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Outline




Ques%on:	How	to	make	a	weather	forecast?	
	
You	will	need...	

•  A	theoreDcal	model:	
	
​𝑑𝑢/𝑑𝑡 =𝐹(𝑡,𝑢(𝑡))	
	
𝑢: unknown	variable	represenDng	the	
state	of	the	atmosphere	(velocity	
field,	temperature,	pressure,	...).	
	
•  ObservaDonal	measurements.	
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•  Data	Assimila*on	combines	the	theoreDcal	
model	with	informaDon	from	observaDons	
in	order	to	obtain	a	good	approximaDon	of	
the	state	of	the	physical	system	at	a	certain	
future	Dme.		

	
•  Numerous	applicaDons:	meteorology,	
oceanography,	oil	industry,	neuroscience,	
etc.	

	
•  Several	approaches:	
▫  Nudging.	
▫  Kalman	Filter	(KF).	
▫  Ensemble	Kalman	Filter	(EnKF).	

▫  Local	Ensemble	Transform	Kalman	Filter	(LETKF).	
▫  3DVAR.	
▫  4DVAR.	



Feedback-control (nudging) approach 

(Azouani-Olson-Ti., ‘14)


original	(forecast)	model	

approximate	model	=		
original	model	+	feedback		

control	term	

•  Combine	model	and	measurements	by	adding	a	feedback-control	term	to	the	
equaDons.		

Approximate	soluDon	𝑣;	arbitrary	𝑣(0)=𝑣0	;	arbitrary	𝑣(0)=𝑣0	

Reference	soluDon	𝑢;	missing	𝑢(0)=𝑢0	;	missing	𝑢(0)=𝑢0	

Feedback	control	term	
forces	coarse	spaDal	scales	
of	𝑣 toward	those	of	𝑢		



Background idea


•  Long-Dme	behavior	of	soluDons	to	dissipaDve	evoluDon	equaDons	is	determined	by	
only	a	finite	number	of	degrees	of	freedom.	
▫  Fourier	modes,	2D-NSE	(Foias-Prodi,	‘67):	
	
				Let									be	the	projecDon	operator	onto	the	first	N	Fourier	modes.	
																					s.t.	if															are	two	soluDons	of	2D-NSE	with	
		
				then	
	
	
▫  SpaDal	nodes,	2D-NSE	(Foias-Temam,	’84).	
▫  Finite	volume	elements,	2D-NSE	(Foias-TiD,	’91;	Jones-TiD,	’92).	
▫  Other	dissipaDve	evoluDon	eqs.	(Cockburn-Jones-TiD,	‘97).	

	
	



Example


•  Consider	the	forecast	(theoreDcal)	model	given	by	the	2D	incompressible	
Navier-Stokes	equa*ons:	

(2D-NSE)	

density	of	volume	forces	pressure	

kinemaDc	viscosity	velocity	field	

•  Assume:	
▫  No	model	error.	
▫  ConDnuous	in	Dme	and	error-free	measurements.	



Approximate model


same	as	for	the	2D-NSE	

modified	pressure	

resoluDon	of	spaDal	mesh	

relaxaDon	parameter	

linear	interpolant	operator	in	space	

controls	large	scales	
controls	

small	scales	



•  Denote																						.	

•  Assume																							

Ex.:			
▫  Low	modes	projector:		
	



▫  Finite	volume	elements:	

OR:	

Ex.:			

▫  Nodal	values:		



Theorem	(Azouani-Olson-Ti%,	‘14)


If																								and																											,	then																																																		.	

Some related works


•  Other	models:	3D	NS-alpha	(Albanez-Nussenzveig	Lopes-TiD,	‘16),	3D	Brinkman-
Forchheimer-extended	Darcy	(Markowich-TiD-Trabelsi,	’16),	2D-SQG	(Jolly-MarDnez-TiD,	
’17).	
•  Using	observaDons	of	less	components:	
▫  2D	Bénard,	only	velocity	(Farhat-Jolly-TiD,	’15).	
▫  2D-NSE,	one	velocity	component	(Farhat-Lunasin-TiD,	’16)	.	
▫  3D	planetary	geostrophic	model,	only	temperature	(Farhat-Lunasin-TiD,	‘16).	
▫  2D	Bénard,	only	horizontal	velocity	component	(Farhat-Lunasin-TiD,	’17).	
▫  3D	Bénard	in	porous	media,	only	temperature	(Farhat-Lunasin-TiD,	’17).	
▫  3D	Leray-alpha,	only	two	components	of	velocity	(Farhat-Lunasin-TiD,	17).	
	



Some related works (cont’d)


•  Higher	order	convergence,	Gevrey	class	and								(Biswas-MarDnez,	’17).	
•  Measurements	with	stochasDc	errors	(Blomker-Law-Stuart-Zygalakis,	‘13;	Bessaih-
Olson-TiD,	‘15).	
•  Time-averaged	meas.:	2D-SQG	(Jolly-Olson-TiD-MarDnez),	Lorenz	(Blocher-Olson-
MarDnez).	
•  Discrete	in	Dme	meas.	with	syst.	errors,	2D-NSE	(Foias-M-TiD,	‘16).	
•  Numerical	computaDons:	
▫  2D-NSE	(Gesho-Olson-TiD,	‘16).	
▫  2D	Bénard	(Altaf-TiD-Gebrael-Knio-Zhao-McCabe-Hoteit,	‘16).	
•  Numerical	approximaDon	by	PPGM,	2D-NSE	(M-TiD).	
	



Numerical Approxima.on


•  In	pracDce,	numerical	models	can	only	compute	finite-dimensional	approximaDons.	
•  Goal:	Obtain	an	analyDcal	esDmate	of	the	error	between	a	numerical	approximaDon	
of						and	the	(full)	reference	soluDon					.	

•  For	simplicity,	assume:	conDnuous	in	Dme	and	error-free	measurements.	
•  Seong:	
▫  Phase	space	of	2D-NSE:	
▫  Apply	projector																																			to	the	feedback-control	equaDon:				

▫  Eigenvectors	of																												:													,	with	eigenvalues												.	
▫  Finite-dimensional	space:		



Galerkin spectral method


Find																									saDsfying	

NotaDon:		



Theorem (M.-Ti.)   


If																										and																											,	then																																			and																																		s.t.,	
for	N	sufficiently	large,	
	
	
	
Thus,																																													s.t.	
	
	
	
where	



A Postprocessing of the Galerkin method

(‘García-Archilla’-Novo-Ti., ‘98)


NotaDon:		

•  Idea:	Add	to	the	Galerkin	approximaDon	of				
a	suitable	approximaDon	of					:	

(Approximate	inerDal	manifold,	Foias-
Manley-Temam,	’88)	



Postprocessing Galerkin Algorithm


For	obtaining	an	approximaDon	of				,	and	thus					,	at	a	certain	Dme				

1.  Integrate	the	Galerkin	system	over														to	obtain														.	

2.  Obtain								saDsfying		
3.  Compute																									.	

•  InformaDon	on	the	high	modes	(fine	spaDal	scales)	is	only	used	at	the	final	
Dme					!	This	is	one	of	the	reasons	for	the	efficiency	of	the	Postprocessing	
Galerkin	method	(compared	to,	e.g.,	the	Nonlinear	Galerkin	method).	



Par.cular case: 


Theorem (M.-Ti.)


If																									and																			,	then																																			and																																			s.t.,	for		
N	sufficiently	large,		
	
	
	
Thus,																																													s.t.	



General case


•  Assume																																				is	a	linear	operator	saDsfying:	

▫  																	s.t.	
	

▫  																			s.t.	
	

▫  																s.t.	

	

	•  Examples:	low	modes	projector;	finite	volume	elements.	



Theorem (M.-Ti.)   


If																									and																										,	then																																			and																																		s.t.,	
for	N	sufficiently	large,	
	
	
	
Thus,																																													s.t.	



Comparison


•  Error	using	the	Galerkin	method	(both	types	of						):	

	

	

•  Error	using	the	Postprocessing	Galerkin	method:	

▫  Case																			:															
	

	

▫  General	class	of						:										

	

	



Summary


•  Original	feedback-control	data	assimilaDon	algorithm	(Azouani-Olson-TiD,	’14):	
conDnuous	in	Dme	and	error-free	measurements.		

•  Numerical	approximaDons	of	v,	and	thus	u	(M.-TiD):		
▫  Postprocessing	Galerkin	method	has	a	berer	convergence	rate	than	the	Galerkin	
method,	with	respect	to	the	numerical	resoluDon.	
▫  Error	esDmates	are	uniform	in	*me	–	feedback-control	term	stabilizes	the	large	
scales	of	the	difference	v	-	u,	resulDng	in	a	globally	asymptoDcally	stable	system.	



Remarks/Future work


•  TheoreDcal	condiDon	on	the	spaDal	resoluDon	of	the	measurements,	h,	is	far	from	
being	valid	for	real	flows.	

▫  Numerical	simulaDons	done	in,	e.g.	[Gesho-Olson-TiD,	‘16]	and	[Altaf	et	al.,	‘16]	
show	that	a	much	less	restricDve	condiDon	on	h	is	sufficient	for	exponenDal	
convergence.		

•  Other	types	of	numerical	methods	(e.g.,	finite	volume	elements)	need	to	be	
considered	for	approximaDng	v.	This	may	yield	berer	convergence	rates	with	
respect	to	the	numerical	resoluDon.	

	



		

 


Thank	you!	


