P052 First-in-human biomarker-driven phase I TRESR trial of ataxia telangiectasia and Rad3-related inhibitor (ATRi) RP-3500 in patients (pts) with advanced solid tumors harboring synthetic lethal (SL) genomic alterations. Timothy Yap1, Elizabeth Lee2, David Spigel3, Elisa Fontana4, Martin Højgaard5, Stephanie Lheureux6, Niharika B. Mettu7, Louise Carter8, Ruth Plummer9, Danielle Ulanet10, Peter Manley11, Ying Jiang10, Ezra Rosen12.
1University of Texas MD Anderson Cancer Center, Dallas, TX, 2Dana-Farber Cancer Institute, Boston, MA, 3Sarah Cannon Research Institute, Nashville, TN, 4Sarah Cannon Research Institute, London, United Kingdom, 5Rigshospitalet, Copenhagen, Denmark, 6Princess Margaret Cancer Centre, Toronto, Canada, 7Duke University Medical Center, Durham, NC, 8The Christie NHS Foundation Trust, Manchester, United Kingdom, 9Freeman Hospital Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom, 10Repare Therapeutics Inc., Cambridge, MA, 11Repare Therapeutics, Inc., Cambridge, MA, 12Memorial Sloan Kettering Cancer Center, New York, NY.

Background: RP-3500 is a novel potent and selective ATRi. A genome-wide CRISPR/Cas9-based screening platform (SNIPRx) was utilized to identify and validate synthetic lethal (SL) genomic alterations that predict sensitivity to RP-3500. This is the first presentation of data from the ongoing Phase I TRESR (Treatment Enabled by SNIPRx) study. **METHODS:** Pts with advanced solid tumors harboring RP-3500 sensitizing alterations were recruited. Pts received oral RP-3500 in 21-day cycles on different doses and schedules using a BOIN design. Pharmacokinetic (PK) and pharmacodynamic (PD) studies were conducted in serial tumor and/or blood samples. Biomarker tests included somatic and germline NGS, including zygosity studies, ATM and γH2AX IHC, and circulating tumor DNA (ctDNA). **RESULTS:** 62 pts (mean age 62 y, 42% males, 43% ≥5 prior lines of therapy) received RP-3500 (range: 1–8+ cycles). 44 pts remained on RP-3500 at the June 4, 2021, data cut-off. Tumors with ATM (n=26), BRCA1/2 (n=16), CDK12 (n=5) and other (n=20) molecular alterations were included. Germline (22 germline and 15 somatic, 25 pending) and zygosity status (10 bi-allelic and 5 mono-allelic, 46 pending) will be presented. Treatment-related adverse events (TRAEs) were mostly Grade (G)1 and transient. TRAEs occurring in >10% of pts were limited to anemia (all grades 37%, G3 26%, G4–5 0%) and fatigue (all grades 13%, G3 2%). Other ≥G3 TRAEs occurred in <5% of pts and included thrombocytopenia (4.8%) and neutropenia (1.6%). No pts discontinued RP-3500 due to TRAEs, 17/62 discontinued due to progressive disease or clinical progression and 1/62 due to withdrawal of consent. RP-3500 plasma exposures showed a dose-dependent increase with T1/2 of 6 hrs. Once-daily dosing was sufficient to meet RP-3500 exposure requirements set from pre-clinical studies. Tumor γH2AX induction (median increase =140%; p-value =0.02) was seen across doses and genotypes confirming target modulation. Declines in variant allele frequencies (>50%) in ctDNA were observed in 8/14 evaluable pts and correlated with antitumor activity (Pearson correlation coefficient =0.65; p-value =0.015). Of 31 pts evaluable for response, 14 (45%) had tumor regression on at least 1 radiologic evaluation. Objective responses were seen in 6 pts: 4 RECISTv1.1 partial responses in tumors with CDK12 and BRCA1 alterations (2 confirmed; 2 unconfirmed), and 2 PCWG3 in tumors with ATM loss. Six pts had stable disease ≥4 cycles. **CONCLUSIONS:** The TRESR study represents the largest biomarker-driven FIH trial for a single agent ATRi and validates prospective pt selection based on the presence of SL genomic alterations. RP-3500 shows a robust PK/PD profile, preliminary anti-tumor activity, and predictable and manageable on-target anemia (<30% G3, no G4/5) with low potential for off-
target toxicity. Enrollment continues, including combinations with PARPi and other therapies. Clinical trial information: NCT04497116.