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Modeling failure of materials

Computational goal: Efficiently and reliably predict failure of materials
and design new materials. Need a fundamental level modeling.

Macroscale to Mesoscale to Molecular scale to Atomistic scale
Figure: Buehler group, MIT.
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Approaches towards modeling material fracture

Classical theory of fracture mechanics:
PDE+evolution of cracks

Bottom-up atomistic modeling:
Bottom-up approach from microscopic to macroscopic level

Top-down nonlocal modeling:
e.g. Peridynamics (Hillerborg et al, 1976; Silling, 2000):

Replace PDEs by integral equations with parameter δ
Reduced to classical PDE with δ → 0
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Local vs nonlocal models

Classical local continuum model

ρü = ∇ · σ + b

Require certain regularity
of displacement field.

Additional equations need
to be included when
fracture (singularity) is
involved.

Nonlocal Peridynamics model

ρü =

∫
Hx

f
(
u(x′)− u(x, x− x′)

)
dx′+b

No spatial regularity
required. Models
continuous media and
cracks within a single
framework.

Need special boundary
treatments.
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Motivations of coupling nonlocal with local models

Efficiency purpose: reduce the computational costs by using
local models.

Application purpose: e.g. use variable horizon to model
hierarchically structured materials and nonlocal heat
conductors (Gao et al, 2007; Bobaru et al, 2010).

Challenges near the boundary: how to impose classical
boundary conditions.
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The linear nonlocal diffusion problem

The (linear) nonlocal diffusion (integral) operator Lδ is
defined as

Lδun(x) =

∫
Rd

(un(y)− un(x)) γδ(x , y)dy , ∀x ∈ Ω,

Compared with the local diffusion (differential) operator,

Lu(x) = ∆u(x).

The nonlocal diffusion problem is (Caffarelli et al, 2011)
∂un
∂t = Lδun(x) :=

∫
(un(y)− un(x)) γδ(x , y)dy , ∀x ∈ Ω,

un(x , t) = 0,∀x ∈ ΩI ,∀t ≥ 0,

un(x , 0) = u0
n(x), on Ω,

where ΩI has non-zero volume and is disjoint from Ω.
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The nonlocal diffusion kernel γδ (Du et al, 2012)

The kernel γδ(x , y) is characterized by the horizon parameter
δ (i.e. effective interaction range. For d-dim isotropic
systems, it is assumed to be

s = |x − y |, γδ(s) =
1

δd+2
γ(

s

δ
).

Kernel function γ(·) satisfies

Translational invariance and isotropy:
γ(x , y) = γ(|y − x |) ≥ 0;
Compact support: γ(x , y) = 0 if |x − y | ≥ 1;
Finite second moment:

∫
s2γ(s)ds <∞. Note that due to

the scaling choice, the second moment is scale invariant.
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Nonlocal energy space

Define the Hilbert spaces associated with γδ to be

Sδ :=
{
u ∈ L2(Ω ∪ ΩI) :∫
Ω∪ΩI

∫
Ω∪ΩI

γδ(x , y) (u(y)− u(x))2 dxdy <∞, u
∣∣
ΩI

= 0
}
.

The induced norm is denoted as ‖ · ‖Sδ .

The nonlocal Poincaré inequality (Du 2013) is

‖u‖L2(Ω∪ΩI) ≤ Cp‖u‖Sδ .

More literatures about the properties of the nonlocal kernel
and the nonlocal energy norms (Du et al 2013, E’Delia et al
2014, Tian et al 2013, 2016).
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Recent developments in coupling nonlocal and local
diffusions

An example list of reference papers:

Arlequin systematic domain decomposition:
Prudhomme 2008; Han 2012; ...

An optimal-control based coupling:
E’Delia & Gunzburger 2014; E’Delia & Bochev et al 2015; ...

The force-based blending mechanism:
Seleson 2013; Silling & Seleson 2015; ...

The indicator-based coupling (A splice of the subregions):
Silling et al 2015; ...

The multiple layer-based coupling (Seamless coupling): Du &
Tian 2016; ...

To the best of my knowledge, none of the above coupling is
energy-based and consistent coupling.
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Goal

Based on energy, we target to develop a consistent and stable
coupling for γδ with local kernels, while keeps as much physical
properties as possible.
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Geometric reconstruction in 1D
Assume Ω = (−1, 1) is decomposed into Ω1 = (−1, 0) and
Ω2 = (0, 1) with interface at x = 0, and associated with kernels γδ1

and γδ2 with δ1 = Mδ2.

Adopt the geometric reconstruction (Lu et al, 2006; Shapeev, 2012).
For 0 ≤ j ≤ (M − 1)

u(y)− u(x)→
(
u
(
x +

j + 1

M
(y − x)

)
− u
(
x +

j

M
(y − x)

))
M.

Reconstruct the longer interactions within δ1 by shorter bonds
within δ2.

Hence, approximate γδ2 (|y − x |) (u(y)− u(x))2 by

γδ1 (|y − x |) 1

M

M−1∑
j=0

(
u
(
x +

j + 1

M
(y − x)

)
− u
(
x +

j

M
(y − x)

)δ1

δ2

)2

.
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Recover interactions of γδ2
by geometric reconstruction

Proposition. The energy functional defined on the entire domain Ω∪ΩI
with geometric reconstruction

E tot,gr(u) :=
1

4

∫
x,y∈Ω∪ΩI

γδ1 (|y − x |) dxdy

1

M

M−1∑
j=0

(
u

(
x +

j + 1

M
(y − x)

)
− u

(
x +

j

M
(y − x)

))2

M2

is equal to the total nonlocal energy with diffusion kernel γδ2 :

E tot,δ2 (u) :=
1

4

∫
x,y∈Ω∪ΩI

γδ2 (|y − x |) (u(y)− u(x))2 dxdy .

The interactions of kernel γδ2 can be recast in terms of those of kernel

γδ1 through geometric reconstruction .
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Extend to couple γδ direct with local diffusions

Let M →∞, then

1

M

M−1∑
j=0

(
u
(
x +

j + 1

M
(y − x)

)
− u
(
x +

j

M
(y − x)

)δ1

δ2

)2

→
∫ 1

0

|∇u(x + t(y − x))|2|y − x |2dt.

Thus, we can replace local interactions |∇u(x)|2 by

γδ(|y − x |) ·
∫ 1

0

dt|∇u(x + t(y − x))|2|y − x |2.

Apply the geometric reconstruction only when bond
{x − y} ∈ Ω2. The total coupling energy is defined as

E tot,qnl(u) :=
1

4

∫
x<0 or y<0

γδ(|y − x |) (u(y)− u(x))2 dxdy

+
1

4

∫
x>0 and y>0

dxdy γδ(|y − x |) ·
∫ 1

0

dt|∇u(x + t(y − x))|2|y − x |2.
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Force computation
Assume interface at x = 0. Forces are negative to the first variation of
total energy,

1 x < 0:

Lqnlu(x) =

∫
y∈R

γδ(|y − x |) (u(y)− u(x)) dy .

2 0 < x < δ:

Lqnlu(x) =

∫
y<0

γδ(|y − x |) (u(y)− u(x)) dy

+

(∫ 1

0

dt

∫ x
t

0

s2γδ(s)ds

)
∆u(x) +

(∫ ∞
x

sγδ(s)ds

)
∇u(x).

3 x > δ:

Lqnlu(x) =
1

2
∇x

[∫ 1

0

dt

∫
|y−x|<tδ

dyγtδ (|x − y |) |x − y |2∇u(x)

]

=
1

2
∇x

[∫ 1

0

dt2C∗∇u(x)

]
= C∗∆u(x).
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Properties of Lqnl

Symmetry (self-adjoint)

Patch-test consistency

Positive-definiteness (stability)

The maximum principle and the mass conservation

O(δ) modeling errors
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First order finite difference approximation

Approximate the coupling diffusion operator Lqnl with three
different cases : nonlocal interactions; interfacial interactions
O(δ); local interactions.

The time discretization is just the simple Euler method with
∆t = κcflh

2, κcfl is set to be 1/4.

γδ(s) is fixed to be

γδ(s) =
2

δ2s
.
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Numerical example: accuracy

Consider the Dirichlet volume-constrained problem

u(x , 0) = x2 (1−x2), f (x) = e−t(12x2−2)−e−tx2(1−x2).

The limiting local diffusion problem as δ → 0 is
∂u
∂t − uxx = f (x), 0 < x < 1, ∀t > 0,

u(x , 0) = x2 (1− x2), 0 < x < 1,

u(0, t) = u(1, t) ≡ 0,∀t > 0,

The exact solution for the diffusion problem is

uexact, limit = e−t x2 (1− x2).

18



Numerical example: accuracy

h ‖eu‖L∞ of Case A Order ‖eu‖L∞ of Case B Order

1/50 3.222e-3 − 2.334e-2 −
1/100 1.952e-3 0.723 5.935e-3 1.98

1/200 1.066e-3 0.873 1.464e-3 2.02

1/400 5.557e-4 0.939 3.510e-4 2.06

1/800 2.836e-4 0.989 7.961e-5 2.14

Table: L∞ differences of solution u with first order finite difference
discretization to the local limiting solution.
Case A: δ = 3h and Case B: δ = 10h.
The quasinonlocal local coupled with nonlocal, and then coupled with
local with interfaces at xam = −1

2 and xbm = 1
2 .
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Artificial boundary layers vanished

Compute the du(x) (strains) with Dirichlet boundary conditions.
The coupling method improves the issues of boundary layers.

(a) Fully nonlocal (b) Coupling model

20



Numerical example: point defect for static problem
Consider a constant nonlocal kernel γcδ (s) = 3

2δ3 for |s| < δ.
Consider singular external forces at x∗ = −0.1 + h/2: h = 1/2000,
δ = 100h.

f (x) =
(1− x2)(1 + x2)

|x − x∗|
, f (x) = 0.

Both quasinonlocal coupling and the fully nonlocal model capture the
singularities near defects. The classical local model fails to capture the
singularities.

Figure: Fix h = 1/2000, δ = 100h.
21



Conclusion

A new consistent coupling for nonlocal and local models is
developed, which is inspired by the quasinonlocal method and
geometric reconstruction.

This new coupling model is symmetric, patch-test consistent and
O(δ) and keeps most physical properties.

A first order finite difference approximation is proposed based on a
simple Riemann integral quadrature rule. This approximation keeps
all the properties at the continuous levels.

The coupling method resolve the issues of boundary layers.

The coupled model agrees with that of the fully nonlocal one when
there exists singularities.
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Thank you for your attention!
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