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Vesicle problem: Navier-Stokes + PDE constraint on the
evolving surface

◮ Vesicle can be visualized as a bubble of liquid within another
liquid with a closed lipid membrane suspended in aqueous
solution, size is about 10µm

◮ Lipid membrane consists of tightly packed lipid molecules with
hydrophilic heads facing the exterior and interior fluids and
hydrophobic tails hiding in the middle, thickness is about 6nm so
we treat the membrane as a surface (3d) or a curve (2d)

◮ Lipid membrane (or vesicle boundary) can deform but resist area
dilation, that is surface incompressible



Questions: How the vesicle behaves in fluid flows?

◮ To mimic some mechanical behavior of red blood cells (RBC),
drug carrying capsules in capillary

◮ Amoeboid motion (active vesicle swimmer) in confined geometry,
Wu et. al. Lai & Misbah, PRE-Rapid 2015

◮ In shear flow: Tank-treading (TT), Tumbling (TU), Trembling
(TR), depend on the viscosity contrast λ = µin/µout; Keller &
Skalak JFM, 1982 (theory), Deschamps et. al. PNAS, 2009
(experiment)

Figure: Red blood cells: flexible biconcave disks



Mathematical formulation for vesicle problem

◮ Vesicle: A liquid drop within another liquid with a closed lipid
membrane

◮ Vesicle boundary Σ: fluid membrane can deform, but resist area
dilation, i.e. Σ is surface incompressible

◮ The fluid-structure interaction is formulated by the stress balance
condition on Σ



Immersed Boundary (IB) formulation: treat the
vesicle boundary as a force generator

ρ

(

∂u

∂t
+ u · ∇u

)

+∇p = µ∆u+ f in Ω

∇ · u = 0 in Ω

∇s ·U = 0 on Σ

∂X

∂t
= U =

∫

Ω

u(x, t)δ(x −X)dx

where the immersed boundary force

f =

∫

Σ

F (X) δ(x−X) dX

F = F b + F σ on Σ

F b = cb
(

∆sH + 2H(H2 −K)
)

n

F σ = ∇sσ − 2H σn



◮ H : mean curvature, K: Gaussian curvature,

∇s = ∇−
∂

∂n
n, ∆s = ∇s · ∇s

◮ cb: bending rigidity

◮ σ: unknown elastic tension to be introduced to enforce ∇s ·U = 0

◮ It can be shown that the tension doesn’t do extra work to the
fluid; i.e. < S(σ),u >Ω= − < σ,∇s ·U >Γ

◮ The pressure and elastic tension have the same roles as Lagrange
multipliers

Question: Where does the boundary force F come from?
Answer: Variational derivative of Helfrich energy

E =
cb
2

∫

Σ

H2 dS +

∫

Σ

σ dS

⇒ F = −
δE

δX
= F b + F σ



Skew-adjoint operators

〈u,v〉Ω =
∫

Ω u(x) · v(x) dx,

〈f, g〉Γ =
∫

Γ
f(S) g(S) dS,

Define S(σ) =
∫

Γ
(∇sσ − 2σHn) |Xα ×Xβ | δ(x−X(α, β, t)) dαdβ,

then

〈S(σ),u〉Ω
=

∫

Ω

[∫

Γ
(∇sσ − 2σHn) |Xα ×Xβ | δ(x−X(α, β, t)) dαdβ

]

· u(x) dx
=

∫

Γ(∇sσ − 2σHn) ·U(α, β, t) |Xα ×Xβ | dαdβ
=

∫

Γ
σα(Xβ × n) ·U+ σβ(n×Xα) ·U− 2σHn ·U |Xα ×Xβ | dαdβ

=
∫

Γ
(σ(Xβ × n))α ·U+ (σ(n×Xα))β ·U

− [σ(Xβ × n)α + σ(n×Xα)β + 2σHn |Xα ×Xβ |] ·Udαdβ
= −

∫

Γ
σ(Xβ × n) ·Uα + σ(n×Xα) ·Uβ dαdβ

(since σ(Xβ × n)α + σ(n×Xα)β + 2σHn |Xα ×Xβ | = 0)
= −

∫

Γ σ(∇s ·U) |Xα ×Xβ | dαdβ
= −〈σ,∇s ·U〉Γ



Numerical issues:

1. Coupled with fluid dynamics which vesicle boundary is moving
with fluid and whose shape is not known a priori

2. Both the volume and the surface area of the vesicle are
conserved. How to maintain fluid and vesicle boundary
incompressible simultaneously?

3. Need to find H , ∆sH , n, K on a moving surface Σ

4. In additional to the fluid incompressibility, we need extra
constraint (surface incompressibility) on the surface

5. The role of pressure p on fluid equations is the same as the role of
tension σ on ∇s ·U = 0. Both conditions are local!

6. How to solve the above governing equations efficiently?

7. Boundary integral method, Immersed boundary (Front-tracking),
Level-set, or Phase field method?



IB and IIM simulations for vesicle problems

◮ Kim & Lai JCP 2010, 2D penalty IB method

◮ Li & Lai EAJAM 2011, IIM for 2D inextensible interface

◮ Kim & Lai PRE 2012, study the inertial effect on tumbling
inhibition

◮ Lai, Hu & Lin SISC 2012, a compound inextensible interface with
a solid particle, skew-adjoint operators

◮ Hu, Kim & Lai JCP 2014, 3D axis-symmetric case, nearly
incompressible approach

◮ Hsieh, Lai, Yang & You JSC 2015, an unconditionally energy
stable IB method for a compound inextensible interface with a
solid particle

◮ Wu, Fai, Atzberger & Peskin SISC 2015, SIBM for osmotic
swelling of vesicles

◮ Seol, Hu, Kim & Lai JCP 2016, 3D vesicle simulations under
shear flow



Nearly surface incompressibility approach

◮ ∇s ·U = 0 means that ∂
∂t |Xr ×Xs| = 0

◮ To avoid solving the extra unknown tension σ(r, s, t), we
alternatively use a spring-like elastic tension

σ = σ0

(

|Xr ×Xs| − |X0
r ×X0

s|
)

where σ0 ≫ 1 and |X0
r ×X0

s| is the initial surface dilating factor

◮ Similar idea has been used in level set framework by Maitre,
Misbah, Peyla & Raoult, Physica D 2012

◮ The modified elastic energy by

Eσ(X) =
σ0

2

∫∫

(

|Xr ×Xs| − |X0
r ×X0

s|
)2

drds



Derivation of modified elastic force by variational derivative

d

dε
Eσ(X+ εY)

∣

∣

∣

∣

ε=0

=

∫∫

σ0

(

|Xr ×Xs| − |X0
r ×X

0
s|
) Xr ×Xs

|Xr ×Xs|
· (Yr ×Xs +Xr ×Ys) drds

=

∫∫

σn · (Yr ×Xs +Xr ×Ys) drds
(

by n = Xr×Xs
|Xr×Xs|

)

=

∫∫

σ(Xs × n) ·Yr + σ(n ×Xr) ·Ys drds (by the scalar triple product formula)

= −

∫∫

(σXs × n)r ·Y + (σn ×Xr)s ·Y drds (by integration by parts)

= −

∫∫

[σrXs × n+ σsn×Xr + σ(Xs × n)r + σ(n ×Xr)s] ·Y drds

= −

∫∫

(σrXs × n+ σsn×Xr + σXs × nr + σns ×Xr) ·Y drds

= −

∫∫

(∇sσ − 2σHn) ·Y |Xr ×Xs| drds

= −

∫

Γ

(∇sσ − 2σHn) ·Y dA (since dA = |Xr ×Xs| drds)

= −

∫

Γ

Fσ ·Y dA Fσ are exactly identical !



Axis-symmetric case, Hu, Kim & Lai, JCP 2014

T = 0 T = 0.5

T = 1 T = 2

Figure: Freely suspended vesicles with different penalty number σ0. Blue
solid line: σ0 = 2× 103; green marker “×”: σ0 = 2× 104; red marker “·”:
σ0 = 2× 105.
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Figure: The corresponding evolution of total energy. Blue solid line:
σ0 = 2× 103; green marker “×”: σ0 = 2× 104; red marker “·”: σ0 = 2× 105



σ0 ‖R |Xs| −R0 |Xs|
0
‖∞ |Ah −A0|/A0 |Vh − V0|/V0

2× 103 2.988E-04 2.431E-03 9.391E-04
2× 104 6.551E-05 2.060E-04 2.865E-04
2× 105 2.903E-05 2.105E-05 2.657E-04

Table: The errors of the area dilating factor, the total surface area, and the
volume.



Full 3D case: Seol, Hu, Kim & Lai JCP 2016
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σ̃0 = 6 × 104

σ̃0 = 6 × 105

σ̃0 = 6 × 106

Figure: The comparison for three different stiffness parameters:
σ̃0 = 6× 104(△), 6× 105(�), and 6× 106(©). (a) the maximum relative
error of the local surface area; (b) the relative error of the global surface
area; (c) the relative error of the global volume; (d) the total energy.



Vesicle under shear flow
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Figure: The plot of the inclination angle (left) and the scaled mean angular
velocity (right) as functions of reduced volume ν for different dimensionless
shear rate χ.

◮ The frequency ω can be computed using ω = 1
Nv

∑Nv

i=1
|r×v|
|r|2 ,

where r and v are the position and velocity of the vertices
projected on the xz-plane, respectively.



A leaky dielectric vesicle under DC electric field

Σ

E∞

σ−, ε−

σ+, ε+

Ω−

Ω+

Questions:
◮ How the vesicle respond?
◮ How the electric field affects the vesicle dynamics in shear flow?

eg. tank-treading, and tumbling

Conductivity σ: a measure of a material’s ability to conduct an
electric current
Permittivity ε: or dielectric constant, a measure of how easily a
dielectric material polarizes in response to an electric field;



Vesicle electrohydrodynamics

(a)

(b)

Figure: (a) Prolate-oblate-prolate (POP) transition (Salipante & Vlahovska
2014); (b) Cylindrical electro-deformation (Riske & Dimova 2006)



Experiments:

◮ Electroporation, creating crack open, electrofusion
◮ Dimova et al., Biophysical J. (2005), PNAS (2006), Soft Matter

(2007, 2009, 2010)

◮ Electro-deformation
◮ Salipante & Vlahovska, 2014

Theoretical analysis:

◮ A nearly spherical model in DC electric field, Schwalbe,
Vlahovska, & Miksis, 2011;

◮ Long-wave approximation for planar membrane, Young,
Veerapaneni, & Miksis, 2014

Numerical simulations:

◮ Boundary integral method: McConnell, Miksis, & Vlahovska,
IMA J. Appl. Math. (2013), Soft Matter (2015)

◮ Level set method: Kolahdouz & Salac, SIAM J. Sci. Comput.
(2015)

◮ A coupled immersed boundary and immersed interface method:
Hu, Lai, Seol & Young, JCP 2016



Electric force field

Eulerian electric volume force

◮ Maxwell stress tensor ME = ε
(

EE− 1
2 (E ·E)I

)

◮ fE = ∇ ·ME = − 1
2 (E ·E)∇ε+∇ · (εE)E

◮ Across the interface, E is not continuous

◮ Using smoothing numerical method, E has O(1) error and fE has
O(1/h) error near the interface

Lagrangian electric interfacial force

◮ FE = [ME · n] = (M+
E −M−

E) · n; where M±
E : Maxwell stress

tensor inside (−) and outside (+) of the drop

◮ Necessary to the Boundary Integral Method

◮ Compute M±
E accurately

◮ Then fE =
∫

Σ
FE(s, t) δ(x−X(s, t))|Xs| ds

◮ The interfacial electric force FE can be distributed in an unified
manner as the tension and bending forces



Leaky dielectric model, G. I. Taylor 1966

◮ The electric field E is irrotational; E = −∇φ, where the electric
potential φ satisfies the Laplace equation

∆φ = 0 in Ω \ Σ

◮ The vesicle membrane acts like a capacitor during the charging
process, and thus forms a transmembrane potential Vm. That is,

[φ] = φ
+ − φ

− = Vm(s, t) on Σ

where the bracket [·] stands for the jump

◮ The normal component of ohmic current J = σE is continuous across
the membrane. Thus we have

[σφn] = σ
+
φ
+
n − σ

−
φ
−
n = −(J+ − J

−) · n = 0 on Σ

◮ The transmembrane potential is calculated from the conservation law
of current density across the membrane

Cm
∂Vm

∂t
+GmVm = σ

+
φ
+
n = σ

−
φ
−
n on Σ

where Cm and Gm are the membrane capacitance and conductance,
respectively



An immersed interface method for solving elliptic interface
problem
Ref.: Li & Ito, SIAM (2006)

∆φ = 0 in Ω \ Σ

[φ] = Vm, φ−
n +

σ+

[σ]
[φn] =

[σφn]

[σ]
= 0 (with assumption σ− < σ+) on Σ

(

1−
1

σr

)(

Cm

σ+

∂Vm

∂t
+

Gm

σ+
Vm

)

= [φn] on Σ

σr = σ−/σ+ is the conductivity ratio

Ref.: Tom Beale and collaborators (since 2001), Maximum norm error
estimates on IIM, for elliptic, parabolic and Navier-Stokes with
interfaces



Regular and irregular points for 5-point Laplacian

Σ

xi,j❝

xi,j−1❝

xi+1,j❝
xi−1,j❝

xi,j+1❝

❙
❙

❜
❜❜d X∗✉

X×✉Ω+

Ω−



xi,j−1 xi,j xi+1,j

xi,j−1

xi,j+1

d X∗

The discretized equation by finite difference method can be written as

∆hφij +
φc
ij

h2
= fij

Here φc
ij = 0 at regular points, and at irregular points,

φc
ij = [φ]X∗ + d[φn]X∗ +

d2

2

(

[f ]X∗ − κX∗ [φn]X∗ −∇2
s[φ]X∗

)

Reference: Russel & Wang (2003), Poisson equation; Lai & Tseng
(2008), Stokes equations; Xu (2012), piecewise coefficient Poisson
equation



Compute one-sided normal derivative along the interface by
least square approximation

.Ω−

Ω+

X∗

◮ φ−
n + σ+

[σ] [φn] =
[σφn]
[σ] , if σ+ > σ−

◮ At each orthogonal projection X∗, we use blue nodes to construct
least squares polynomial P (x, y) ⇒ min

∑

i,j(Pi,j − φi,j)
2

◮ Approximate φ−
n (X

∗) ≈ ∇P (X∗) · n(X∗) = B−φ

◮ B−φ+ σ+

[σ] [φn] =
[σφn]
[σ] = 0



Numerical discretizations

Let Φ, Ψ1, and Ψ2 be the solution vectors formed by φ, [φ], and [φn]
respectively
Backward Euler:

∆hΦ+ C1Ψ1 + C2Ψ2 = F

B−Φ+
σ+

[σ]
Ψ2 = 0

(

1−
1

σr

)(

Cm

σ+

Ψ1 −Ψn
1

∆t
+

Gm

σ+
Ψ1

)

= Ψ2

Crank-Nicholson:

∆hΦ+ C1Ψ1 + C2Ψ2 = F

B−Φ+
σ+

[σ]
Ψ2 = 0

(

1−
1

σr

)(

Cm

σ+

Ψ1 −Ψn
1

∆t
+

Gm

σ+

Ψ1 +Ψn
1

2

)

=
Ψ2 +Ψn

2

2



The resultant matrix can be written in the form of




A C1 C2

B− 0 σ+

[σ] I

0 αI βI









Φ
Ψ1

Ψ2



 =





F
0
G





where α and β are nonzero (if σr 6= 1) constant coefficients depending
on the usage of BE or CN scheme. By using Schur complement
technique, solving the above linear system can be split into four steps
as follows

1. Apply one fast Poisson solver to solve Φ∗ in

AΦ∗ = F −
1

β
C2G

2. Use GMRES iteration to solve Ψ1 in
[

B−A−1(C1 −
α

β
C2) +

α

β

σ+

[σ]
I

]

Ψ1 = B−Φ∗ +
1

β

σ+

[σ]
G

3. Update Ψ2 explicitly by the transmembrane potential equation

4. Apply one fast Poisson solver to solve Φ in

AΦ = F − C1 Ψ1 − C1 Ψ2



Convergence and efficiency study

Example 1
◮ Exact solution φ(x, y, t) in Ω = [−1, 1]× [−1, 1] is defined by

φ(x, y, t) =







e−t

σ−
(x2 − y2) x ∈ Ω−

e−t

σ+ (x2 − y2) x ∈ Ω+

, Vm =

(

1−
1

σr

)

e−t

σ+
(X(s)2 − Y (s)2)

◮ σr = 0.1, interface X = (0.5 cos s, 0.5 sin s),
Cm = 1, Gm = 4/(1− σr) + 1

◮ h = 2/N,∆t = h/4, terminal time T = 0.2

N
BE CN

‖φh − φe‖∞ Rate Iter. ‖φh − φe‖∞ Rate Iter.

80 8.046E−04 - 3 2.128E−04 - 3
160 4.958E−04 0.69 3 3.168E−05 2.74 4
320 2.587E−04 0.93 3 7.959E−06 1.99 4
640 1.313E−04 0.97 3 1.994E−06 2.00 4



Example 2
◮ Exact solution φ(x, y, t) in Ω = [−1, 1]× [−1, 1] is defined by

φ(x, y, t) =







e−t

σ−
ex cos y x ∈ Ω−

e−t

σ+ ex cos y x ∈ Ω+

, Vm =

(

1−
1

σr

)

e−t

σ+
eX(s) cosY (s)

◮ Interface X = (r(s) cos s, r(s) sin s), where r(s) = 0.1(4 + cos 3s)
◮ σr = 0.1, Cm = 1, Gm = 0.1, an extra term in transmembrane

potential equation

N
BE CN

‖φh − φe‖∞ Rate Iter. ‖φh − φe‖∞ Rate Iter.

80 8.299E−03 - 8 7.249E−04 - 9
160 4.033E−03 1.04 9 6.313E−05 3.52 10
320 2.017E−03 0.99 9 1.229E−05 2.36 9
640 1.010E−03 0.99 8 3.204E−06 1.93 8



Non-dimensionalization of vesicle EHD system

◮ All physical units: the vesicle radius R ≈ 10−5 m, the strength of
electric field E∞ ≈ 105 V/m, the fluid viscosity µ ≈ 10−3 Pa s,
the fluid density ρ ≈ 103 kg/m3, the bulk fluid conductivity
σ+ ≈ 10−4 S/m, the permittivity ε+ ≈ 10−10 F/m, and the
membrane conductivity Cm ≈ 10−2 F/m2.

◮ Characteristic scales: tmm = RCm

σ+

(

1
2 + 1

σr

)

, x∗ = x

R , t∗ = t
tmm

,

p∗ =
t2mm

ρR2 p, γ
∗ = R2

cb
γ, ε∗ = ε

ε+ , σ∗ = σ
σ+ , E

∗ = E

E∞

◮ Dimensionless numbers: Re = ρR2

µ tmm
; the capillary number,

Ca = µR3/cb
tmm

, measures the ratio of restoring bending and

membrane charging timescale; the Mason number, Mn = tmm

µ/ε+E2
∞

measures the strength of the electric field; the dimensionless

membrane capacitance, C = RCm/σ+

tmm
measures the membrane

charging rate; the dimensionless membrane conductivity,
G = RGm/σ+ measures the ratio of charging and membrane
conductivity rate



Hydrodynamical part:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u

+

∫

Σ

(

Fγ +
1

ReCa
Fb +

Mn

Re
FE

)

δ(x−X) |Xs| ds in Ω

∇ · u = 0 in Ω

∂X

∂t
=

∫

Ω

u(x, t)δ(x −X) dx on Σ

Electrical part:

∆φ = 0 in Ω/Σ, [φ] = Vm, [σφn] = 0 on Σ
(

1−
1

σr

)(

C
∂Vm

∂t
+GVm

)

= [φn] on Σ

Interfacial forces:

Fγ =
1

|Xs|
γsτ − γκn, where γ = γ0(|Xs| − |Xs|

0
)

Fb =

(

∆sκ+
κ3

2

)

n, E = −∇φ FE =
(

M+
E −M−

E

)

· n



Numerical algorithm

1. Solve the electric potential φn and the transmembrane potential (using
Crank-Nicholson scheme) by the immersed interface method. Then we
perform the one-sided difference by least squares polynomial approach
to compute E

n = (−φn
x ,−φn

y ) at the Lagrangian markers and use them
to compute the Maxwell stress tensor M+

E and M
−
E to obtain the

interfacial electric force F
n
E (also at Lagrangian markers)

2. Compute the tension force F
n
γ associated with the spring-like tension

γn = γ0(|Xs|
n − |Xs|

0) and the bending force F
n
b (by Fourier spectral

method)

3. Distribute the interfacial force terms Fn
E , F

n
γ and F

n
b from the

Lagrangian markers to the fluid grid points by using the discrete delta
function as in traditional IB method

4. Solve the Navier-Stokes equations by the pressure-increment
projection method to obtain new velocity field u

n+1

5. Interpolate the new velocity on the fluid grid point to the marker
points and then move the marker points to new positions X

n+1



Numerical results

Parameter setting

◮ Put a prolate vesicle in Ω = [−4, 4]× [−4, 4]

◮ Fix the reduced area ν = 4πA0/L
2
0 = 0.9, where A0 and L0 are

the area and perimeter of the vesicle respectively, the effect
radius R =

√

A0/π = 1,

◮ Choose the stiffness number γ0 = 2× 105

◮ Unless otherwise stated, the Reynolds number Re = 0.02, the
Capillary number Ca = 10, the Mason number Mn = 20, the
membrane capacitance C = 0.1, the conductivity ratio σr = 0.1,
the permittivity ratio εr = 1

Numerical study

◮ Convergence test for the fluid variables

◮ The prolate-oblate-prolate transition

◮ Effect of membrane conductance

◮ Effect of Reynolds number

◮ Combination of shear flow and electric field

◮ Unmatched viscosity



Convergence test for the fluid variables

◮ Take the membrane capacitance C = 0.1 and membrane
conductance G = 0.05 with different grid sizes
N = 80, 160, 320, 640

◮ The successive error ‖u2N − uN‖∞ , the Rate = log2
‖uN−uN/2‖

‖u2N−uN‖

(also for v and X)

N ‖u2N − uN‖∞ Rate ‖X2N −XN‖∞ Rate |AN−A0|
A0

80 1.459E−01 - 1.006E−02 - 9.737E−05
160 4.407E−02 1.73 3.065E−03 1.72 2.090E−05
320 1.228E−02 1.84 8.545E−04 1.84 7.656E−06

Table: The mesh refinement analysis for the velocity component u, and the
vesicle configuration X, and the relative volume loss of the vesicle at
T = 0.1



The prolate-oblate-prolate (POP) transition

◮ Take the membrane capacitance C = 0.1 and the membrane
conductance G = 0 (perfect capacitor)

Figure: (a) The snapshots for the POP transition. The color indicates the
density of surface charge Q = [εE · n]; Ca = 10



Figure: (a) The snapshots for the POP transition. The color indicates the
density of surface charge Q = [εE · n]; Ca = 1000



Discussion: when the vesicle membrane capacitor is

fully-charged Q = 0
◮ Recall the transmembrane potential equation

(

1−
1

σr

)(

C
∂Vm

∂t
+GVm

)

= [φn] ⇒ [φn] = 0 at equilibrium

◮ By using the definition

Q = [εE · n] = −[εφn] = −[φn]

we have Q = 0 at equilibrium state

Why POP transition?

Assume ε+ = ε− = ε and denote Jn = σE · n, Eτ = E · τ , the electric
force can be alternatively written by

FE =
ε

2

(

J2
n

(

1

(σ+)2
−

1

(σ−)2

)

− (E+2

τ − E−2

τ )

)

n+ Jn ε

(

E+
τ

σ+
−

E−
τ

σ−

)

τ

A

A

The electric force at A points inward if σr < 1



Effect of membrane conductance

◮ Fix C = 0.1 and vary the membrane conductance G = 0, 0.05, 0.2

◮ (a) The deformation number D versus time (b) The snapshots of
the vesicle with G = 0.2. The color denotes the value of surface
charge density Q.
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Effect of Reynolds number

◮ Fix the membrane capacitance C = 0.1 and membrane
conductance G = 0

◮ We run the simulations with Re = 0.02, 0.2, 2

◮ We attribute damping on POP transition (Re = 2) by the effect
of inertia
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Figure: The time evolutional profile of deformation number D for
Re = 0.02, 0.2, 2 with fixed C = 0.1 and G = 0



Combination of shear flow and electric field

◮ A normalized shear flow u = (y, 0) is imposed

◮ C = 0.1 and G = 0

◮ Choose Mn = 0, 1, 20 (no electric field applied for Mn = 0) and
measure the inclination angle θ

◮ The larger electric field is applied, the larger inclination angle
will be
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Figure: (a) The inclination angles for Mn = 0, 1, 20



−1 0 1

−1

0

1

T = 0

−1 0 1

−1

0

1

T = 0.2

−1 0 1

−1

0

1

T = 0.4

−1 0 1

−1

0

1

T = 0.6

−1 0 1

−1

0

1

T = 0.8

−1 0 1

−1

0

1

T = 1

−1 0 1

−1

0

1

T = 1.1

−1 0 1

−1

0

1

T = 1.2

−1 0 1

−1

0

1

T = 2

−1 0 1

−1

0

1

T = 20

Figure: (b) the snapshots for vesicle under shear flow, Mn = 20



Unmatched viscosity

◮ The viscosity contrast µr = µ−

µ+ = 20 (to ensure the vesicle

tumbles under shear flow but without the electrical field),
Re = 0.02 (to avoid vesicle tumbling inhibited by inertia)

◮ C = 0.1 and G = 0

◮ Choose Mn = 0, 1, 20 (no electric field applied for Mn = 0) and
measure the inclination angle θ

◮ Increasing the intensity of electrical field, the tumbling motion of
vesicle under shear flow will be damped out
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Figure: The inclination angles for Mn = 0, 1, 20;
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Figure: (b) the snapshots for vesicle under shear flow. Solid line ‘-’:
Mn = 0; dashed dotted line ‘-.-’: Mn = 20


