## Predicting Monsoon Intraseasonal Precipitation using a Low-Order Nonlinear Stochastic Model

## Nan Chen<sup>1</sup>

Collaborated with Andrew J. Majda<sup>1,2</sup>,

C. T. Sabeerali<sup>2</sup> and Ajayamohan S. Ravindran<sup>2</sup>

<sup>1</sup>Center for Atmosphere Ocean Science (CAOS) Courant Institute of Mathematical Sciences New York University

<sup>2</sup>Center for Prototype Climate Modeling, New York University Abu Dhabi

SIAM Conference on Applications of Dynamical Systems May 21 – May 27, 2017 @ Snowbird, Utah

## Introduction

#### Monsoon Intraseasonal Oscillation (MISO)

- the prominent mode of tropical intraseasonal variability in boreal summer
- propagating northeastward
- strongly associated with the boreal summer monsoon rainfall over south Asia
- interactions with El Niño ...

#### **Prediction of the MISO**

- 1. operational/dynamical models
  - capturing more refined structures
  - computationally expensive
- 2. low-order statistical models
  - capturing only large-scale features
  - cheaper and more accurate



#### Procedure of prediction with low-order models

- 1. developing effective MISO indices (e.g, a few PCs of the high dim raw data)
- 2. designing low-order models to predict the MISO indices
- 3. spatiotemporal reconstruction (indices + the associated spatial bases)

#### Some existing indices for real-time monitoring and forecast of the MISO

- EEOF on longitudinal averaged rainfall anomalies (Suhas et al 2013; Sahai et al. 2013)
- multivariate EOF on surface zonal winds and outgoing longwave radiation (Lee et al. 2013)
- other EOF and EEOF methods ... (Kikuchi et al. 2012; Goswami et al. 1999)

#### Common features of these covariance-based approaches

- ✓ in general capturing the spatiotemporal MISO patterns reasonably well
- recovering the northeastward propagating intraseasonal periodicity
- × ad hoc seasonal extraction and longtitudinal averaging leading to loss of predictive information
- × sometimes mixing with other modes due to the nonlinear nature
- × potential inadequacy in capturing the rare/extreme events

## A new MISO index based on NLSA

#### Novel time series technique: Nonlinear Laplacian Spectrum Analysis (NLSA).

combining lagged embedding, machine learning, adaptive weights, spectral entropy criteria (Giannakis & Majda, PNAS 2012). applying to data with huge dimensions.

Advantages of NLSA over classical covariance-based techniques

- objective by design no ad hoc detrending or spatiotemporal filtering of the full data set
- capturing both intermittency and low frequency variability
- higher memory and predictability in the NLSA MISO modes

Dataset: the daily Global Precipitation Climatology Project (GPCP) rainfall data (Huffman et al. 2001) over the Asian summer monsoon region for period 1997-2014 (with spatial resolution  $1^{o} \times 1^{o}$ ).



Apply NLSA to GPCP dataset with a lagged embedding of q = 64 days. (Sabeerali et al, Climate Dynamics, 2016)

#### Comparison of MISO modes associated with the NLSA and EEOF

fractional variance of rainfall anomalies



Capturing the variability over Indo-West Pacific is extremely important in determining the propagation features of MISO (Pillai & Sahai 2015).



autocorrelations of the NLSA and EEOF indices

#### The NLSA MISO modes

Reconstruction of MISO evolution from June 2004 to September 2004.



#### The NLSA MISO modes

Reconstruction of MISO evolution from June 2004 to September 2004.



Reconstruction of MISO evolution for January 2004.







Low-Order Stochastic Model

$$du_1 = (-d_u(t) u_1 \qquad -\hat{\omega} u_2) dt + \sigma_u dW_{u_1},$$
  

$$du_2 = (-d_u(t) u_2 \qquad +\hat{\omega} u_1) dt + \sigma_u dW_{u_2},$$

with

$$d_u(t) = d_{u0} + d_{u1}\sin(\omega_f t + \phi).$$

Observed variables u<sub>1</sub>, u<sub>2</sub>: MISO 1 and MISO 2 indices from NLSA.



Low-Order Stochastic Model

$$du_{1} = (-d_{u}(t) u_{1} + \gamma v u_{1} - \omega u_{2}) dt + \sigma_{u} dW_{u_{1}},$$
  

$$du_{2} = (-d_{u}(t) u_{2} + \gamma v u_{2} + \omega u_{1}) dt + \sigma_{u} dW_{u_{2}},$$
  

$$dv = (-d_{v} v ) dt + \sigma_{v} dW_{v},$$
  

$$d\omega = (-d_{\omega}\omega + \hat{\omega}) dt + \sigma_{\omega} dW_{\omega},$$

with

$$d_u(t) = d_{u0} + d_{u1}\sin(\omega_f t + \phi).$$

- Observed variables u<sub>1</sub>, u<sub>2</sub>: MISO 1 and MISO 2 indices from NLSA.
- Hidden variables  $v, \omega$ : stochastic damping and stochastic phase.



Physics-Constrained Low-Order Stochastic Model

$$du_{1} = (-d_{u}(t) u_{1} + \gamma v u_{1} - \omega u_{2}) dt + \sigma_{u} dW_{u_{1}},$$
  

$$du_{2} = (-d_{u}(t) u_{2} + \gamma v u_{2} + \omega u_{1}) dt + \sigma_{u} dW_{u_{2}},$$
  

$$dv = (-d_{v} v - \gamma (u_{1}^{2} + u_{2}^{2})) dt + \sigma_{v} dW_{v},$$
  

$$d\omega = (-d_{\omega}\omega + \hat{\omega}) dt + \sigma_{\omega} dW_{\omega},$$

with

$$d_u(t) = d_{u0} + d_{u1}\sin(\omega_f t + \phi).$$

- Observed variables u<sub>1</sub>, u<sub>2</sub>: MISO 1 and MISO 2 indices from NLSA.
- Hidden variables  $v, \omega$ : stochastic damping and stochastic phase.
- Energy-conserving nonlinear interactions between  $(u_1, u_2)$  and  $(v, \omega)$ .



Physics-Constrained Low-Order Stochastic Model

$$du_{1} = (-d_{u}(t) u_{1} + \gamma v u_{1} - \omega u_{2}) dt + \sigma_{u} dW_{u_{1}},$$
  

$$du_{2} = (-d_{u}(t) u_{2} + \gamma v u_{2} + \omega u_{1}) dt + \sigma_{u} dW_{u_{2}},$$
  

$$dv = (-d_{v} v - \gamma (u_{1}^{2} + u_{2}^{2})) dt + \sigma_{v} dW_{v},$$
  

$$d\omega = (-d_{\omega}\omega + \hat{\omega}) dt + \sigma_{\omega} dW_{\omega},$$

with

$$d_u(t) = d_{u0} + d_{u1}\sin(\omega_f t + \phi).$$

- Observed variables u<sub>1</sub>, u<sub>2</sub>: MISO 1 and MISO 2 indices from NLSA.
- Hidden variables  $v, \omega$ : stochastic damping and stochastic phase.
- Energy-conserving nonlinear interactions between  $(u_1, u_2)$  and  $(v, \omega)$ .
- Effective data assimilation algorithm to determine the initial values of (v, ω) that facilitate the ensemble prediction scheme (Liptser & Shiryaev 2001).

## **Model Calibration**

Calibration of parameters using *Information Theory* (Robust parameters) Model vs. Observations: Non-Gaussian statistics match



(Linear models fail to accurately match the statistics.)

#### **Prediction of the MISO indices**



Medium- and long-range forecasting



ensemble spread ⇔ forecast uncertainty

- **1.** spatial basis  $\times$  time series
- 2. averaging over the lagged embedding window



- **1.** spatial basis  $\times$  time series
- 2. averaging over the lagged embedding window



- 1. spatial basis × time series
- 2. averaging over the lagged embedding window



- 1. spatial basis × time series
- 2. averaging over the lagged embedding window



More details of the direct method ...

$$\begin{aligned} A \cdot [\Phi; \Phi^{f}] &= [X; X^{f}]. \end{aligned}$$

$$A: \text{spatial basis} \quad \Phi: \text{ time series} \quad X: \text{ spatiotemporal modes} \quad \stackrel{f: \text{ forecast}}{\stackrel{A_{2}}{\vdots}} \\ A \cdot [\Phi: (\Phi^{f})] &= \begin{pmatrix} A_{1} \\ A_{2} \\ \vdots \\ A_{q} \end{pmatrix} \cdot \begin{pmatrix} \Phi_{1} \cdots & \Phi_{N}, & \Phi_{1}^{f}, & \Phi_{2}^{f}, & \cdots, & \Phi_{q}^{f} \end{pmatrix} \\ &= \begin{pmatrix} A_{1} \Phi_{1} & A_{1} \Phi_{2} & \cdots & A_{1} \Phi_{N} \\ A_{2} \Phi_{1} & A_{2} \Phi_{2} & \cdots & A_{2} \Phi_{N} \\ \vdots & \vdots & \ddots & \vdots \\ A_{q-1} \Phi_{1} & A_{q-1} \Phi_{2} & \cdots & A_{q-1} \Phi_{N} \\ A_{q} \Phi_{1} & A_{q} \Phi_{2} & \cdots & A_{q-1} \Phi_{N} \\ A_{q} \Phi_{1} & A_{q} \Phi_{2} & \cdots & A_{q} \Phi_{N} \end{pmatrix} \begin{pmatrix} i & i & \cdots & i & i \\ A_{q-1} \Phi_{1}^{f} & A_{q} \Phi_{2}^{f} & \cdots & A_{q-1} \Phi_{q-1}^{f} & A_{q-1} \Phi_{q}^{f} \\ A_{q} \Phi_{1}^{f} & A_{q} \Phi_{2} & \cdots & A_{q} \Phi_{N} \end{pmatrix} \begin{pmatrix} z_{1} & z_{2} & \cdots & z_{n-2} + i \\ z_{2} & z_{3} & \cdots & z_{n-2} + i \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ z_{q-1} & z_{q} & \cdots & z_{n-2} + i \\ z_{q} & z_{q+1} & \cdots & z_{n-q} \end{pmatrix} \begin{pmatrix} z_{1} & z_{1} & \cdots & z_{q}^{f} & z_{1}^{f} \\ z_{n-2} + z_{n$$

Predicting  $z_1^f$  requires the information up to  $\phi_q^f$ !

#### **Direct Reconstruction:**

| Training period                     |              | ſ          | <sup>2</sup> 1<br>Zo | <sup>2</sup> 2<br>Zo |    | <sup>z</sup> n-2q+1 |
|-------------------------------------|--------------|------------|----------------------|----------------------|----|---------------------|
| $X = A \Phi^T \implies$             | $A = cX\Phi$ | <i>X</i> = | -                    |                      | ·. | :                   |
| Prediction period                   |              |            | <sup>z</sup> q-1     | Zq                   |    | <sup>z</sup> n-q-1  |
| $A \cdot [\Phi; \Phi^f] = [X; X^f]$ |              | (          | zq                   | <sup>z</sup> q+1     |    | Zn−q                |

#### An improved method:

| Training period                                                                     | (                 | zq                | <sup>z</sup> q+1  |    | zn–q               | ) |
|-------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|----|--------------------|---|
| $\tilde{\mathbf{v}}$ $\tilde{\mathbf{a}}$ $\tilde{\mathbf{t}}$ $\tilde{\mathbf{c}}$ |                   | <sup>z</sup> q+1  | <sup>z</sup> q+2  |    | <sup>z</sup> n-q+1 | l |
| $X = A\Phi^{T} \implies A = CX\Phi^{T}$                                             | $\widetilde{X} =$ | :                 | :                 | ÷. | •                  | I |
| Prediction period                                                                   |                   | <sup>z</sup> 2q–2 | <sup>z</sup> 2q–1 |    | z <sub>n-2</sub>   |   |
| $	ilde{A} \cdot [\Phi; \Phi^f] = [	ilde{X}, 	ilde{X}^f]$                            | (                 | <sup>z</sup> 2q–1 | <sup>z</sup> 2q   |    | <sup>z</sup> n-1   | , |

 $\tilde{\textit{A}}$  is computed using only the training data.



More details of the improved method ...

$$\begin{split} \widetilde{A} \cdot [\Phi; \Phi^{f}] &= [\widetilde{X}, \widetilde{X}^{f}]. \\ \widetilde{A}: \text{ spatial basis} \quad \Phi: \text{ time series} \quad \widetilde{X}: \text{ spatiotemporal modes} \quad \cdot^{f}: \text{ forecast} \\ \widetilde{A} \cdot [\Phi; \Phi^{f}] &= \begin{pmatrix} \frac{\widetilde{A}_{1}}{A_{2}} \\ \vdots \\ \vdots \\ \widetilde{A}_{q} \end{pmatrix} \cdot \begin{pmatrix} \Phi_{1}, & \cdots, & \Phi_{N-q}, & | \Phi_{N-q+1}, & \cdots, & \Phi_{N}, & | \Phi_{1}^{f}, & \Phi_{2}^{f}, & \cdots, & \Phi_{q}^{f} \end{pmatrix} \\ &= \begin{pmatrix} \widetilde{A}_{1}\Phi_{1} & \cdots & \widetilde{A}_{1}\Phi_{N-q} \\ \widetilde{A}_{2}\Phi_{1} & \cdots & \widetilde{A}_{2}\Phi_{N-q} \\ \vdots & \ddots & \vdots \\ \widetilde{A}_{q-1}\Phi_{1} & \cdots & \widetilde{A}_{q-1}\Phi_{N-q} \\ \widetilde{A}_{q}\Phi_{1} & \cdots & \widetilde{A}_{q-1}\Phi_{N-q} \end{pmatrix} \begin{vmatrix} \widetilde{A}_{1}\Phi_{N-q+1} & \widetilde{A}_{1}\Phi_{N-q+2} & \cdots & \widetilde{A}_{1}\Phi_{N} \\ \widetilde{A}_{2}\Phi_{1}^{f} & \cdots & \widetilde{A}_{2}\Phi_{q}^{f} \\ \vdots & \ddots & \vdots \\ \widetilde{A}_{q-1}\Phi_{1} & \cdots & \widetilde{A}_{q-1}\Phi_{N-q} \\ \widetilde{A}_{q}\Phi_{1} & \cdots & \widetilde{A}_{q-1}\Phi_{N-q} \end{vmatrix} \begin{vmatrix} \widetilde{A}_{1}\Phi_{N-q+1} & \widetilde{A}_{2}\Phi_{N-q+2} & \cdots & \widetilde{A}_{q-1}\Phi_{N} \\ \widetilde{A}_{q}\Phi_{1}^{f} & \cdots & \widetilde{A}_{q-1}\Phi_{q}^{f} \\ \widetilde{A}_{q}\Phi_{N-q+1} & \widetilde{A}_{q-1}\Phi_{N-q+2} & \cdots & \widetilde{A}_{q-1}\Phi_{N} \\ \widetilde{A}_{q}\Phi_{1}^{f} & \cdots & \widetilde{A}_{q-1}\Phi_{q}^{f} \\ \widetilde{A}_{q}\Phi_{N-q+1} & \widetilde{A}_{q}\Phi_{N-q+2} & \cdots & \widetilde{A}_{q}\Phi_{N} \end{vmatrix} \left| \begin{array}{c} \widetilde{A}_{1}\Phi_{1}^{f} & \cdots & \widetilde{A}_{q-1}\Phi_{q}^{f} \\ \widetilde{A}_{q}\Phi_{1}^{f} & \cdots & \widetilde{A}_{q}\Phi_{q}^{f} \\ \widetilde{A}_{q}\Phi_{1}^{f} & \cdots &$$

Predicting  $z_1^f$  only requires the information only up to  $\phi_1^f$ .

#### **Results: Spatiotemporal reconstruction**

Lead time (days)



Lead time (days)

#### (a) Phase diagrams of MISO indices and predictions

14/20





#### 16/20

- Qualitative similar skill is found in the spatiotemporal reconstruction as in the predicted time series.
- Error in the spatiotemporal reconstruction does not vanishing at very short terms. This is due to the error in the approximation of the "predicted" spatial basis Ã.
- The "predicted" spatial basis à here is stationary. Clustering methods are potentially promising techniques for recovering more detailed features of spatial basis conditioned on different phases.

#### MISO modes with different lagged embedding window sizes



18/20

#### Prediction of the MISO indices with different lagged embedding window sizes



#### Summary

- NLSA is applied to the precipitation dataset to obtain the MISO modes.
- A physics-constrained nonlinear low-order stochastic model is applied to predict the MISO indices.
- An improved spatiotemporal reconstruction method is develop that leads to practical predictions.
- A lagged embedding window with intraseasonal time length in NLSA is important in capturing the key features of MISO.

Nan Chen<sup>\*</sup>, Andrew J. Majda, C. T. Sabeer, R. S. Ajayamohan, Predicting Monsoon Intraseasonal Precipitation using a Low-Order Nonlinear Stochastic Model, *Climate Dynamics*, 2017

# Chennan@cims.nyu.edu)