Connection Design with the NDS and Technical Report 12

Lori Koch, PE
Manager, Educational Outreach
American Wood Council

This webinar is presented on behalf of NCSEA
If you have time, I suggest increase the font sizes throughout the presentation. Maybe this is something that you can have Kim do. Also, check some of slides graphics as they may have the graphics cut off at the bottom of the slides.
This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© American Wood Council 2017
Course Description

This course will feature techniques for designing connections for wood members utilizing AWC's 2015 *National Design Specification® (NDS®) for Wood Construction* and *Technical Report 12 - General Dowel Equations for Calculating Lateral Connection Values* (TR12). Topics will include connection design philosophy and behavior, an overview of common fastener types, changes in the 2015 NDS related to cross-laminated timber, and design examples per TR12.
Learning Objectives

• On completion of this course, participants will:

 1. Be familiar with current wood member connection solutions and applicable design requirements.
 2. Be familiar with Technical Report 12 and provisions for connection design beyond NDS requirements.
 3. Be able to recommend fastening guidelines for wood to steel, wood to concrete, and wood to wood connections.
 4. Be able to describe effects of moisture on wood member connections and implement proper detailing to mitigate issues that may occur.
Outline

• Wood connection design philosophy
• Connection behavior
• Serviceability challenges
• Connection hardware and fastening systems
• Connection techniques
• Design software
• Where to get more information
Basic Concepts

- Model wood cells as a bundle of straws
- Bundle is very strong parallel to axis of the straws

Parallel

Stronger

Perpendicular

Less strong
Connecting Wood - Philosophy

- Wood likes compression parallel to grain
 - makes connecting wood very easy
Connecting Wood - Philosophy

- Wood likes compression parallel to grain
 - makes connecting wood very easy
Connecting Wood - Philosophy

- Wood likes to take on load spread over its surface
Connecting Wood - Philosophy

- Wood and tension perpendicular to grain
 - Not recommended

Initiators:
- notches
- large diameter fasteners
- hanging loads
Notching

Problem

Solution
Beam to Concrete

- Notched Beam Bearing
 - may cause splitting
 - not recommended
Beam to Concrete

- Notched Bearing Wall
- alternate to beam notch
Hanger to Beam

- Load suspended from lower half of beam
 - Tension perpendicular to grain
 - May cause splits
Hanger to Beam

Lower half of beam
- may cause splits
- not recommended

Exception: light load
- <100 lbs
- >24” o.c.
I believe this is per the exception is per the NDS, you might mention where it states this.

Kam-Biron, Michelle, 1/25/2017
Hanger to Beam

- Load supported in upper half of beam
- Extended plates puts wood in compression when loaded

Full wrap sling option

compression
Connecting Wood- Philosophy

- Splitting happens because wood is relatively weak perpendicular to grain
- Nails too close (act like a wedge)
Connecting Wood - Philosophy

Staggered Nailing

Nailing not staggered

Nailing staggered

Framing

Wood Structural Panel

Nail

1/8" Gap Between Panels
Splitting will not occur perpendicular to grain, no matter how close nails are. Splitting occurs parallel to grain. Staggering a line of nails parallel to wood grain minimizes splitting. Staggering a line of nails parallel to wood grain minimizes splitting.
Connecting Wood - Philosophy

- Wood, like other hygroscopic materials, moves in varying environments
Connecting Wood - Philosophy

- Fastener selection is key to connection ductility, strength, performance
Outline

• Wood connection design philosophy
• Connection behavior
• Serviceability challenges
• Connection hardware and fastening systems
• Connection techniques
• Design software
• Where to get more information
Connection Behavior

- Balance
 - Strength –
 - Ductility-

![Graph showing connection behavior](image)
Connection Behavior

- Balance
- Strength –
 - Size and number of fasteners
- Ductility –
 - Fastener slenderness
 - Spacing
 - End distance

![Diagram showing connection behavior with load vs. displacement.](image-url)
Outline

• Wood connection design philosophy
• Connection behavior
• Serviceability challenges
• Connection hardware and fastening systems
• Connection techniques
• Design software
• Where to get more information
Connection Serviceability

- **Issue**: direct water ingress
- **Water is absorbed most quickly through wood end grain**

![Image](image_url)
Connection Serviceability

- **Issue:** direct water ingress
- **Re-direct the water flow around the connection**

![Image of end caps and flashing]
Connection Serviceability

- **Issue**: direct water ingress
- **Or**, let water out if it gets in...

![Moisture trap - No weep holes](image)
Moisture Changes In Wood

Causes dimensional changes perpendicular to grain

Growing tree is filled with water

As wood dries, it shrinks perp. to grain
Wood Shrinks
Connection Serviceability

- Moisture Effects

1% change in dimension for every 4% change MC

Figure 1.1
Shrinkage due to moisture loss.
Wet Service Factor, C_M

- Dowel-type connectors
 - bolts
 - drift pins
 - drift bolts
 - lag screws
 - wood screws
 - nails

C_M values:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Lateral load ($C_M = 0.7$ for $D < 1/4''$)</th>
<th>Withdrawal load - lag & wood screws only</th>
<th>Withdrawal load - nails & spikes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry</td>
<td>1.0 0.7 0.4*</td>
<td>1.0 0.7 1.0</td>
<td>1.0 0.25 0.25</td>
</tr>
<tr>
<td>19% MC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturated</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fabrication MC: Yellow
In-service MC: Brown

32
Wet Service Factor, C_M

$C_M = 1.0$ if:
- 1 fastener
- 2+ fasteners
- split splice plates

Saturated
19% MC

Dry

$C_M = 0.4$ Lateral load ($D>1/4''$)

fabrication MC
in-service MC

Table 11.3.3 footnote 2
Beam to Column

- Full-depth side plates
- may cause splitting
- wood shrinkage
Beam to Column

- Smaller side plates
- Transmit force
- Allow wood movement
Beam to Column

- Problem
 - shrinkage
 - tension perp
Beam to Wall

- Solution
 - bolts near bottom
 - minimizes effect of shrinkage

Slotted hardware
Connection Serviceability

- Avoid contact with cementitious materials

- **Beam on Shelf**
 - prevent contact with concrete
 - provide lateral resistance and uplift
Beam to Concrete

• Beam on Wall
 • prevent contact with concrete
 • provide lateral resistance and uplift
 • slotted to allow longitudinal movement
 • typical for sloped beam
Beam to Masonry

- Application

Need 1/2” air gap between wood and masonry
Column to Base

- **Problem**
 - no weep holes in closed shoe
 - moisture entrapped
 - decay can result
Column to Base

- Angle brackets
- anchor bolts in brackets
Hidden Column Base

- Floor slab poured over connection
 - will cause decay
 - not recommended
Column to Base

- Floor slab poured below connection
Outline

• Wood connection design philosophy
• Connection behavior
• Serviceability challenges
• Connection hardware and fastening systems
• Connection techniques
• Design software
• Where to get more information
Mechanical Connectors
Traditional Connectors

- All-wood solution
- Time tested
- Practical
- Extreme efficiencies available with computer numeric control (CNC) machining

www.tfguild.org
www.timberframe.org
Traditional Connectors

- Long History > 100 years
- Uses automated Computer numerical Control (CNC) milling technology
 - machine joints
 - pre-drill holes
- Timber Framer’s Guild - www.tfguild.org

Traditional Connectors

- Wood dowel connection design technology now available

Mechanical Connectors

- Common Fasteners
 - Nails
 - Staples
 - Wood Screws
 - Metal plate connectors
 - Lag screws
 - Bolts
Typical Panel Connectors
Typical Panel Connectors

Resource: Simpson Strong-Tie
Typical Panel Connectors
Fastener Values

- Included in U.S. design literature

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolts</td>
<td>NDS or ER</td>
</tr>
<tr>
<td>Lag Screws</td>
<td>NDS or ER</td>
</tr>
<tr>
<td>Wood Screws</td>
<td>NDS or ER</td>
</tr>
<tr>
<td>Nails & Spikes</td>
<td>NDS or ER</td>
</tr>
<tr>
<td>Split Ring Connectors</td>
<td>NDS</td>
</tr>
<tr>
<td>Shear Plate Connectors</td>
<td>NDS</td>
</tr>
<tr>
<td>Drift Bolts & Drift Pins</td>
<td>NDS</td>
</tr>
<tr>
<td>Metal Plate Connectors</td>
<td>ER</td>
</tr>
<tr>
<td>Hangers & Framing Anchors</td>
<td>ER</td>
</tr>
<tr>
<td>Staples</td>
<td>ER</td>
</tr>
</tbody>
</table>

Evaluation Reports (ER) are developed for proprietary products.
Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information
Governing Codes for Wood Design

2015 NDS referenced in 2015 IBC
2015 NDS Chapter Reorganization

2012 NDS
- 1-3 General
- 4-9 Products
- 10-13 Connections
- 14 Shear Walls & Diaphragms
- 15 Special Loading
- 16 Fire

2015 NDS
- 1-3 General
- 4-10 Products +CLT
- 11-14 Connections
- Shear Walls & Diaphragms
- 15 Special Loading
- 16 Fire
NDS Chapter 11 – Mechanical Connections

- ASD and LRFD accommodated through Table 11.3.1
- Dowel fasteners
- Split ring/shear plate
- Timber rivets
- Spike grids

New chapter numbering for 2015 NDS!
NDS Dowel-fastener Connections

- 2015 NDS Chapter 12 (New location)
- Can be used for any dowel-shaped fastener
- Includes lateral and withdrawal provisions
 - Bolts
 - Lag screws
 - Wood screws
 - Nails
 - Spikes
 - Drift bolts
 - Drift pins
Dowel-fastener withdrawal

• **Withdrawal calculated based on fastener penetration**
 • W value is per inch of fastener penetration
 • Threaded fasteners use thread penetration
• **Lag screws**
 • \[W = 1800 \ G^{3/2} \ D^{3/4} \]
• **Wood screws**
 • \[W = 2850 \ G^2 \ D \]
• **Nails (smooth shank)**
 • \[W = 1380 \ G^{5/2} \ D \]

No withdrawal in end grain allowed for nails or wood screws!
Yield Modes

MODE I
- bearing-dominated yield of wood fibers

MODE II
- pivoting of fastener with localized crushing of wood fibers

Connection Yield Modes

- **SINGLE SHEAR CONNECTIONS**
 - Mode I
 - Mode II

- **DOUBLE SHEAR CONNECTIONS**
 - Mode I
 - Mode II
Yield Modes

MODE III
- Fastener yield in bending at one plastic hinge and bearing – dominated yield of wood fibers

MODE IV
- Fastener yield in bending at two plastic hinges and bearing – dominated yield of wood fibers
Table 12.3.3 Dowel Bearing Strengths, F_e, for Dowel-Type Fasteners

<table>
<thead>
<tr>
<th>Specific Gravity, G</th>
<th>F_e D<1/4"</th>
<th>F_e 1/4" ≤ D ≤ 1"</th>
<th>Dowel bearing strength in pounds per square inch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$D=1/4"$</td>
</tr>
<tr>
<td>0.73</td>
<td>9300</td>
<td>8200</td>
<td>7750</td>
</tr>
<tr>
<td>0.72</td>
<td>9050</td>
<td>8050</td>
<td>7600</td>
</tr>
<tr>
<td>0.71</td>
<td>8850</td>
<td>7950</td>
<td>7400</td>
</tr>
<tr>
<td>0.70</td>
<td>8600</td>
<td>7850</td>
<td>7250</td>
</tr>
<tr>
<td>0.69</td>
<td>8400</td>
<td>7750</td>
<td></td>
</tr>
<tr>
<td>0.68</td>
<td>8150</td>
<td>7600</td>
<td></td>
</tr>
</tbody>
</table>

$F_{e\parallel} = 11200G$

$F_{e\perp} = 6100G^{1.45}/\sqrt{D}$

F_e for D < 1/4" = 16600 $G^{1.84}$

Table 12.3.3B Dowel Bearing Strengths for Wood Structural Panels

<table>
<thead>
<tr>
<th>Wood Structural Panel</th>
<th>Specific G</th>
<th>Dowel Bearing Strength, F_e, in pounds per square inch (psi) for $D\leq1/4"$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plywood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural 1, Marine</td>
<td>0.50</td>
<td>4650</td>
</tr>
<tr>
<td>Other Grades 1</td>
<td>0.42</td>
<td>3350</td>
</tr>
<tr>
<td>Oriented Strand Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Grades</td>
<td>0.50</td>
<td>4650</td>
</tr>
</tbody>
</table>

Fastener Bending Yield Test

Center-Point Bending Test

Load

\[
\begin{align*}
D & \quad D \\
\frac{s_{bp}}{2} & \quad \frac{s_{bp}}{2} \\
L - \frac{s_{bp}}{2} & \quad \frac{L - s_{bp}}{2}
\end{align*}
\]
Table I1 Fastener Bending Yield Strengths, F_{yb}

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>F_{yb} (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt, lag screw (with $D \geq 3/8''$), drift pin (SAE J429 Grade 1 - $F_y = 36,000$ psi and $F_u = 60,000$ psi)</td>
<td>45,000</td>
</tr>
<tr>
<td>Common, box, or sinker nail, spike, lag screw, wood screw (low to medium carbon steel)</td>
<td></td>
</tr>
<tr>
<td>$0.099'' \leq D \leq 0.142''$</td>
<td>100,000</td>
</tr>
<tr>
<td>$0.142'' < D \leq 0.177''$</td>
<td>90,000</td>
</tr>
<tr>
<td>$0.177'' < D \leq 0.236''$</td>
<td>80,000</td>
</tr>
<tr>
<td>$0.236'' < D \leq 0.273''$</td>
<td>70,000</td>
</tr>
<tr>
<td>$0.273'' < D \leq 0.344''$</td>
<td>60,000</td>
</tr>
<tr>
<td>$0.344'' < D \leq 0.375''$</td>
<td>45,000</td>
</tr>
<tr>
<td>Hardened steel nail (medium carbon steel) including post-frame ring shank nails</td>
<td></td>
</tr>
<tr>
<td>$0.120'' \leq D \leq 0.142''$</td>
<td>130,000</td>
</tr>
<tr>
<td>$0.142'' < D \leq 0.192''$</td>
<td>115,000</td>
</tr>
<tr>
<td>$0.192'' < D \leq 0.207''$</td>
<td>100,000</td>
</tr>
</tbody>
</table>
Yield Limit Equations

Table 12.3.1A Yield Limit Equations

<table>
<thead>
<tr>
<th>Yield Mode</th>
<th>Single Shear</th>
<th>Double Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_m</td>
<td>$Z = \frac{D \ell_m F_{em}}{R_d}$</td>
<td>$Z = \frac{D \ell_m F_{em}}{R_d}$</td>
</tr>
<tr>
<td>I_s</td>
<td>$Z = \frac{D \ell_s F_{es}}{R_d}$</td>
<td>$Z = \frac{2 D \ell_s F_{es}}{R_d}$</td>
</tr>
<tr>
<td>II</td>
<td>$Z = \frac{k_1 D \ell_s F_{es}}{R_d}$</td>
<td>$Z = \frac{2 k_3 D \ell_s F_{em}}{(2 + R_e) R_d}$</td>
</tr>
<tr>
<td>III_m</td>
<td>$Z = \frac{k_2 D \ell_m F_{em}}{(1 + 2R_e) R_d}$</td>
<td>$Z = \frac{2 k_3 D \ell_s F_{em}}{(2 + R_e) R_d}$</td>
</tr>
<tr>
<td>III_s</td>
<td>$Z = \frac{k_3 D \ell_s F_{es}}{(2 + R_e) R_d}$</td>
<td>$Z = \frac{2 k_3 D \ell_s F_{em}}{(2 + R_e) R_d}$</td>
</tr>
<tr>
<td>IV</td>
<td>$Z = \frac{D^2 \sqrt{2 F_{em} F_{yb}}}{R_d \sqrt{3 (1 + R_e)}}$</td>
<td>$Z = \frac{2 D^2 \sqrt{2 F_{em} F_{yb}}}{R_d \sqrt{3 (1 + R_e)}}$</td>
</tr>
</tbody>
</table>

- **4 Modes of failure**
- **6 Yield equations**
 Lowest Yield “Z” value = Connection Capacity
- **Single & double shear**
Yield Limit Equations

\[k_1 = \sqrt{R_e + 2R_e^2 (1 + R_t + R_t^2) + R_t^2 R_e^3 / (1 + R_e)} - R_e (1 + R_t) \]

\[k_2 = -1 + \sqrt{2(1 + R_e) + \frac{2F_{yb}(2 + 2R_e)D^2}{3F_{em}\ell_m^2}} \]

\[k_3 = -1 + \sqrt{2(1 + R_e) + \frac{2F_{yb}(2 + R_e)D^2}{3F_{em}\ell_s^2}} \]

D = diameter, in. (see 12.3.7)

\(F_{yb} \) = dowel bending yield strength, psi

\(R_d \) = reduction term (see Table 12.3.1B)

\(R_e \) = \(F_{em}/F_{es} \)

\(R_t \) = \(\ell_m/\ell_s \)

\(\ell_m \) = main member dowel bearing length, in.

\(\ell_s \) = side member dowel bearing length, in.

\(F_{em} \) = main member dowel bearing strength, psi (see Table 12.3.3)

\(F_{es} \) = side member dowel bearing strength, psi (see Table 12.3.3)
Yield Limit Equations

Table 12.3.1B Reduction Term, R_d

<table>
<thead>
<tr>
<th>Fastener Size</th>
<th>Yield Mode</th>
<th>Reduction Term, R_d</th>
</tr>
</thead>
<tbody>
<tr>
<td>$0.25" \leq D \leq 1"$</td>
<td>I_m, I_s</td>
<td>$4 , K_\theta$</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>$3.6 , K_\theta$</td>
</tr>
<tr>
<td></td>
<td>III$_m$, III$_s$, IV</td>
<td>$3.2 , K_\theta$</td>
</tr>
<tr>
<td>$D < 0.25"$</td>
<td>I_m, I_s, II, III$_m$, III$_s$, IV</td>
<td>K_D^1</td>
</tr>
</tbody>
</table>

Notes:
- $K_\theta = 1 + 0.25(\theta/90)$
- θ = maximum angle between the direction of load and the direction of grain ($0^\circ \leq \theta \leq 90^\circ$) for any member in a connection
- D = diameter, in. (see 12.3.7)
- $K_D = 2.2$ for $D \leq 0.17"$
- $K_D = 10D + 0.5$ for $0.17" < D < 0.25"$

1. For threaded fasteners where nominal diameter (see Appendix L) is greater than or equal to $0.25"$ and root diameter is less than $0.25"$, $R_d = K_D \, K_s$. Also applied in TR12 equations!
Spacing, End, & Edge Distance

Figure 12G Bolted Connection Geometry

Parallel to grain loading in all wood members (Z_{g})

Perpendicular to grain loading in the side member and parallel to grain loading in the main member ($Z_{s.m.}$)
Spacing, End, & Edge Distance

Table 12.5.1A End Distance Requirements

<table>
<thead>
<tr>
<th>Direction of Loading</th>
<th>End Distance Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>End Distances</td>
</tr>
<tr>
<td></td>
<td>Minimum end distance for $C_\Delta = 0.5$</td>
</tr>
<tr>
<td>Perpendicular to Grain</td>
<td>2D</td>
</tr>
<tr>
<td>Parallel to Grain, Compression:</td>
<td>2D</td>
</tr>
<tr>
<td>(fastener bearing away from member end)</td>
<td></td>
</tr>
<tr>
<td>Parallel to Grain, Tension:</td>
<td>3.5D</td>
</tr>
<tr>
<td>(fastener bearing toward member end)</td>
<td></td>
</tr>
<tr>
<td>for softwoods</td>
<td>2.5D</td>
</tr>
<tr>
<td>for hardwoods</td>
<td></td>
</tr>
</tbody>
</table>

Table 12.5.1C Edge Distance Requirements

<table>
<thead>
<tr>
<th>Direction of Loading</th>
<th>Minimum Edge Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel to Grain:</td>
<td></td>
</tr>
<tr>
<td>where $\ell/D \leq 6$</td>
<td>1.5D</td>
</tr>
<tr>
<td>where $\ell/D > 6$</td>
<td>1.5D or $\frac{1}{2}$ the spacing between rows, whichever is greater</td>
</tr>
<tr>
<td>Perpendicular to Grain:*2</td>
<td></td>
</tr>
<tr>
<td>loaded edge</td>
<td>4D</td>
</tr>
<tr>
<td>unloaded edge</td>
<td>1.5D</td>
</tr>
</tbody>
</table>

Table 12.5.1E Edge and End Distance and Spacing Requirements for Lag Screws Loaded in Withdrawal and Not Loaded Laterally

<table>
<thead>
<tr>
<th>Orientation</th>
<th>Minimum Distance/Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Distance</td>
<td>1.5D</td>
</tr>
<tr>
<td>End Distance</td>
<td>4D</td>
</tr>
<tr>
<td>Spacing</td>
<td>4D</td>
</tr>
</tbody>
</table>
Table 12.5.1B Spacing Requirements for Fasteners in a Row

<table>
<thead>
<tr>
<th>Direction of Loading</th>
<th>Minimum Spacing</th>
<th>Minimum spacing for $C_\Delta = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel to Grain</td>
<td>3D</td>
<td>4D</td>
</tr>
<tr>
<td>Perpendicular to Grain</td>
<td>3D</td>
<td>Required spacing for attached members</td>
</tr>
</tbody>
</table>

Table 12.5.1D Spacing Requirements Between Rows\(^1\)

<table>
<thead>
<tr>
<th>Direction of Loading</th>
<th>Minimum Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel to Grain</td>
<td>1.5D</td>
</tr>
</tbody>
</table>
| Perpendicular to Grain:
 where $\ell/D \leq 2$ | 2.5D |
 where $2 < \ell/D < 6$ | $(5\ell + 10D)/8$ |
 where $\ell/D \geq 6$ | 5D |
• Unless special detailing is provided to accommodate cross-grain shrinkage of the wood member.

<table>
<thead>
<tr>
<th>Table 12.5.1F</th>
<th>Perpendicular to Grain Distance Requirements for Outermost Fasteners in Structural Glued Laminated Timber Members</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fastener Type</td>
<td>Moisture Content</td>
</tr>
<tr>
<td>All Fasteners</td>
<td>At Time of Fabrication</td>
</tr>
<tr>
<td>Any</td>
<td>>16%</td>
</tr>
<tr>
<td>Bolts</td>
<td><16%</td>
</tr>
<tr>
<td>Lag Screws</td>
<td><16%</td>
</tr>
<tr>
<td>Drift Pins</td>
<td><16%</td>
</tr>
</tbody>
</table>
NDS Appendix E

• **Appendix E – Local Stresses in Fastener Groups (Non-mandatory)**
 • Groups of closely spaced fasteners loaded parallel to grain
 • Net Section Tension Capacity
 • Row Tear-Out Capacity
 • Group Tear-Out Capacity
 • **Example problems**
 • Staggered rows of bolts
 • Single row of bolts
 • Row of split rings
Chapter 12-Dowels

12.3.7 Dowel Diameter

12.3.7.1 Where used in Tables 12.3.1A or 12.3.1B, the fastener diameter shall be taken as \(D \) for unthreaded full-body diameter fasteners and \(D_r \) for reduced body diameter fasteners or threaded fasteners except as provided in 12.3.7.2.

12.3.7.2 For threaded full-body fasteners (see Appendix L), \(D \) shall be permitted to be used in lieu of \(D_r \) where the bearing length of the threads does not exceed \(\frac{1}{4} \) of the full bearing length in the member holding the threads. Alternatively, a more detailed analysis accounting for the moment and bearing resistance of the threaded portion of the fastener shall be permitted (see Appendix I).
Appendix L (Non-mandatory) Typical Dimensions for Dowel-Type Fasteners and Washers

Table L1 Standard Hex Bolts

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>diameter</td>
</tr>
<tr>
<td>D_r</td>
<td>root diameter</td>
</tr>
<tr>
<td>T</td>
<td>thread length</td>
</tr>
<tr>
<td>L</td>
<td>bolt length</td>
</tr>
<tr>
<td>F</td>
<td>width of head across flats</td>
</tr>
<tr>
<td>H</td>
<td>height of head</td>
</tr>
</tbody>
</table>

![Full-Body Fastener Image]

Table L2 Standard Hex Lag Screws

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>diameter</td>
</tr>
<tr>
<td>D_r</td>
<td>root diameter</td>
</tr>
<tr>
<td>S</td>
<td>unthreaded body length</td>
</tr>
<tr>
<td>T</td>
<td>minimum thread length</td>
</tr>
<tr>
<td>E</td>
<td>length of tapered tip</td>
</tr>
<tr>
<td>L</td>
<td>lag screw length</td>
</tr>
<tr>
<td>N</td>
<td>number of threads/inch</td>
</tr>
<tr>
<td>F</td>
<td>width of head across flats</td>
</tr>
<tr>
<td>H</td>
<td>height of head</td>
</tr>
</tbody>
</table>

![Reduced Body Diameter Image]
![Full-Body Diameter Image]
Dowel Diameters

Dia. Fastener = D

Threaded length ≤ \(\frac{l_m}{4} \)

Dia. Fastener = D

Threaded length ≤ \(\frac{l_m}{4} \)
Dowel Diameters

Dia. Fastener = \(D_r \)

- NDS Chapter 12 Tables use \(D_r \) for lateral yield equations
 - Assumes shear plane passes through threads
12.2.1.5 Where lag screws are loaded in withdrawal from the narrow edge of cross-laminated timber, the reference withdrawal value, W, shall be multiplied by the end grain factor, $C_{eg}=0.75$, regardless of grain orientation.
12.2.2.4 Wood screws shall not be loaded in withdrawal from end-grain of laminations in cross-laminated timber ($C_{eg} = 0.0$).

12.2.3.6 Nails, and spikes shall not be loaded in withdrawal from end-grain of laminations in cross-laminated timber ($C_{eg} = 0.0$).
12.3.3 Dowel Bearing Strength

12.3.3.5 Dowel bearing strengths, F_e, for dowel-type fasteners installed into the panel face of cross-laminated timber shall be based on the direction of loading with respect to the grain orientation of the cross-laminated timber ply at the shear plane.

12.3.3.6 Where dowel-type fasteners are installed in the narrow edge of cross-laminated timber panels, the dowel bearing strength shall be $F_{e\perp}$ for $D \geq 1/4''$ and F_e for $D < 1/4''$.

Table 12.3.3 Dowel Bearing Strengths, F_e, for Dowel-Type Fasteners in Wood Members

<table>
<thead>
<tr>
<th>Specific Gravity, G</th>
<th>F_e</th>
<th>$F_{e\perp}$</th>
<th>Dowel bearing strength in pounds per square inch (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$D < 1/4''$</td>
<td>$1/4'' \leq D \leq 1''$</td>
<td>$D=1/4''$</td>
</tr>
<tr>
<td>0.55</td>
<td>5550</td>
<td>6150</td>
<td>5150</td>
</tr>
<tr>
<td>0.54</td>
<td>5350</td>
<td>6050</td>
<td>5000</td>
</tr>
<tr>
<td>0.53</td>
<td>5150</td>
<td>5950</td>
<td>4850</td>
</tr>
</tbody>
</table>
Chapter 12 – Dowel-type Fasteners

12.3.5 Dowel Bearing Length

New

12.3.5.1 Dowel bearing length in the side member(s) and main member, \(\ell_s \) and \(\ell_m \), shall be determined based on the length of dowel bearing perpendicular to the application of load.

12.3.5.2 For cross-laminated timber where the direction of loading relative to the grain orientation at the shear plane is parallel to grain, the dowel bearing length in the perpendicular plies shall be reduced by multiplying the bearing length of those plies by the ratio of dowel bearing strength perpendicular to grain to dowel bearing strength parallel to grain \((F_{c,\perp} / F_{c,\parallel}) \).

Non-uniform for CLT
• Adjust l_m or l_s to compensate for orthogonal grain orientations in adjacent layers

• Parallel to grain: $F_{e\perp}/F_{e\parallel}$

Example: ½” bolt in southern pine 3-ply CLT with 1-½” laminations

\[l_m = t_{1\parallel} + t_{2\perp} + t_{3\parallel} = 3(1.5) = 4.5" \]

\[l_{m-adj} = t_{1\parallel} + t_{2\perp}(F_{e\perp}/F_{e\parallel}) + t_{3\parallel} \]

\[= 1.5 + 1.5(3650/6150) + 1.5 = 3.9" \]
Chapter 12 – Dowel-type Fasteners

Figure 12I End Distance, Edge Distance and Fastener Spacing Requirements in Narrow Edge of Cross-Laminated Timber

New
12.5.2 End Grain Factor, C_{eg}

12.5.2.2 Where dowel-type fasteners are inserted in the end grain of the main member, with the fastener axis parallel to the wood fibers, reference lateral design values, Z, shall be multiplied by the end grain factor, $C_{eg} = 0.67$.

12.5.2.3 Where dowel-type fasteners with $D \geq 1/4"$ are loaded laterally in the narrow edge of cross-laminated timber, the reference lateral design value, Z, shall be multiplied by the end grain factor, $C_{eg} = 0.67$, regardless of grain orientation.

- **Lateral – any end grain**
 - $D < 1/4"$ $C_{eg} = 0.67$
- **Lateral – any CLT edge**
 - $D \geq 1/4"$ $C_{eg} = 0.67$
Technical Report 12

- Background and derivation of the mechanics-based approach for calculating lateral connection capacity used in the NDS
- Provides additional flexibility and broader applicability to the NDS provisions
 - Connections with gaps between members
 - Connecting wood to members with hollow cross sections

http://www.awc.org/codes-standards/publications
Table 1-1 General Dowel Equations for Solid Cross Section Members

<table>
<thead>
<tr>
<th>Yield Mode</th>
<th>Single Shear</th>
<th>Double Shear</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_m</td>
<td>$P = q_m L_m$</td>
<td>$P = q_m L_m$</td>
<td></td>
</tr>
<tr>
<td>I_o</td>
<td>$P = q_s L_s$</td>
<td>$P = 2 q_s L_s$</td>
<td></td>
</tr>
<tr>
<td>II-IV</td>
<td>$P = \frac{-B + \sqrt{B^2 - 4AC}}{2A}$</td>
<td>$P = \frac{-B + \sqrt{B^2 - 4AC}}{A}$</td>
<td>General equation for member bearing and dowel yielding</td>
</tr>
</tbody>
</table>

Yield Modes II-IV

II

- $A = \frac{1}{4q_s} + \frac{1}{4q_m}$
- $B = g + \frac{L_m}{2}$
- $C = -\frac{q_s L_s^2}{4} - \frac{q_m L_m^2}{4}$

III$_m$

- $A = \frac{1}{2q_s} + \frac{1}{4q_m}$
- $B = g + \frac{L_m}{2}$
- $C = -M_s - \frac{q_m L_m^2}{4}$

III$_o$

- $A = \frac{1}{4q_s} + \frac{1}{2q_m}$
- $B = \frac{L_s}{2} + g$
- $C = -\frac{q_s L_s^2}{4} - M_m$

IV

- $A = \frac{1}{2q_s} + \frac{1}{2q_m}$
- $B = g$
- $C = -M_s - M_m$

1Yield Modes II and III$_m$ do not apply for double shear connections.

2See Section 1.6 for notation.
Table 1.2 General Dowel Equations for Solid Cross-Section Main Member and Hollow Cross Section Side Member(s)²

<table>
<thead>
<tr>
<th>Yield Mode</th>
<th>Single Shear</th>
<th>Double Shear</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iₘ</td>
<td>(P = q_m L_m)</td>
<td>(P = q_m L_m)</td>
<td></td>
</tr>
<tr>
<td>Iₛ</td>
<td>(P = 2q_s t_w s)</td>
<td>(P = 4q_s t_w s)</td>
<td></td>
</tr>
<tr>
<td>II-IV</td>
<td>(P = \frac{-B + \sqrt{B^2 - 4AC}}{2A})</td>
<td>(P = \frac{-B + \sqrt{B^2 - 4AC}}{A})</td>
<td>General equation for member bearing and dowel yielding</td>
</tr>
</tbody>
</table>

Inputs A, B, & C for Yield Modes II-IV

<table>
<thead>
<tr>
<th>Mode</th>
<th>(A)</th>
<th>(B)</th>
<th>(C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>(\frac{1}{4q_s} + \frac{1}{4q_m})</td>
<td>(t_w s + v_s + g + \frac{L_m}{2})</td>
<td>(-q_f t_w s (t_w s + v_s) - \frac{q_m L_m^2}{4})</td>
</tr>
<tr>
<td>IIIₘ</td>
<td>(\frac{1}{2q_s} + \frac{1}{4q_m})</td>
<td>(g + \frac{L_m}{2})</td>
<td>(-M_s \cdot \frac{q_m L_m^2}{4})</td>
</tr>
<tr>
<td>IIIₛ</td>
<td>(\frac{1}{4q_s} + \frac{1}{2q_m})</td>
<td>(t_w s + v_s + g)</td>
<td>(-q_f t_w s (t_w s + v_s) - M_m)</td>
</tr>
<tr>
<td>IV</td>
<td>(\frac{1}{2q_s} + \frac{1}{2q_m})</td>
<td>(g)</td>
<td>(-M_s - M_m)</td>
</tr>
</tbody>
</table>

¹Yield Modes II and IIIₘ do not apply for double shear connections.
²See Section 1.6 for notation.
Technical Report 12

Table 1-3 General Dowel Equations for Hollow Cross Section Main Member and Solid Cross Section Side Member(s)

<table>
<thead>
<tr>
<th>Yield Mode</th>
<th>Single Shear</th>
<th>Double Shear</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_m</td>
<td>$P = 2q_m t_{wm}$</td>
<td>$P = 2q_m t_{wm}$</td>
<td></td>
</tr>
<tr>
<td>I_s</td>
<td>$P = q_s L_s$</td>
<td>$P = 2q_s L_s$</td>
<td>General equation for member bearing and dowel yielding</td>
</tr>
<tr>
<td>II-IV</td>
<td>$P = -B + \sqrt{B^2 - 4AC}$</td>
<td>$P = -B + \sqrt{B^2 - 4AC}$</td>
<td></td>
</tr>
</tbody>
</table>

Inputs A, B, & C for Yield Modes II-IV

<table>
<thead>
<tr>
<th>Mode</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>$A = \frac{1}{4q_s} + \frac{1}{4q_m}$</td>
<td>$B = t_{wm} + v_m + g$</td>
<td>$C = -q_m t_{wm} (t_{wm} + v_m) - \frac{q_s L_s^2}{4}$</td>
</tr>
<tr>
<td>III</td>
<td>$A = \frac{1}{2q_s} + \frac{1}{4q_m}$</td>
<td>$B = g + t_{wm}$</td>
<td>$C = -M_s - q_m t_{wm} (t_{wm} + v_m)$</td>
</tr>
<tr>
<td>IIIa</td>
<td>$A = \frac{1}{4q_s} + \frac{1}{2q_m}$</td>
<td>$B = \frac{L_s}{2} + g$</td>
<td>$C = \frac{q_s L_s^2}{4} - M_m$</td>
</tr>
<tr>
<td>IV</td>
<td>$A = \frac{1}{2q_s} + \frac{1}{2q_m}$</td>
<td>$B = g$</td>
<td>$C = -M_s - M_m$</td>
</tr>
</tbody>
</table>

1. Yield Modes II and III do not apply for double shear connections.
2. See Section 1.6 for notation.
• Allows for evaluation of connections with gaps between connected members

Figure 2-5 Single Shear Connection - Mode II

Single Shear Dowel Joint

Single Shear Dowel Joint with Uniform Loading
Technical Report 12

- **Tapered tip fasteners**
 - NDS 12.5.3 defines “E” as length of tapered tip
 - Lag screws – E defined in Appendix L
 - Wood screws, nails – E assumed to be 2D
 - **Tapered tip does not count towards bearing length (L_m) in TR12 Tapered tip equations.**
• **Tapered tip equations**

 Mode I_m
 \[P = q_m \left(p - \frac{E}{2} \right) \]

 Mode I_s
 \[P = q_s \left(2L_s - \frac{E}{2} \right) \]

 Mode II
 \[P^2 \left(\frac{1}{4q_s} + \frac{1}{4q_m} \right) + P \left(\frac{L_s + g + \frac{p - E}{4}}{2} \right) - \left(\frac{q_s L_s^2}{4} + \frac{q_m P^2}{4} + \frac{q_m^3 E^2}{48} \right) = 0 \]

 Mode III_m
 \[P^2 \left(\frac{1}{2q_s} + \frac{1}{4q_m} \right) + P \left(g + \frac{p - E}{4} \right) - \left(\frac{q_m P^2}{4} - \frac{q_m p E}{4} + \frac{q_m^3 E^2}{48} \right) = 0 \]

 Mode III_s
 \[P^2 \left(\frac{1}{4q_s} + \frac{1}{2q_m} \right) + P \left(\frac{L_s + g}{2} \right) - \left(\frac{q_s L_s^2}{4} + M_{dn} \right) = 0 \]

Mode IV

Single Shear:
\[P^2 \left(\frac{1}{2q_s} + \frac{1}{2q_m} \right) + P g - \left(M_{ds} + M_{dn} \right) = 0 \]

Double Shear:
\[\frac{P^2}{4} \left(\frac{1}{2q_s} + \frac{1}{2q_m} \right) + \frac{P g}{2} - \left(M_{ds} + M_{dn} \right) = 0 \]

TR12 shows NDS approximations are <1% different from using expanded equation!
Technical Report 12

- TR12 presents mechanics-based equations
 - Gives same results as NDS energy-based approach
- Equations in TR12 calculate P, must be divided by R_d (NDS Table 12.3.1B) to convert to NDS Z basis
- TR12 Appendix available with supplementary information
Technical Report 12 Appendix

- Contains additional data for TR12 equation inputs
 - Dowel bearing values for:
 - Wood
 - Steel
 - Concrete
 - Stainless steel
 - Aluminum
 - Dowel bending values for fastener materials:
 - Steel and stainless steel bolts and lag screws
 - Low-to-medium carbon steel nails
 - Hardened steel nails (including post-frame ring-shank)

<table>
<thead>
<tr>
<th>Material</th>
<th>Nominal Bearing Stress</th>
<th>NDS Dowel Bearing Strength, F_b (Equation (psl))</th>
<th>NDS Reference Value, F_{ref} (psl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood members (for $D \geq 1/4\text{"}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel to grain (F_{b1})</td>
<td>11200 G_{12}</td>
<td>NDS Table 12.3.3</td>
<td></td>
</tr>
<tr>
<td>Perpendicular to grain (F_{b1})</td>
<td>6100 $G_{12}^{1/4}D^{3/4}$</td>
<td>NDS Table 12.3.3</td>
<td></td>
</tr>
<tr>
<td>Wood members (for $D < 1/4\text{"}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parallel and perpendicular to grain (F_{b1})</td>
<td>16600 $G_{12}^{1/4}$</td>
<td>NDS Table 12.3.3</td>
<td></td>
</tr>
<tr>
<td>Plywood (for $D \leq 1/4\text{"}$)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural 1, Marine ($G_{11} = 0.5$)</td>
<td>16600 $G_{12}^{1/4}$</td>
<td>4650</td>
<td></td>
</tr>
<tr>
<td>Other Grades ($G_{11} = 0.42$)</td>
<td>16600 $G_{12}^{1/4}$</td>
<td>3350</td>
<td></td>
</tr>
<tr>
<td>Note: Use $G_{11} = 0.42$ when species of the plies is not known. When species of the plies is known, specific gravity listed for the actual species and the corresponding dowel bearing strength may vary.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fastener</th>
<th>NDS Dowel Bending Yield Strength, $F_{y,b}$ (Equation (psl))</th>
<th>NDS Reference Value, $F_{y,b}$ (psl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt, lag screw (with $D \geq 3/8\text{"}$), drift pin</td>
<td>$F_y/2 + F_2/2$</td>
<td>45,000</td>
</tr>
<tr>
<td>SAE J429 Grade 1:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTM A5320, Class 1, Type B8 and B9M:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stainless Steel S30400:</td>
<td>$F_y = 30$ ksi, $F_2 = 75$ ksi</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel S30403:</td>
<td>$F_y = 25$ ksi, $F_2 = 75$ ksi</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel S31600:</td>
<td>$F_y = 30$ ksi, $F_2 = 75$ ksi</td>
<td></td>
</tr>
<tr>
<td>Stainless Steel S31603:</td>
<td>$F_y = 25$ ksi, $F_2 = 75$ ksi</td>
<td></td>
</tr>
<tr>
<td>Common, box, or sinker nail, spike, lag screw, wood screw (low to medium carbon steel)</td>
<td>$130,400 - 213,900D$</td>
<td>100,000</td>
</tr>
</tbody>
</table>
Example Problem #1

- **Calculate W for ¼” diameter, 2.5” long lag screw connecting 2-2x SYP (G = 0.55) members**
 - \(W = 1800 \cdot G^{3/2} \cdot D^{3/4} \) = 260 lbs/in (calculate or NDS Table 12.2A)
- **Calculate penetration into main member for withdrawal capacity**
 - NDS Appendix L gives lag screw dimensions
 - Length of unthreaded section = ¾”
 - Length of threaded section (including tip) = 1¾”
 - Length of threaded section (excluding tip) = 1\(19/32\)”
 - \(p = \text{screw length} - \text{length of side member} - \text{length of tip} \)
 - \(p = 2.5” - 1.5” - (1\(3/4\)” - 1\(19/32\)” = 0.84” \text{ of penetration} \)
 - **Unadjusted capacity** = \(W \cdot p = (260 \text{ lbs/in } \times 0.84 \text{ in}) = 219 \text{ lbs} \)
 - **Apply adjustment factors per Table 11.3.1 to get adjusted W’**
Example Problem #2

• Calculate unadjusted Z for $\frac{1}{2}''$ diameter bolt connecting two 2x DF-L ($G = 0.5$) members with a 1” gap between them

• Both members loaded parallel to grain ($K_0 = 1$)

 • $D = 0.5''$
 • $F_{e_{ll}} = 5600$ psi (NDS Table 12.3.3); $q_s = q_m = F_{e_{ll}} * D = 5600$ psi * 0.5” = 2800 lb/in
 • $L_s = L_m = 1.5''$
 • $F_{yb} = 45,000$ psi
 • $g = 1''$

\[
\begin{align*}
I_m & \quad \quad P = q_m L_m \\
I_s & \quad \quad P = q_z L_z
\end{align*}
\]

\[
\begin{align*}
\text{II} & \quad A = \frac{L_z}{4q_s} + \frac{1}{4q_m} \\
\text{III}_m & \quad A = \frac{L_z}{2q_s} + \frac{1}{4q_m} \\
\text{III}_s & \quad A = \frac{L_z}{4q_s} + \frac{1}{2q_m} \\
\text{IV} & \quad A = \frac{1}{2q_s} + \frac{1}{2q_m}
\end{align*}
\]

Inputs A, B, & C for Yield Modes II-IV

\[
\begin{align*}
B = & \frac{L_z}{2} + g + \frac{L_m}{2} \\
C = & \frac{q_z L_z^2}{4} - \frac{q_m L_m^2}{4} \\
C = & \frac{-M_z}{4} - M_m
\end{align*}
\]
Example Problem #2

- Calculate unadjusted Z for $\frac{1}{2}''$ diameter bolt connecting two 2x DF-L $(G = 0.5)$ members with a 1'' gap between them

- $M_m = M_s = \frac{F_b D^3}{6} = (45,000 \text{ psi}) \times (0.5'' \times 3)/6 = 937.5 \text{ lb-in}$

- Substituting values into TR12 equations yields P values

- Divide P values by R_d to obtain Z

<table>
<thead>
<tr>
<th>Mode</th>
<th>P (lbs)</th>
<th>R_d</th>
<th>Z (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_m</td>
<td>4200</td>
<td>$4K_\theta = 4$</td>
<td>1050</td>
</tr>
<tr>
<td>I_s</td>
<td>4200</td>
<td>$4K_\theta = 4$</td>
<td>1050</td>
</tr>
<tr>
<td>II</td>
<td>1163</td>
<td>$3.6K_\theta = 3.6$</td>
<td>323</td>
</tr>
<tr>
<td>III_m</td>
<td>1211</td>
<td>$3.2K_\theta = 3.2$</td>
<td>378</td>
</tr>
<tr>
<td>III_s</td>
<td>1211</td>
<td>$3.2K_\theta = 3.2$</td>
<td>378</td>
</tr>
<tr>
<td>IV</td>
<td>1285</td>
<td>$3.2K_\theta = 3.2$</td>
<td>402</td>
</tr>
</tbody>
</table>

$Z = 323 \text{ lbs}$
Example Problem #3

- Compare lateral Z values for single shear nail connection at 6D, 8D, 10D, and 12D penetration using TR12 tapered tip equations
 - 8d common nail D = 0.131”, tapered tip length, E = 2D = 0.262”
 - Main member $F_{em} = 4,700$ psi (loaded parallel to grain); ASTM A653, Grade 33 steel side member, thickness = 0.06”, $F_{es} = 61,850$ psi
 - $L_m = p$ (penetration into main member); $L_s = 0.06”$ (side member thickness)

<table>
<thead>
<tr>
<th>Penetration Depth (p)</th>
<th>Z (lbs)</th>
<th>Controlling mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>12D (1.57")</td>
<td>97</td>
<td>III_s</td>
</tr>
<tr>
<td>10D (1.31")</td>
<td>97</td>
<td>III_s</td>
</tr>
<tr>
<td>8D (1.05")</td>
<td>97</td>
<td>III_s</td>
</tr>
<tr>
<td>6D (0.79")</td>
<td>79</td>
<td>II</td>
</tr>
</tbody>
</table>
Example Problem #3

- Compare Z values for single shear nail connection at 6D, 8D, 10D, and 12D penetration using NDS L_m assumption for tapered tip
 - 8d common nail $D = 0.131''$, tapered tip length, $E = 2D = 0.262''$
 - Main member $F_{em} = 4,700$ psi (loaded parallel to grain); ASTM A653, Grade 33 steel side member, thickness = 0.06”, $F_{es} = 61,850$ psi
 - $L_m = p - E/2$ (NDS assumption); $L_s = 0.06''$ (side member thickness)

<table>
<thead>
<tr>
<th>Penetration Depth (p)</th>
<th>Z (lbs)</th>
<th>Controlling mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>12D (1.57'')</td>
<td>97</td>
<td>III_s</td>
</tr>
<tr>
<td>10D (1.31'')</td>
<td>97</td>
<td>III_s</td>
</tr>
<tr>
<td>8D (1.05'')</td>
<td>97</td>
<td>III_s</td>
</tr>
<tr>
<td>6D (0.79'')</td>
<td>78</td>
<td>II</td>
</tr>
</tbody>
</table>
Outline

• Wood connection design philosophy
• Connection behavior
• Serviceability challenges
• Connection hardware and fastening systems
• Connection techniques
• Design software
• Where to get more information
Software Solutions Exist

- WWPA Lumber Design Suite
 - Beams and Joists
 - Post and Studs
 - Wood to Wood Shear Connections (nails, bolts, wood screws and lag screws)

Example Problem – Connections Calculator

- AWC Connections Calculator
 - Can calculate lateral and withdrawal capacities
 - http://awc.org/codes-standards/calculators-software/connectioncalc
Example Problem – Connections Calculator

[Diagram showing the Connections Calculator interface with selected values and options.]

- **Design Method**: Allowable Stress Design (ASD)
- **Connection Type**: Lateral loading
- **Fastener Type**: Nail
- **Loading Scenario**: Single Shear

Main Member Type: Douglas Fir-Larch
Main Member Thickness: 2.5 in.
Side Member Type: Steel
Side Member Thickness: 1 in.
Nail Type: Common Wire
Nail Size: 8d (D = 0.121 in., L = 2.5 in.)
Load Duration Factor: C_D = 1.0
Wet Service Factor: C_M = 1.0
End Grain Factor: C_e = 1.0
Temperature Factor: C_t = 1.0
Diaphragm Factor: C_d = 1.0

Calculate Connection Capacity

Connection Yield Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>678 lbs.</td>
</tr>
<tr>
<td>II</td>
<td>221 lbs.</td>
</tr>
<tr>
<td>III</td>
<td>274 lbs.</td>
</tr>
<tr>
<td>IIIm</td>
<td>283 lbs.</td>
</tr>
<tr>
<td>IIIs</td>
<td>97 lbs.</td>
</tr>
<tr>
<td>IV</td>
<td>132 lbs.</td>
</tr>
</tbody>
</table>

Adjusted ASD Capacity: 97 lbs.
Outline

- Wood connection design philosophy
- Connection behavior
- Serviceability challenges
- Connection hardware and fastening systems
- Connection techniques
- Design software
- Where to get more information
More info???

• 2012 NDS
Update to 2015 mention the what's changed icon.
Kam-Biron, Michelle, 1/25/2017
More info???

• Technical papers on Timber rivets: http://www.awc.org/helpoutreach/faq/faqFiles/Timber_rivets.html

• Timber rivets in structural composite lumber
• Simplified analysis of timber rivet connections
• Timber rivet connections in U.S. domestic species
• Timber Rivets-Structure Magazine
• Seismic Behavior of Timber Rivets in Wood Construction
• Seismic Performance of Riveted Connections in Heavy Timber Construction
• Timber rivet suppliers
More info???

- Load-carrying behavior of steel-to-timber dowel connections: http://timber.ce.wsu.edu/Resources/papers/2-4-1.pdf
Take Home Messages...

• Transfer loads in compression / bearing whenever possible
• Allow for dimensional changes in the wood due to potential in-service moisture cycling
• Avoid the use of details which induce tension perp stresses in the wood
• Avoid moisture entrapment in connections
• Separate wood from direct contact with masonry or concrete
• Avoid eccentricity in joint details
• Minimize exposure of end grain
Connections

…and you thought connecting wood was complicated!
Questions?

- This concludes The American Institute of Architects Continuing Education Systems Course

American Wood Council

info@awc.org

www.awc.org

AMERICAN WOOD COUNCIL