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Introduction

The generalized Korteweg de-Vries (gKdV) equation is given by

ut = uxxx + (f (u))x

for some “nice” nonlinearity f . Some examples:

Surface Waves: f (u) = u2

Internal Waves: f (u) = αu3 + βu2

Plasmas: f (u) = ur+
1
2 r ≥ 0.

Interested in the stability of traveling wave solutions of form
u(x , t) = u(x + ct) with wave-speed c > 0.

Describes stationary solutions in the traveling coordinate system
ξ = x + ct.
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Introduction

Profile of traveling wave satisfies

uxxx + f (u)x − cux = 0.

Integrating twice gives the nonlinear oscillator:

1

2
u2x = E + au + cu2/2− F (u)

du√
2(E + au + cu2/2− F (u))

= dx

with a,E constants of integration, c wavespeed and F the antiderivative
of f .
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Alternative Point of View

Alternative Point of View Two conserved Quantities mass and

momentum (M,P) plus spatial period (T )

T =

∫
dx

M =

∫
udx

P =
1

2

∫
u2dx

Solitary wave equation equivalent to

∂uH + a∂uM + c∂uP+E∂uT = 0

c is a Lagrange multiplier enforcing constraint P = constant.

a is a Lagrange multiplier enforcing constraint M = constant.

Morally E is a Lagrange multiplier enforcing constraint T = constant.
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Introduction

Exists two classes of bounded solutions to traveling wave ODE:
(1) Asymptotically constant (solitary wave solutions):
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(2) Periodic (periodic traveling wave solutions):
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Example: (Critical) KdV-4 ( f (u) = u5)

The effective nonlinear oscillator is given by

u2x
2

= E + au + c
u2

2
− u6

6

The discriminant of this sixth degree polynomial is

∆KdV−4 = −48a2 − 3125a6 + 11250a4E − 10800a2E 2 + 1728E 3 + 7776E 5

The zero set of which gives the familiar swallowtail cusp:

-0.6 -0.4 -0.2 0.2 0.4 0.6
a

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

E

Jared C Bronski (UIUC Mathematics) Stability and Oscillation Theorems for Waves and Coherent Structures.3/29/17 6 / 35



Identities

Define the classical action for the traveling wave

K =

∫
pdq =

∫ √
2(E + au + cu2/2 + F (u))dx

This is a generating function for the conserved quantities

T =
∂K

∂E

M =
∂K

∂a

P =
∂K

∂c

These are the Maxwell relations from thermodynamics. They hold VERY
generally.
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Goals:

Study stability of solutions to periodic as well as long wave-length
perturbations

Develop geometric criteria for understanding instability.

As motivation, we briefly recall the stability theory of solitary wave
solutions of gKdV.
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Solitary Wave Stability

Recall traveling wave solutions satisfy

1

2
u2x = E − F (u) +

c

2
u2 + au

Up to translation, gKdV admits a three parameter family of bounded
solitary wave solutions of the form

u(x , t) = uc(x + ct), c > 0.

gKdV admits three conserved quantities:

T =

∫
dx

M =

∫
udx

P =

∫
u2dx

Solitary wave one-parameter (E = 0, a = 0) submanifold.
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Solitary Wave Stability

Theorem (Benjamin, Bona, Grillakis-Shatah-Strauss,
Bona-Souganidis-Strauss, Pego-Weinstein,...)

Let u be a solitary wave solution of gKdV of wave speed c0 > 0. Then u is
orbitally stable if

∂

∂c
P(c)

∣∣
c=c0

> 0

and spectrally unstable if

∂

∂c
P(c)

∣∣
c=c0

< 0.

a) dP/dc > 0   Solitary Wave Stable. a) dP/dc < 0   Solitary Wave Unstable.

Note: Stable if and only if energy is constrained minimizer(constraint
P = constant)
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Facts: Periodic Stability Problem

Linearized spectral problem takes the form

∂xLv = µv

With the operator L a periodic Schrödinger operator.

Determining essential spectrum hard part of problem.

Behavior near the origin (in spectral plane) can be computed
analytically (Whitham Theory).

Third order operator - Three parameter family of periodic waves.
Basis to tangent space of manifold of traveling waves generates
(generalized) kernel of ∂xL

Spectral information near origin related to geometric information
about underlying classical mechanics
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Periodic (Spectral) Stability Theory

Recall traveling waves are reducible to quadrature:

1

2
u2x = E + au +

c

2
u2 − F (u).

Thus, (up to translation) ∃ three parameter family of periodic traveling
wave solutions of gKdV

u(x ; a,E , c), period T = T (a,E , c)

Conserved quantities:

T (a,E , c) =

∫ T

0
dx =

∮
du√

E + au + cu2/2− F (u)
,

M(a,E , c) =

∫ T

0
u(x ; a,E , c)dx =

∮
udu√

E + au + cu2/2− F (u)
,

P(a,E , c) =

∫ T

0
u(x ; a,E , c)2dx =

∮
u2du√

E + au + cu2/2− F (u)
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Periodic Stability Theory: Some results

UHEL

Given the monodromy map M(µ) define the periodic Evans function:

D(µ, κ) = det
(
M(µ)− e iκI

)
then D(µ, 0) detects periodic eigenvalues of ∂xL[u] in L2per([0,T ]).

Notation: We use the following Poisson bracket style notation for
Jacobian determinants:

{f , g}x ,y =

∣∣∣∣ fx fy
gx gy

∣∣∣∣
{f , g , h}x ,y ,z =

∣∣∣∣∣∣
fx fy fz
gx gy gz
hx hy hz

∣∣∣∣∣∣
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Orientation Index

Theorem (J. C. B. & Mathew Johnson 2008)

Let u = u( · ; a0,E0, c0) be a periodic traveling wave solution of gKdV
such that {T ,M,P}a,E ,c is non-zero at (a0,E0, c0). The number of real
positive periodic eigenvalues is even if {T ,M,P}a,E ,c > 0 and odd if
{T ,M,P}a,E ,c < 0 .
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Orientation Index

Theorem (J. C. B. & Mathew Johnson 2008)

Let u = u( · ; a0,E0, c0) be a periodic traveling wave solution of gKdV
such that {T ,M,P}a,E ,c is non-zero at (a0,E0, c0). The number of real
periodic eigenvalues is even if {T ,M,P}a,E ,c > 0 and odd if
{T ,M,P}a,E ,c < 0.
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Remarks:

The quantity {T ,M,P}a,E ,c is the natural analog of the quantity
studied in the solitary wave case.

This quantity can be interpreted as the derivative of the momentum
P along the curve defined by M and T constant.

Can also be expressed in terms of Hamiltonian:
E{T ,M,P}a,E ,c = −{H,M,P}a,E ,c .

Natural from point of view of Whitham theory: Think of conserved
quantities as parameterizing manifold of solutions.
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An Index Theorem

Theorem (J. C. B. & Mathew Johnson & Todd Kapitula 2009)

Consider the operator ∂xL acting on L2 (R/(kTZ)) -In other words look at
perturbations of period k times the fundamental period. Define nR to be
the number of real eigenvalues in open positive half-line, nC to be the
number of complex (not purely real) eigenvalues in open right half-plane,
and n−I to be the number of purely imaginary eigenvalues of negative
Krein signature, and P(∂2K ) to be the number of positive eigenvalues of
the Hessian of the classical action K of the traveling wave. Then one has
the following count:

nR + nC + n−I = 2k − 1− P(∂2K )
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Index Theorem: Ideas of Proof

Use a formula of Hǎrǎguş and Kapitula

nR + nC + n−I = N(L|Ran(∂x ))−N(L|g−Ker(∂xL))

Both of these things can be computed in terms of geometric quantities
(determinants/Jacobians of maps).

N(L) = 2k − 1 +

{
0 TE > 0
1 TE < 0

}
follows from Sturm Oscillation

theorem

N(L|Ran(∂x )) can only differ from N(L) by at most one - Courant
minimax principle.

N(L|g−Ker(∂xL)) amounts to determining sign of particular inner
product.
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Additional Modes of Instability in Periodic Case

It is well understood that periodic waves admit additional instability
mechanisms.

A periodic wave can be stable to perturbations of the same period,
but unstable to perturbations of a multiple of the period -
modulational or Benjamin-Feir instability mechanism.

Hǎrǎguş and Kapitula showed that small amplitude periodic waves to
KdV-p go unstable at p = 2 (Modified KdV).

Want to find a way to distinguish n−I and nC in index formula.
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Modulational Instability Index

Theorem (J. C. Bronski & M.J. 2008)

Define the following quantity

∆ =
1

2
({T ,P}E ,c + 2{M,P}a,E )3 − 27

4
({T ,M,P}a,E ,c)2

If ∆ > 0 then in the neighborhood of the origin the spectrum of ∂xL
considered on L2(R) consists of the imaginary axis with multiplicity
three.

If ∆ < 0 then in the neighborhood of the origin the spectrum of ∂xL
considered on L2(R) consists of the imaginary axis together with two
curves intersecting the origin transversely to the imaginary axis, all
with multiplicity one.
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Modulational Instability Index

Modulationally Stable Case : ∆ > 0

Modulationally Unstable Case: ∆ < 0
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Ideas of Proof:

Explicit Computation: Compute M(0) in terms of tangent plane.

Local Normal form calculation (Weierstrauss preparation theorem):
Compute

det(M(µ)− e iκI) = D(µ, κ)

for κ, µ small.

Normal form homogeneous cubic in κ, µ. Discriminant of cubic tells
the story.

Note: symmetries force non-generic bfiurcation. M(0) has a
non-trivial Jordan block but eigenvalues bifurcate analytically!
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Quasiperiodic Waves (w. Johnson/Maragell)

Equations such as the Nonlinear Scrodinger equation

iφt = −1

2
φxx + v(|φ|2)φ

have quasi-periodic solutions

φ(x) = A(x)e iθ(x)

A(x + T ) = A(x)

θ(x + T ) = θ(x) + s

where s is the quasi-momentum. Spectral theory for quasi-periodic
potentials is difficult but modulational viewpoint goes through in a similar
way.
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Variational Structure

Generic NLS has three conserved quantities

M =

∫
|φ|2(x)dx

P =

∫
i (φxφ

∗ − φ∗xφ) dx

H =

∫
1

2
|φx |2 + V (|φ|2)dx

Add to these two additional quantities, the period and the
quasi-momentum

T =

∫
dx

s =

∫
i
φxφ

∗ − φ∗xφ
|φ|2

dx

Note that the last is well-defined since φ cannot vanish for quasiperiodic
solutions due to angular momentum barrier.
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Maxwell Relations

The quasi-periodic solutions are constrained minimizers of a free energy
and thus satisfy Maxwell relations, Defining the action A by a period
integral

A =

∮ √
2E − 2A2ω − c2A2 + 2V (A2)− κ2

A2
dA

we have the Maxwell relations

∂A
∂E

= T

∂A
∂ω

= −M

∂A
∂κ

= s

The integration constants E , ω, κ are Lagrange multipliers enforcing the
constraints of constant period, mass and quasi-momentum resepctively.
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Kernel of the Linearized Operator

The linearized operator takes the form

L =

(
S L−
−L+ −S

)
where S is skew-adjoint. For generic quasi-periodic waves the structure of
the kernel is as follows:

dim(ker(L)) = 2

dim(ker(L2)/ ker(L)) = 2

so the Jordan form consists of two 2× 2 Jordan blocks. This reflects the
action-angle variables: the two elements of ker(L) correspond to the two
angle variables, the two elements of ker(L2) to the actions.
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Breakup of Spectrum under Perturbation - Local Normal
Form

Under generic pertubations a 2× 2 Jordan block does not break
analytically

However.. perturbation very non-generic.

Normal form: eigenvalue λ(µ) with quasi-momentum s + µ leads to
eigenvalue condition

λ4 + Aλ2µ2 + µ4 = 0

Quantity A completely expressible in terms of period integrals.
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Lessons from NLS

In some ways structure is simpler than KdV. Structure of kernel
related to Hamiltonian structure of traveling wave equation.

Stability can be related to information on the structure of the set of
traveling waves: Classical mechanics.

Maxwell relations hold very generally - don’t require quadrature, etc.
(Nonlocal equations, etc.)
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Herglotz Eigenproblems:

In stability analysis for nonlinear systems stability often reduces to
studying an eigenvalue pencil Consider a degenerate reaction-diffusion
system where only one species diffuses

ut = uxx + F1(u, v,w, . . .)

vt = F2(u, v,w, . . .) . . .

The stability problem for a stationary solution takes the form

λp1 = p1xx +
∑

∂iFpi

λp2 =
∑

∂iF2pi . . .

The equations for non-diffusing species can be algebraically eliminated.
Surprisingly there is a structure that occurs reasonable often in
applications that guarantees that all of the eigenvalues are real and simple.
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Reminder: Herglotz Functions

If C+ denotes the open upper half-plane Re(λ) > 0 and similar C− a
meromorphic function f is Herglotz (Nevanlinna, Nevanlinna-Pick, etc) if

f (C+) ⊆ C+ f (C−) ⊆ C−

An example of a Herglotz function is a function of the form

f (z) = Az + B −
∑ Ci

z − zi

with A real and positive, B real, Ci real and positive and zi real. It is
well-known (to those that well-know it) that a Herglotz function

Has all zeroes and poles on the real axis.

Zeroes and poles alternate on the real axis, and are simple.

Is monotonically increasing between poles.
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Herglotz Pencils:

If H(λ) is an operator pencil then λ∗ is an eigenvalue if H−1(λ∗) fails to
exist as a bounded operator.
We say an operator pencil is Herglotz if the diagonal matrix elements are
Herglotz functions - in other words

f (λ) = 〈vH(λ)v〉

is a Herglotz function for all complex vectors v ∈ dom(H). It is easy to
prove the following theorem

Theorem

A Herglotz operator pencil has only real eigenvalues, and the Jordan block
structure is trivial.
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An Example:

Consider the linear operator pencil

H(λ) = A− λB

It is easy to see (via the polarization identity) that H(λ) is a Herglotz
pencil if

A is self-adjoint.

B is self-adjoint and positive semi-definite.

In this case it is well-known that the eigenvalues are real and semi-simple
(trivial Jordan blocks).
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A Rational Pencil Example

Consider the degenerate reaction-diffusion equation where one of the
reactants does not diffuse:

ut = uxx + F (u, v)

vt = G (u)− αv
Such examples are extremely common in biology: for instance spatial
predator-prey models where one of the species cannot move
(plant-herbivore)
The stability of a stationary solution is govern by a second order system

λp = pxx + F1(x)p + F2(x)q

λq = G1(x)p − αq
with very minimal algebra this is equivalent to the rational Sturm-Liouville
pencil

pxx + F1(x)p = λp − F2(x)G1(x)

λ+ α
p

This is a Herglotz Pencil!
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A Sturm Theorem

Consider the Sturm-Liouville pencil

pxx + V (x)p = λp −
∑ αi (x)

λ− βi
p(0) = 0 = p(L)

with αi (x) ≥ 0 and βi real. Then

The essential spectrum is {βi}Ni=1

Let β0 = −∞ and βN+1 =∞. In each interval (βi−1, βi ) for
ı ∈ (1 . . .N + 1) there are a (countably) infinite sequence of
eigenvalues indexed by the number of roots of the eigenfunction in
(0, L).

The eigenvalues are simple.

In other words there is a Sturm theorem for each image of the real line.
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