overview of common fastener types, changes in the 2015 NDS related to cross-laminated timber, and design examples per TR12.

Learning Objectives

On completion of this course, participants will:

- 1. Be familiar with current wood member connection solutions and applicable design requirements.
- 2. Be familiar with Technical Report 12 and provisions for connection design beyond NDS requirements.
- 3. Be able to recommend fastening guidelines for wood to steel, wood to concrete, and wood to wood connections.
- 4. Be able to describe effects of moisture on wood member connections and implement proper detailing to mitigate issues that may occur.

Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information

Basic Concepts

- Model wood cells as a bundle of straws
- Bundle is very strong parallel to axis of the straws

Parallel

Stronger

Perpendicular

Less strong

- Wood likes compression parallel to grain
 - makes connecting wood very easy

- Wood likes compression parallel to grain
 - makes connecting wood very easy

Wood likes to take on load spread over its surface

- Wood and tension perpendicular to grain
 - Not recommended

Initiators:

- notches
- large diameter fasteners
- hanging loads

Notching

Problem

Solution

Beam to Concrete

- Notched Beam Bearing
 - may cause splitting
 - not recommended

Beam to Concrete

- Notched Bearing Wall
 - alternate to beam notch

Hanger to Beam

- Load suspended from lower half of beam
 - Tension perpendicular to grain
 - May cause splits

Hanger to Beam

Lower half of beam

- may cause splits
- not recommended

Exception: light load

- <100 lbs
- >24" o.c.

Slide 15

KM4

I believe this is per the exception is per the NDS, you might mention where it states this. $_{\mbox{\scriptsize Kam-Biron, Michelle},\ 1/25/2017}$

Hanger to Beam

- Splitting happens because wood is relatively weak perpendicular to grain
 - Nails too close (act like a wedge)

 Wood, like other hygroscopic materials, moves in varying environments

Fastener selection is key to connection ductility, strength, performance

Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information

Connection Behavior

- Balance
 - Strength –
 - Ductility-

Connection Behavior

- Balance
- Strength
 - Size and number of fasteners
- Ductility-
 - Fastener slenderness
 - Spacing
 - End distance

Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information

- Issue: direct water ingress
- Water is absorbed most quickly through wood end grain

- Issue: direct water ingress
- Re-direct the water flow around the connection

- Issue: direct water ingress
- Or, let water out if it gets in...

Moisture Changes In Wood

Causes dimensional changes perpendicular to

Wood Shrinks

Woodmagazine.com

Moisture Effects

Figure 1.1 Shrinkage due to moisture loss.

1% change in dimension for every 4% change MC

Wet Service Factor, C_M

Wet Service Factor, C_M

Beam to Column

Full-depth side plates

- may cause splitting
- wood shrinkage

Beam to Column

- Smaller side plates
 - transmit force
 - allow wood movement

Beam to Column

Problem

- shrinkage
- tension perp

Beam to Wall

Slotted hardware

Solution

- bolts near bottom
- minimizes effect of shrinkage

Connection Serviceability

Avoid contact with cementitious materials

- · Beam on Shelf
 - prevent contact with concrete
 - provide lateral resistance and uplift

Beam to Concrete

· Beam on Wall

- prevent contact with concrete
- provide lateral resistance and uplift
- slotted to allow longitudinal movement
- typical for sloped beam

Beam to Masonry

Application

Need 1/2" air gap between wood and masonry

Column to Base

Problem

- no weep holes in closed shoe
- moisture entrapped
- decay can result

Column to Base

- Angle brackets
 - anchor bolts in brackets

Hidden Column Base

- Floor slab poured over connection
 - will cause decay
 - not recommended

Column to Base

Floor slab poured below connection

Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information

Mechanical Connectors

Traditional Connectors

- · All-wood solution
- time tested
- practical
- extreme efficiencies available with computer numeric control (CNC) machining

www.tfguild.org www.timberframe.org

Traditional Connectors

- Long History > 100 years
- Uses automated Computer numerical Control (CNC) milling technology
 - machine joints
 - pre-drill holes
- Timber Framer's Guild www.tfguild.org

http://www.tfguild.org/downloads/T FEC-1-2010-with-Commentary.pdf

Traditional Connectors

 Wood dowel connection design technology now available

061.pdf

Schmidt, R.J. (2006): *Timber Pegs – Considerations for Mortise and Tenon Joint Design*, **Structure Magazine**, March 2006, NCSEA, 13(3):44-47. http://www.structuremag.org/wp-content/uploads/2014/09/SF-Timber-Pegs-March-

49

Mechanical Connectors

Common Fasteners

- Nails
- Staples
- Wood Screws
- Metal plate connectors
- Lag screws
- Bolts

Typical Panel Connectors

Typical Panel Connectors

Resource: Simpson Strong-Tie

Typical Panel Connectors

Fastener Values

• Included in U.S. design literature

Fastener Type	Reference
Bolts	NDS or ER
Lag Screws	NDS or ER
Wood Screws	NDS or ER
Nails & Spikes	NDS or ER
Split Ring Connectors	NDS
Shear Plate Connectors	NDS
Drift Bolts & Drift Pins	NDS
Metal Plate Connectors	ER
Hangers & Framing Anchors	ER
Staples	ER

Evaluation Reports (ER) are developed for proprietary products

Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information

Governing Codes for Wood Design

2015 NDS referenced in 2015 IBC

2015 NDS Chapter Reorganization

2012 NDS

- 1-3 General
- 4-9 Products
- 10-13 Connections
- 14 Shear Walls & Diaphragms
- 15 Special Loading
- 16 Fire

2015 NDS

- 1-3 General
- 4-10 Products +CLT
- 11-14 Connections
- Shear Walls & Diaphragms
- 15 Special Loading
- 16 Fire

NDS Chapter 11 – Mechanical Connections

- ASD and LRFD accommodated through Table 11.3.1
- Dowel fasteners

ASD

Only

- Split ring/shear plate
- Timber rivets
- Spike grids

		Load Duration Factor	Wet Service Factor	Temperature Factor	Group Action Factor	Geometry Factor ³	Penetration Depth Factor	End Grain Factor ³	Metal Side Plate Factor	Diaphragm Factor ³	Toe-Nail Factor 3	Format Conversion F	Resistance Factor	Time Effect Factor
			Lat	eral I	oads									
Dowel-type Fasteners	a ' a				-					_		2.22	0.65	^
(e.g. bolts, lag screws, wood screws, nails, spikes, drift bolts, & drift pins)	Z = Z x	C _D	C_{M}	Ct	C_{g}	\mathbf{C}_{Δ}	-	$C_{\sf eg}$	-	C_{di}	C_{tn}	3.32	0.65	λ
Split Ring and Shear Plate	P = P x	C_D	C_{M}	Ct	Cg	C_{Δ}	C_d	-	Cst	-	-	3.32	0.65	λ
Connectors	Q' = Q x	C_D	C_{M}	C_t	C_{g}	\mathbf{C}_{Δ}	C_d	-	-	-	-	3.32	0.65	λ
Timber Rivets	P = P x	C_D	C_{M}	C_t	-	-	-	-	C _{st}	-	-	3.32	0.65	λ
Timbel Rivers	Q = Q x	C_D	C_{M}	C_t	-	C_{Δ}^{5}	-	-	C _{st} ⁴	-	-	3.32	0.65	λ
Spike Grids	Z' = Z x	C_D	C_{M}	C_{t}	-	\mathbf{C}_{Δ}	-	-	-	-	-	3.32	0.65	λ
Withdrawal Loads														
Nails, spikes, lag screws, wood screws, & drift pins	$\mathbf{W}' = \mathbf{W} \mathbf{x}$	C_D	C_M^2	C_{t}	-	-	-	$C_{\sf eg}$	-	-	C_{tn}	3.32	0.65	λ
		-							-	-				

ASD and LRFD

LRFD

Only

NDS Dowel-fastener Connections

- 2015 NDS Chapter 12 (New location)
- Can be used for any dowel-shaped fastener
- Includes lateral and withdrawal provisions
 - Bolts
 - Lag screws
 - Wood screws
 - Nails
 - Spikes
 - Drift bolts
 - Drift pins

Dowel-fastener withdrawal

- Withdrawal calculated based on fastener penetration
 - W value is per inch of fastener penetration
 - Threaded fasteners use thread penetration
- Lag screws
 - $W = 1800 G^{3/2} D^{3/4}$
- Wood screws
 - $W = 2850 G^2 D$
- Nails (smooth shank)
 - $W = 1380 G^{5/2} D$

No withdrawal in end grain allowed for nails or wood screws!

Yield Modes

MODE I

bearing-dominated yield of wood fibers

MODE II

pivoting of fastener with localized crushing of wood fibers

Yield Modes

MODE III

•fastener yield in bending at one plastic hinge and bearing dominated yield of wood fibers

MODE IV

•fastener yield in bending at two plastic hinges and bearing dominated yield of wood fibers

Dowel Bearing Strength

Dowel Bearing Strengths, Fe, for Dowel-Type Fastener Table 12.3.3

I	Specific ¹			Γ	owel bearin	g strength i	n pounds pe	er square incl
	Gravity,	\mathbf{F}_{e}	$\mathbf{F}_{e }$					F _e _
	G	D<1/4"	$1/4'' \leq D \ \leq 1''$	D=1/4"	D=5/16"	D=3/8"	D=7/16"	D=1/2"
	0.73	9300	8200	7750	6900	6300	5850	5450
	0.72	9050	8050	7600				
	0.71	8850	7950	7400	Table 12.3		ei Bearing d Structura	Strengths fo
	0.70	8600	7850	7250		WOO	u Structura	ii Falleis
	0.69	8400	7750	7100				Dowel Beari
	0.68	8150	7600	6950	777 1.C		Specific ¹	Strength, Fe
			1 .	•	3 3 7 1 C1 /	4	~ .	

$$F_{ell} = 11200G$$

 $F_{e\perp} = 6100G^{1.45} / \sqrt{D}$
 F_{e} for D < 1/4" = 16600 $G^{1.84}$

Table 12.3.3B **Dowel Bearing Strengths for Wood Structural Panels**

Wood Structural Panel	Specific ¹ Gravity, G	Dowel Bearing Strength, F _e , in pounds per square inch (psi) for D≤1/4"
Plywood		
Structural 1, Marine	0.50	4650
Other Grades ¹	0.42	3350
Oriented Strand Board		
All Grades	0.50	4650

Fastener Bending Yield Test

Center-Point Bending Test

Fastener Bending Yield Strength

Table I1 Fastener Bending Yield Strengths, Fyb	
Fastener Type	F _{yb} (psi)
Bolt, lag screw (with D ≥ 3/8"), drift pin (SAE J429 Grade 1 - F _v = 36,000 psi	
and $F_u = 60,000 \text{ psi}$)	45,000
Common, box, or sinker nail, spike, lag screw, wood screw (low to medium carbon steel)	
0.099" ≤ D ≤ 0.142"	100,000
0.142" < D ≤ 0.177"	90,000
0.177" < D ≤ 0.236"	80,000
0.236" < D ≤ 0.273"	70,000
0.273" < D ≤ 0.344"	60,000
0.344" < D ≤ 0.375"	45,000
Hardened steel nail (medium carbon steel) including post-frame ring shank nails	
0.120" ≤ D ≤ 0.142"	130,000
0.142" < D ≤ 0.192"	115,000
0.192" < D ≤ 0.207"	100,000

Yield Limit Equations

Table 12.3.1A Yield Limit Equations

37:-1.1 3.41-	C:1- C1		D1-1 - 61	
Yield Mode	Single Shear		Double Shear	
I_m	$Z = \frac{D \ell_m F_{em}}{R_d}$	(12.3-1)	$Z = \frac{D \ell_m F_{em}}{R_d}$	(12.3-7)
I_s	$Z = \frac{D \ell_s F_{es}}{R_d}$	(12.3-2)	$Z = \frac{2 D \ell_s F_{es}}{R_d}$	(12.3-8)
П	$Z = \frac{k_1 D \ell_s F_{es}}{R_d}$	(12.3-3)		
$\mathrm{III}_{\mathrm{m}}$	$Z = \frac{k_2 D \ell_m F_{em}}{(1 + 2R_e) R_d}$	(12.3-4)		
$\mathrm{III}_\mathtt{S}$	$Z = \frac{k_3 D \ell_s F_{em}}{(2 + R_e) R_d}$	(12.3-5)	$Z = \frac{2 k_3 D \ell_s F_{em}}{(2 + R_e) R_d}$	(12.3-9)
IV	$Z = \frac{D^2}{R_d} \sqrt{\frac{2 F_{em} F_{yb}}{3 (1 + R_e)}}$	(12.3-6)	$Z = \frac{2 D^2}{R_d} \sqrt{\frac{2 F_{em} F_{yb}}{3 (1 + R_e)}}$	(12.3-10)

- 4 Modes of failure
- 6 Yield equations

Lowest Yield "Z" value = Connection Capacity

Single & double shear

Yield Limit Equations

Notes:

$$k_{1} = \frac{\sqrt{R_{e} + 2R_{e}^{2}(1 + R_{t} + R_{t}^{2}) + R_{t}^{2}R_{e}^{3}} - R_{e}(1 + R_{t})}{(1 + R_{e})}$$

$$k_2 = -1 + \sqrt{2(1 + R_e) + \frac{2F_{yb}(1 + 2R_e)D^2}{3F_{em}\ell_m^2}}$$

$$k_3 = -1 + \sqrt{\frac{2(1 + R_e)}{R_e} + \frac{2F_{yb}(2 + R_e)D^2}{3F_{em}\ell_s^2}}$$

D = diameter, in. (see 12.3.7)

 F_{yb} = dowel bending yield strength, psi

 R_d = reduction term (see Table 12.3.1B)

 $R_e = F_{em}/F_{es}$

 $R_t = \ell_m / \ell_s$

 $\ell_{\rm m}$ = main member dowel bearing length, in.

 ℓ_s = side member dowel bearing length, in.

F_{em} = main member dowel bearing strength, psi (see Table

12.3.3)

F_{es} = side member dowel bearing strength, psi (see Table 12.3.3)

Yield Limit Equations

Table 12.3.1B	Reduction Term, I	₹d
Fastener Size	Yield Mode	Reduction Term, R _d
$0.25" \le D \le 1"$	I_{m}, I_{s} II III_{m}, III_{s}, IV	$\begin{array}{c} 4~K_{\theta} \\ 3.6~K_{\theta} \\ 3.2~K_{\theta} \end{array}$
D < 0.25"	$I_m,I_s,II,III_m,III_s,IV$	K_D^1

Notes:

$$K_{\theta} = 1 + 0.25(\theta/90)$$

 θ = maximum angle between the direction of load and the direction of grain (0° $\leq \theta \leq 90$ °) for any member in a connection

D = diameter, in. (see 12.3.7)

 $K_D = 2.2$ for $D \le 0.17$ "

 $K_D = 10D + 0.5$ for 0.17'' < D < 0.25''

Also applied in TR12 equations!

For threaded fasteners where nominal diameter (see Appendix L) is greater than or equal to 0.25" and root diameter is less than 0.25", R_d = K_D K_B.

Spacing, End, & Edge Distance

Figure 12G Bolted Connection Geometry

Parallel to grain loading in all wood members (Z,)

Perpendicular to grain loading in the side member and parallel to grain loading in the main member ($Z_{\rm s.i.}^{69}$)

Spacing, End, & Edge Distance

	End Distances		
Direction of Loading	Minimum end distance for $C_{\Lambda} = 0.5$	Minimum end distance for $C_{\Delta} = 1.0$	
Perpendicular to Grain	2D	4D	
Parallel to Grain,			
Compression:			
(fastener bearing away			
from member end)	2D	4D	
Parallel to Grain,			
Tension:			
(fastener bearing to-			
ward member end)			
for softwoods	3.5D	7D	
for hardwoods	2.5D	5D	

Table 12.5.1C Edge Distance Requirements^{1,2}

Direction of Loading	Minimum Edge Distance
Parallel to Grain:	
where $\ell/D \le 6$	1.5D
where $\ell/D > 6$	1.5D or ½ the spacing between
	rows, whichever is greater
Perpendicular to Grain: ²	•
loaded edge	4D
unloaded edge	1.5D

Table 12.5.1E Edge and End Distance and Spacing Requirements for Lag Screws Loaded in Withdrawal and Not Loaded Laterally

Orientation	Minimum Distance/Spacing
Edge Distance	1.5D
End Distance	4D
Spacing	4D

Spacing, End, & Edge Distance

Table 12.5.1B Spacing Requirements for Fasteners in a Row

		Spacing
Direction of	Minimum	Minimum spacing
Loading	spacing	for $C_{\Delta} = 1.0$
Parallel to Grain	3D	4D
Perpendicular to	3D	Required spacing for
Grain		attached members

Table 12.5.1D Spacing Requirements Between Rows¹

Direction of Loading	Minimum Spacing
Parallel to Grain	1.5D
Perpendicular to Grain:	
where $\ell/D \le 2$	2.5D
where $2 < \ell/D < 6$	(5ℓ + 10D) / 8
where $\ell/D \ge 6$	5D

Spacing, End, & Edge Distance

Table 12.5.1F	Perpendicular to Grain Distance Requirements for Outermost Fasteners in
	Structural Glued Laminated Timber Members

	Moisture (Maximum Distance Between	
Fastener Type	At Time of Fabrication	In- Service	Outer Rows
All Fasteners	>16%	<16%	5"
	Any	>16%	5"
Bolts	<16%	<16%	10"
Lag Screws	<16%	<16%	6"
Drift Pins	<16%	<16%	6"

• Unless special detailing is provided to accommodate cross-grain shrinkage of the wood member.

NDS Appendix E

- Appendix E Local Stresses in Fastener Groups (Non-mandatory)
 - Groups of closely spaced fasteners loaded parallel to grain
 - Net Section Tension Capacity
 - Row Tear-Out Capacity
 - Group Tear-Out Capacity
 - Example problems
 - Staggered rows of bolts
 - Single row of bolts
 - Row of split rings

Chapter 12-Dowels

12.3.7 Dowel Diameter

12.3.7.1 Where used in Tables 12.3.1A or 12.3.1B, the fastener diameter shall be taken as D for unthreaded full-body diameter fasteners and D_r for reduced body diameter fasteners or threaded fasteners except as provided in 12.3.7.2.

12.3.7.2 For threaded full-body fasteners (see Appendix L), D shall be permitted to be used in lieu of D_r where the bearing length of the threads does not exceed ¼ of the full bearing length in the member holding the threads. Alternatively, a more detailed analysis accounting for the moment and bearing resistance of the threaded portion of the fastener shall be permitted (see Appendix I).

Chapter 12-Dowels

Appendix L (Non-mandatory) Typical Dimensions for **Dowel-Type Fasteners and Washers¹**

Standard Hex Bolts¹ Table L1

Full-Body Fastener

D = diameter

 $D_r = root diameter$

T =thread length

L = bolt length

F =width of head across flats

H = height of head

Standard Hex Lag Screws¹ Table L2

D = diameter

 $D_r = root diameter$

S = unthreaded body length

 $T = minimum thread length^2$

Reduced

Body Diameter

Full-Body Diameter

E = length of tapered tip

L = lag screw length

N = number of threads/inch

F = width of head across flats

H = height of head

Dowel Diameters

Dowel Diameters

Dia. Fastener = D_r

- NDS Chapter 12 Tables use D_r for lateral yield equations
 - Assumes shear plane passes through threads

New

12.2.1.5 Where lag screws are loaded in withdrawal from the narrow edge of cross-laminated timber, the reference withdrawal value, W, shall be multiplied by the end grain factor, C_{eg} =0.75, regardless of grain orientation.

New

12.2.2.4 Wood screws shall not be loaded in with-drawal from end-grain of laminations in cross-laminated timber (C_{eg} =0.0).

12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in cross-laminated timber (C_{eg} =0.0).

12.3.3 Dowel Bearing Strength New

12.3.3.5 Dowel bearing strengths, F_e, for doweltype fasteners installed into the panel face of crosslaminated timber shall be based on the direction of

loading with respect to the grain orientation of the cross-laminated timber ply at the shear plane.

12.3.3.6 Where dowel-type fasteners are installed in the narrow edge of cross-laminated timber panels, the dowel bearing strength shall be $F_{e\perp}$ for $D \ge 1/4$ " and F_e for $D \le 1/4$ ".

Table 12.3.3	Dowel Bearing Strengths, Fe, for Dowel-Type Fasteners in Wood Members
--------------	---

Specific ¹			D	Dowel bearing strength in pounds per square inch (psi) ²								
Gravity,	Fe	$\mathbf{F}_{e }$					F _{e⊥}					AND
G	D<1/4"	$1/4" \leq D \ \leq 1"$	D=1/4"	D=5/16"	D=3/8"	D=7/16"	D=1/2"	D=5/8"	D=3/4"	D=7/8"	D	NDS°
0.55	5550	6150	5150	4600	4200	3900	3650	3250	2950	2750	25	National Dating Specification? for Wood Communities 2013 \$1311078
0.54	5350	6050	5000	4450	4100	3750	3550	3150	2900	2650	25	
0.53	5150	5950	4850	4350	3950	3650	3450	3050	2800	2600	24	

12.3.5 Dowel Bearing Length

New

12.3.5.1 Dowel bearing length in the side member(s) and main member, ℓ_s and ℓ_m , shall be determined based on the length of dowel bearing perpendicular to the application of load.

12.3.5.2 For cross-laminated timber where the direction of loading relative to the grain orientation at the shear plane is parallel to grain, the dowel bearing length in the perpendicular plies shall be reduced by multiplying the bearing length of those plies by the ratio of dowel bearing strength perpendicular to grain to dowel bearing strength parallel to grain $(F_{e\perp}/F_{e\parallel})$.

Nonuniform for CLT

- Adjust ℓ_m or ℓ_s to compensate for orthogonal grain orientations in adjacent layers
- Parallel to grain: $F_{e\perp}/F_{e\parallel}$

Example: 1/2" bolt in southern pine 3-ply CLT with 1-1/2" laminations

$$\ell_{\text{m}} = t_{1\parallel} + t_{2\perp} + t_{3\parallel} = 3(1.5) = 4.5''$$

$$\ell_{\text{m-adj}} = t_{1\parallel} + t_{2\perp} (F_{\text{e}\perp}/F_{\text{e}\parallel}) + t_{3\parallel}$$

$$= 1.5 + 1.5(3650/6150) + 1.5 = 3.9''$$

Table 12	2.3.3	Dowel Bear	ing Str	engths, F	e, for Do	wel-Type	Fastene	ers in Wo	od Men	ibers		WINCH WOOD COLICO.
Specific ¹			D	owel bearin	g strength i	in pounds p	er square ii	ich (psi) ²			7.	NDS°
Gravity,	Fe	F _e					Fel					and Delpt Spechation' for Wood Communion IS SCH 1078
G	D<1/4"	$14'' \le D \le 1'$	D=1/4"	D=5/16"	D=3/8"	D=7/16"	D=1/2"	D=5/8"	D=3/4"	D=7/8"		
0.55	5550	6150	5150	4600	4200	3900	3650	3250	2950	2750		
0.54	5350	6050	5000	4450	4100	3750	3550	3150	2900	2650	7	
0.53	5150	5950	4850	4350	3950	3650	3450	3050	2800	2600	2450	92

end grain 4D 7D edge grain end grain, **NDS**°

Figure 12I

New

End Distance, Edge Distance and Fastener Spacing Requirements in Narrow Edge of Cross-Laminated Timber

12.5.2 End Grain Factor, Ceg

12.5.2.2 Where dowel-type fasteners are inserted in the end grain of the main member, with the fastener axis parallel to the wood fibers, reference lateral design values, Z, shall be multiplied by the end grain factor, $C_{eg} = 0.67$.

12.5.2.3 Where dowel-type fasteners with $D \ge 1/4$ " are loaded laterally in the narrow edge of crosslaminated timber, the reference lateral design value, Z, **New** shall be multiplied by the end grain factor, C_{eg}=0.67, regardless of grain orientation.

Lateral – any end grain

•
$$D<1/4'' C_{eg}=0.67$$

- **Lateral any CLT edge**
 - $D \ge 1/4'' C_{eq} = 0.67$

- Background and derivation of the mechanics-based approach for calculating lateral connection capacity used in the NDS
- Provides additional flexibility and broader applicability to the NDS provisions
 - Connections with gaps between members
 - Connecting wood to members with hollow cross sections

http://www.awc.org/codes-standards/publications

Table 1-1 General Dowel Equations for Solid Cross Section Members²

Yield	•			
Mode	Single Shear	Do	ouble Shear	Description
\mathbf{I}_{m}	$P = q_{\scriptscriptstyle m} L_{\scriptscriptstyle m}$		$P = q_m L_m$	←
I_s	$P = q_s L_s$		$P = 2 q_s L_s$	-
II-IV	$P = \frac{-B + \sqrt{B^2 - B^2}}{2A}$		$\frac{B + \sqrt{B^2 - 4AC}}{A}$	General equation for member bearing and dowel yielding
_1		Inputs A, B, & C fo	r Yield Modes II-IV	
${\rm I\hspace{1em}I}^1$	$A = \frac{l}{4 q_s} + \frac{l}{4 q_m}$	$B = \frac{L_s}{2} + g + \frac{L_m}{2}$	$C = -\frac{q_s L_s^2}{4} - \frac{q_m L}{4}$	² / _m
$\Pi { m I_m}^1$	$A = \frac{1}{2q_s} + \frac{1}{4q_m}$	$B = g + \frac{L_m}{2}$	$C = -M_s - \frac{q_m L}{4}$	$\frac{2}{m}$
ΠI_s	$A = \frac{l}{4q_s} + \frac{l}{2q_m}$	$B = \frac{L_s}{2} + g$	$C = -\frac{q_s L_s^2}{4} - M$	
IV	$A = \frac{l}{2q_s} + \frac{l}{2q_m}$	B=g	$C = -M_s - M_s$	

^{&#}x27;Yield Modes II and III_m do not apply for double shear connections.

²See Section 1.6 for notation.

Table 1-2 General Dowel Equations fo Solid Cross-Section Main Member and Hollow Cross Section Side Member(s)²

Yield Mode	Single Shear	Double She	ar	Description
I _m	$P = q_m L_m$	$P = q_m L_n$	n	← 5 m
I_s	$P = 2q_s t_{ws}$	$P = 4 q_s t$	ws	— S m m
II-IV	$P = \frac{-B + \sqrt{B^2 - B^2}}{2A}$	P = -B	$\frac{A}{A} + \sqrt{B^2 - 4AC}$	General equation for member bearing and dowel yielding
		Inputs A, B,	& C for Yield Modes II-IV	
111	$A = \frac{1}{4 q_s} + \frac{1}{4 q_m}$	$B = t_{\text{ws}} + v_s + g + \frac{L_m}{2}$	$C = -q_{s}t_{ws}(t_{ws} + v_{s}) - \frac{q_{m}L_{m}^{2}}{4}$	
${\rm III_m}^1$	$A = \frac{1}{2q_s} + \frac{1}{4q_m}$	$B=g+\frac{L_m}{2}$	$C = -M_s - \frac{q_m L_m^2}{4}$	→ S m →
IIIs	$A = \frac{1}{4 q_s} + \frac{1}{2 q_m}$	$B = t_{ws} + v_s + g$	$C = -q_s t_{ws} (t_{ws} + v_s) - M_m$	m — m
IV	$A = \frac{1}{2 q_s} + \frac{1}{2 q_m}$	B = g	$C = -M_s - M_m$	m - m

¹Yield Modes II and III_m do not apply for double shear connections.

²See Section 1.6 for notation.

Table 1-3 General Dowel Equations or Hollow Cross Section Main Member and Solid Cross Section Side Member(s)2

Yield Mode	Single Shear	Double She	ar	Description
Im	$P = 2q_{m}t_{wm}$	$P = 2q_m t_M$	m	- s - m - s -
I_s	$P = q_s L_s$	$P = 2 q_s L_s$		
II-IV	$P = \frac{-B + \sqrt{B^2}}{2A}$	$P = \frac{-B + AC}{-B}$	$\frac{-\sqrt{B^2-4AC}}{A}$	General equation for member bearing and dowel yielding
		Inputs A, B,	& C for Yield Modes II-IV	
Π_1	$A = \frac{1}{4 q_s} + \frac{1}{4 q_m}$	$B = t_{wm} + v_m + g + \frac{L_s}{2}$	$C = -q_{m}t_{wm}(t_{wm} + v_{m}) - \frac{q_{s}L_{s}^{2}}{4}$	→ s →
${\rm III}_{\rm m}^{-1}$	$A = \frac{1}{2q_s} + \frac{1}{4q_m}$	$B = g + t_{wm} + v_m$	$C = -M_s - q_m t_{wm} (t_{wm} + v_m)$	→ s
IIIs	$A = \frac{1}{4 q_s} + \frac{1}{2 q_m}$	$B = \frac{L_s}{2} + g$	$C = -\frac{q_s L_s^2}{4} - M_m$	
IV	$A = \frac{1}{2q_s} + \frac{1}{2q_m}$	B = g	$C = -M_s - M_m$	

Yield Modes II and III_m do not apply for double shear connections.

²See Section 1.6 for notation.

Allows for evaluation of connections with gaps between connected members

Figure 2-5

Single Shear Connection - Mode II

Single Shear Dowel Joint

Single Shear Dowel Joint with Uniform Loading

- Tapered tip fasteners
 - NDS 12.5.3 defines "E" as length of tapered tip
 - Lag screws E defined in Appendix L
 - Wood screws, nails E assumed to be 2D
 - Tapered tip does not count towards bearing length (L_m) in TR12 Tapered tip equations.

Tapered tip equations

- Mode I_m
- $P = q_m \left(p \frac{E}{2} \right)$
- Mode I_s
- $P = q_s \left(2L_s \frac{E}{2} \right)$

$$P^{2}\left(\frac{1}{4q_{s}} + \frac{1}{4q_{m}}\right) + P\left(\frac{L_{s}}{2} + g + \frac{p}{2} - \frac{E}{4}\right)$$

$$-\left(\frac{q_{s}L_{s}^{2}}{4} + \frac{q_{m}p^{2}}{4} - \frac{q_{m}pE}{4} + \frac{q_{m}5E^{2}}{48}\right) = 0$$

$$P^{2}\left(\frac{1}{2q_{s}} + \frac{1}{4q_{m}}\right) + P\left(g + \frac{p}{2} - \frac{E}{4}\right)$$

Mode III_m $-\left(M_{s} + \frac{q_{m}p^{2}}{4} - \frac{q_{m}pE}{4} + \frac{q_{m}5E^{2}}{48}\right) = 0$

Single Shear:

Mode III_s
$$P^2 \left(\frac{1}{4q_s} + \frac{1}{2q_m} \right) + P \left(\frac{L_s}{2} + g \right) - \left(\frac{q_s L_s^2}{4} + M_{dm} \right) = 0$$

Double Shear:

$$\frac{P^2}{4} \left(\frac{1}{4q_s} + \frac{1}{2q_m} \right) + \frac{P}{2} \left(\frac{L_s}{2} + g \right) - \left(\frac{q_s L_s^2}{4} + M_{dm} \right) = 0$$

Mode IV

Single Shear:

$$P^{2}\left(\frac{1}{2q_{s}} + \frac{1}{2q_{m}}\right) + Pg - (M_{ds} + M_{dm}) = 0$$

Double Shear:

Mode II
$$P^{2} \left(\frac{1}{4q_{s}} + \frac{1}{4q_{m}} \right) + P \left(\frac{L_{s}}{2} + g + \frac{p}{2} - \frac{E}{4} \right) \qquad \frac{P^{2}}{4} \left(\frac{1}{2q_{s}} + \frac{1}{2q_{m}} \right) + \frac{Pg}{2} - \left(M_{ds} + M_{dm} \right) = 0$$

TR12 shows NDS approximations are <1% different from using expanded equation!

- TR12 presents mechanics-based equations
 - Gives same results as NDS energy-based approach
- Equations in TR12 calculate P, must be divided by R_d (NDS Table 12.3.1B) to convert to NDS Z basis
- TR12 Appendix available with supplementary information

Technical Report 12 Appendix

Contains additional data for TR12 equation inputs

- Dowel bearing values for:
 - Wood
 - Steel
 - Concrete
 - Stainless steel
 - Aluminum
- Dowel bending values for fastener materials:
 - Steel and stainless steel bolts and lag screws
 - Low-to-medium carbon steel nails
 - Hardened steel nails (including post-frame ring-shank)

	Nominal Bearing Stress	NDS Dowel Bearing Strength, F _e , Equation (psi)	NDS Reference Value, F _e (psi)
Wood members³ (for D ≥ 1/4")			
Parallel to grain (Fel)		11200 G	NDS Table 12.3.3
Perpendicular to grain $(F_{e\perp})$		6100 G ^{1.45} /D ^{0.5}	NDS Table 12.3.3
Wood members ³ (D < 1/4")			
Parallel and perpendicular to grain (F_e)		16600 G ^{1.84}	NDS Table 12.3.
Wood Structural Panels ³			
Plywood (for D ≤ 1/4")			
Structural 1, Marine ($G_{eqv} = 0.5$)		16600 G ^{1.84}	4650
Other Grades ($G_{\text{eav}} = 0.42$) (Note: Use $G_{\text{eav}} = 0.42$ when species of the plies is not When species of the plies is known, specific gravity lis actual species and the corresponding dowel bearing str	ted for the	16600 G ^{1.84}	3350

Fastener	NDS Dowel Bending Yield Strength, Fyb, Equation(psi)	NDS Reference Value, Fyb (psi)
Bolt, lag screw (with $D \ge 3/8$ "), drift pin		
SAE J429 Grade 1: $F_y = 36 \text{ ksi}, F_u = 60 \text{ ksi}$	$F_y/2 + F_u/2$	45,000
ASTM A320, Class 1, Type B8 and B8M:		
Stainless Steel S30400: $\underline{F}_y = 30 \text{ ksi}, F_u = 75 \text{ ksi}$		-
Stainless Steel S30403: $F_y = 25 \text{ ksi}, F_u = 70 \text{ ksi}$		
Stainless Steel S31600: $F_y = 30 \text{ ksi}, F_u = 75 \text{ ksi}$		-
Stainless Steel S31603: $F_y = 25 \text{ ksi}, F_u = 70 \text{ ksi}$		-
Common, box, or sinker nail, spike, lag screw, wood screw (low to medium carbon steel)	130,400 - 213,900D	
0.099" ≤ D ≤ 0.142"	NEARALSONS (F-1.5.0) (15.00)	100,000
0.142 " $< D \le 0.177$ "		90,000
0.177 " $\leq D \leq 0.236$ "		80,000

70 000

- Calculate W for ¼" diameter, 2.5" long lag screw connecting
 2-2x SYP (G = 0.55) members
 - $W = 1800 G^{3/2} D^{3/4} = 260 lbs/in (calculate or NDS Table 12.2A)$
 - Calculate penetration into main member for withdrawal capacity
 - NDS Appendix L gives lag screw dimensions
 - Length of unthreaded section = 3/4"
 - Length of threaded section (including tip) = 1¾"
 - Length of threaded section (excluding tip) = $1^{19}/_{32}$ "
 - p = screw length length of side member length of tip
 - p = 2.5'' 1.5'' (13/4'' 119/32'') = 0.84'' of penetration
 - Unadjusted capacity = W*p = (260 lbs/in * 0.84 in) = 219 lbs
 - Apply adjustment factors per Table 11.3.1 to get adjusted W'

- Calculate unadjusted Z for ½" diameter bolt connecting two
 2x DF-L (G = 0.5) members with a 1" gap between them
 - Both members loaded parallel to grain $(K_0 = 1)$
 - D = 0.5''
 - $F_{e_{II}}$ = 5600 psi (NDS Table 12.3.3); $q_s = q_m = F_{e_{II}}^* D = 5600$ psi * 0.5" = 2800 lb/in
 - $L_s = L_m = 1.5''$
 - $F_{vb} = 45,000 \text{ psi}$
 - g = 1"

$$I_{m} P = q_{m} L_{m}$$

$$I_s P = q_s L_s$$

- Calculate unadjusted Z for ½" diameter bolt connecting two
 2x DF-L (G = 0.5) members with a 1" gap between them
 - $M_m = M_s = (F_b D^3)/6 = (45,000 \text{ psi})*(0.5"^3)/6 = 937.5 \text{ lb-in}$
 - Substituting values into TR12 equations yields P values
 - Divide P values by R_d to obtain Z

Mode	P (lbs)	R _d	Z (lbs)
I_{m}	4200	$4K_{\theta} = 4$	1050
I_s	4200	$4K_{\theta} = 4$	1050
II	1163	$3.6K_{\theta} = 3.6$	<u>323</u>
III_{m}	1211	$3.2K_{\theta} = 3.2$	378
III_s	1211	$3.2K_{\theta} = 3.2$	378
IV	1285	$3.2K_{\theta} = 3.2$	402

- Compare lateral Z values for single shear nail connection at 6D, 8D, 10D, and 12D penetration using TR12 tapered tip equations
 - 8d common nail D = 0.131", tapered tip length, E = 2D = 0.262"
 - Main member $F_{\rm em}$ = 4,700 psi (loaded parallel to grain); ASTM A653, Grade 33 steel side member, thickness = 0.06", $F_{\rm es}$ = 61,850 psi
 - $L_m = p$ (penetration into main member); $L_s = 0.06''$ (side member thickness)

Penetration Depth (p)	Z (lbs)	Controlling mode
12D (1.57")	97	III_s
10D (1.31")	97	III_s
8D (1.05")	97	III_s
6D (0.79")	79	II

- Compare Z values for single shear nail connection at 6D, 8D, 10D, and 12D penetration <u>using NDS L_m assumption for tapered tip</u>
 - 8d common nail D = 0.131", tapered tip length, E = 2D = 0.262"
 - Main member $F_{em} = 4,700$ psi (loaded parallel to grain); ASTM A653, Grade 33 steel side member, thickness = 0.06", $F_{es} = 61,850$ psi
 - $L_m = p E/2$ (NDS assumption); $L_s = 0.06''$ (side member thickness)

Penetration Depth (p)	Z (lbs)	Controlling mode
12D (1.57")	97	III_s
10D (1.31")	97	III_{s}
8D (1.05")	97	III_s
6D (0.79")	78	II

Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information

Software Solutions Exist

- •WWPA Lumber Design Suite
 - Beams and Joists
 - Post and Studs

http://www2.wwpa.org/TECHGUIDEPAGES/DesignSoftware/tabid/859/Default.aspx

Example Problem – Connections Calculator

AWC Connections Calculator

Aug 03, 2015

- Can calculate lateral and withdrawal capacities
 - http://awc.org/codes-standards/calculators-software/connectioncalc

Example Problem – Connections Calculator

Connection Yield Modes

Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information

More info???

· 2012 NDS

KM5

Update to 2015 mention the what's changed icon. Kam-Biron, Michelle, 1/25/2017

More info???

- Technical papers on Timber rivets:
 <u>http://www.awc.org/helpoutreach/faq/faqFiles/Timber_rivets.html</u>
 - Timber rivets in structural composite lumber
 - Simplified analysis of timber rivet connections
 - Timber rivet connections in U.S. domestic species
 - Timber Rivets-Structure Magazine
 - Seismic Behavior of Timber Rivets in Wood Construction
 - Seismic Performance of Riveted Connections in Heavy Timber Construction
 - Timber rivet suppliers

More info???

- Load-carrying behavior of steel-to-timber dowel connections: http://timber.ce.wsu.edu/Resources/papers/2-4-1.pdf
- New Concealed Connectors Bring More Options for Timber Structures http://www.structuremag.org/Archives/2007-1/p42-43D-Insights-ConcealedConnectorsJan07.pdf

Take Home Messages...

- Transfer loads in compression / bearing whenever possible
- Allow for dimensional changes in the wood due to potential inservice moisture cycling
- Avoid the use of details which induce tension perp stresses in the wood
- Avoid moisture entrapment in connections
- Separate wood from direct contact with masonry or concrete
- Avoid eccentricity in joint details
- Minimize exposure of end grain

Connections

mand you thought connecting wood was complicated!

Questions?

 This concludes The American Institute of Architects Continuing Education Systems Course

American Wood Council

info@awc.org

www.awc.org

