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Question: How to make a weather forecast?

You will need... -
. ¢

» A theoretical model: * ° O
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‘ Truth

2.: unknown variable representing the

state of the atmosphere (velocity |

field, temperature, pressure, ...). 0 P t‘z P ﬂi T/‘p g

® Background (model)

* Observational measurements.
O Observations

X Analysis




* Data Assimilation combines the theoretical
model with information from observations

in order to obtain a good approximation of
the state of the physical system at a certain
future time.

* Numerous applications: meteorology,
oceanography, oil industry, neuroscience,
etc.

Source: http://daconf15.umd.edu/

* Several approaches:
= Nudging. = Local Ensemble Transform Kalman Filter (LETKF).

= Kalman Filter (KF). = 3DVAR.
= Ensemble Kalman Filter (EnKF). = 4DVAR.



Feedback-control (nudging) approach
(Azouani-Olson-Titi, ‘14)

* Combine model and measurements by adding a feedback-control term to the
equations.

approximate model =
+ ——)> Approximate solution z; arbitrary »(0)=10

Feedback control term
forces coarse spatial scales
of vtoward those of «

SENEINIGIE SN[ ——> Reference solution z; missing z(0)=z0



Background idea

* Long-time behavior of solutions to dissipative evolution equations is determined by
only a finite number of degrees of freedom.
= Fourier modes, 2D-NSE (Foias-Prodi, ‘67):

Let P~ be the projection operator onto the first N Fourier modes.
4N > 1 s.t.if ur, ug are two solutions of 2D-NSE with
|Pyvu; — Pyus||lpz — 0, t— o

then
|luy —usl||pz — 0, t— oo.

= Spatial nodes, 2D-NSE (Foias-Temam, '84).
= Finite volume elements, 2D-NSE (Foias-Titi, '91; Jones-Titi, '92).
= Other dissipative evolution egs. (Cockburn-Jones-Titi, ‘97).



Example

* Consider the forecast (theoretical) model given by the 2D incompressible
Navier-Stokes equations:

ou

E—yAqu(u-V)u—FVp:f, V-u=0 (2D-NSE)
u : velocity field UV . kinematic viscosity
P - pressure f : density of volume forces

e Assume:
= No model error.
o Continuous in time and error-free measurements.



Approximate model

controls
small scales controls large scales
8 [ : | [ A |
\Y%
v, I : same as for the 2D-NSE B : relaxation parameter
7 : modified pressure Iy, :linear interpolant operator in space

h : resolution of spatial mesh



* Denote w =V —u,

%—‘;V —vAw+ [(u-V)w+ (w-V)u— (w-V)w| + V(1 — p) = =1 (W)
= —BlIn(w) — w| — fw
= %—VZ—VAw+Bw+V(7T—p) =[(u-V) W+ (w-V)u—(w-V)w|— B[ (w) —w]
* Assume
1 1n () = ¢llz2 < cohl[Vellr: Vo € (H)™
EX.:

s Low modes projector: In(p) = Py, N € N.



= Finite volume elements: § = UjV:1 Qj' 7
N 2
o L 1
In(p) = ngijj, where p; = —— pdx.
= Qj1 Jg,
h
OR: 11n(¢) — @2 < cohllollar + c1h?|lollnz Vo € (H?).
EX.:
> Nodal values: Tj € @;,7=1,...,N. ... : 5
N . : E .. ° > .
In(p) = ZW(%‘)XQJ-- *lole o]
71=1 ¢ ° ¢ > ® } h




Theorem (Azouani-Olson-Titi, ‘14)

If 8> vA2 and h < v1/2/8Y2, then [|[V(E) —u(t)| < O(e™ ) |

Some related works

» Other models: 3D NS-alpha (Albanez-Nussenzveig Lopes-Titi, ‘16), 3D Brinkman-
Forchheimer-extended Darcy (Markowich-Titi-Trabelsi, '16), 2D-SQG (Jolly-Martinez-Titi,
"17).

» Using observations of less components:
= 2D Bénard, only velocity (Farhat-Jolly-Titi, "15).
= 2D-NSE, one velocity component (Farhat-Lunasin-Titi, "16) .
= 3D planetary geostrophic model, only temperature (Farhat-Lunasin-Titi, ‘16).
= 2D Bénard, only horizontal velocity component (Farhat-Lunasin-Titi, "17).
= 3D Bénard in porous media, only temperature (Farhat-Lunasin-Titi, "17).
= 3D Leray-alpha, only two components of velocity (Farhat-Lunasin-Titi, 17).



Some related works (cont’d)

 Higher order convergence, Gevrey class and L°° (Biswas-Martinez, '17).

» Measurements with stochastic errors (Blomker-Law-Stuart-Zygalakis, ‘13; Bessaih-
Olson-Titi, ‘15).

» Time-averaged meas.: 2D-SQG (Jolly-Olson-Titi-Martinez), Lorenz (Blocher-Olson-
Martinez).

 Discrete in time meas. with syst. errors, 2D-NSE (Foias-M-Titi, ‘16).

* Numerical computations:
= 2D-NSE (Gesho-Olson-Titi, ‘16).
= 2D Bénard (Altaf-Titi-Gebrael-Knio-Zhao-McCabe-Hoteit, ‘16).

* Numerical approximation by PPGM, 2D-NSE (M-Titi).



Numerical Approximation

* |n practice, numerical models can only compute finite-dimensional approximations.

* Goal: Obtain an analytical estimate of the error between a numerical approximation
of V and the (full) reference solution 1.

* For simplicity, assume: continuous in time and error-free measurements.
* Setting:

- Phase space of 2D-NSE: H ={u € (L*)?|V-u=0 + b.c.}.

- Apply projector Py : (L?)? — H to the feedback-control equation:

d

d_:ff +vAv + B(v,v) =f — P, I (v —u),

+ Eigenvectors of A = P,(—A): {Ws};, with eigenvalues 1Ai1s .
© Finite-dimensional space: span{wi, ..., wy} = Py H.



Galerkin spectral method

Find vy € Py H satisfying

dv
d—é\f + vAVy + PyB(vy,vy) = Pyf — BPy Py I (v — ).
Q.H 4
u(t)
° v(t)
k o PVt -
V() N Notation: Qn = I — Py.




Theorem (M.-Titi)

Iif B> vA? and h Sv'/2/6Y2 then3 60 =0(8) € [0,1) and C = C(v, A1, |fl12) s.t,,
for N sufficiently large,

Ly

[va () = u(®)lze < 0= v (to) = p(to) 22 + C
N—I—l

Thus, 3T =T (v, A1, |f|z2, N) s.t.

lvn(t) —u(t)|[2 < C

where
A\ 12
Ly =|1+log|— .
A1



A Postprocessing of the Galerkin method
(‘Garcia-Archilla’-Novo-Titi, ‘98)

* |dea: Add to the Galerkin approximation of v
a suitable approximation of q :

q~ ®(p) = (v4)"'Qn[f — B(p,p)]

(Approximate inertial manifold, Foias-
Manley-Temam, '88)

Notation: p = Pyu, q = nu
(u=p+aq)



Postprocessing Galerkin Algorithm

For obtaining an approximation of V, and thus U, at a certain time 1" > to :

1. Integrate the Galerkin system over t0, T] to obtainvn(T) .
2. Obtain an satisfying vAany = Qn[f — B(vn(T), vy (T)].
3. Compute vn(T) +an .

* Information on the high modes (fine spatial scales) is only used at the final
time I'! This is one of the reasons for the efficiency of the Postprocessing
Galerkin method (compared to, e.g., the Nonlinear Galerkin method).



Particular case: I, = P, K € N

Theorem (M.-Titi)

If 8> vAf and Ax 2 B/v, then 30 =6(8) € [0,1) and C = C(v, Ay, [f]12) s.t., for
N sufficiently large,

L4
|(va(t) + @1 (v (1) — u(t)| L2 < "1 vy (to) — p(to) ||z + C =

3/2 °
N

ThUS, 37T = T(Va )\17 ‘f|L27N) S.t.

(vr(t) + @a(va () —u(t)se < O2, Ve T,
N+1




General case

 Assume Ir : (L*)? = (L?)? is a linear operator satisfying:
- deg >0 st
lo = In(9)ll2 < cobllgllm, Vo€ H(Q)?.
= de1 >0 s.t.

lo = In(@) -1 < c1hllpllre, Vo € L*(Q)%

o d¢g > 0 s.t.

N 93/4
1n(@) e < 0=

HqHLz, \V/CIE QNH.
oy,

* Examples: low modes projector; finite volume elements.



Theorem (M .-Titi)
If 8> vA? and h Sv1/2/8Y2 then3 0 =0(8) € [0,1) and C = C(v, Ay, If|12) s.t,
for N sufficiently large,

L
(v (®) + @1(vi (1)) —u(®)] 2 < B v (to) — p(to)l| 2 + CWJZ .

N+1

ThUS, 37T = T(V7 )\17 |f|L27 N) S.t.

|(vi (t) + @1 (v (t))) —u(t)]|2 < C




Comparison

* Error using the Galerkin method (both types of {1):
vy —ullr2 < O(LnAyyq)-
* Error using the Postprocessing Galerkin method:
© Case Ip = Pk :
|(vy + ®1(viv)) — ullzz = O(LAALYD).

> General class of {n :

|(vn + @1 (vw)) —ul| 2 = O(Ly AL



Summary

» Original feedback-control data assimilation algorithm (Azouani-Olson-Titi, '14):
continuous in time and error-free measurements.
* Numerical approximations of v, and thus u (M.-Titi):
= Postprocessing Galerkin method has a better convergence rate than the Galerkin
method, with respect to the numerical resolution.

= Error estimates are uniform in time — feedback-control term stabilizes the large
scales of the difference v - u, resulting in a globally asymptotically stable system.



Remarks/Future work

» Theoretical condition on the spatial resolution of the measurements, h, is far from
being valid for real flows.

= Numerical simulations done in, e.g. [Gesho-Olson-Titi, ‘16] and [Altaf et al., ‘16]

show that a much less restrictive condition on h is sufficient for exponential
convergence.

» Other types of numerical methods (e.g., finite volume elements) need to be
considered for approximating v. This may yield better convergence rates with
respect to the numerical resolution.



Thank you!




