# Nonlinear Patterns and Waves: From Spectra to Stability and Dynamics



Margaret Beck



Stephanie Dodson





Toan Nguyen



**Arnd Scheel** 



Kevin Zumbrun

### Patterns ...



Zebrafish Danio rerio





Vertically vibrated copper beads [Umbanhowar et al.]

### ... and waves



Calcium waves in Xenopus oocytes [Clapham et al.]



CO oxidation on Pt [Nettesheim et al.]



spiral waves



### Outline

Existence: How many degrees of freedom do these structures have?

Stability: What happens when spots or spiral waves are perturbed?

Interaction: How do these structures interact with each other?







### Outline



Interactions of localized structures



Modulations of spatially-periodic structures



Dynamics of one-dimensional spiral waves

### Localized structures

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + f(u), \quad x \in \mathbb{R}, \quad u \in \mathbb{R}^n$$

u(x,t) represents vector of concentrations or displacements at position x and time t



#### Assess stability under small perturbations:

Setting u=q+v with |v| small gives

Perturbed solution converges

exponentially in time  $(q \circ x)$  appropriate translate of q(x)has solutions of the form  $v(x,t) = e^{\lambda t} v_0(x)$ , where  $\lambda$  is in the spectrum of the operator

$$\mathcal{L} := D \frac{\partial^2}{\partial x^2} + f_u(q(x))$$



spectrum of the linearization about q(x)

#### Interaction of localized structures

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + f(u), \quad x \in \mathbb{R}, \quad u \in \mathbb{R}^n$$

Interacting structures: 
$$u_0(x) = \sum_{j=1}^{N} q(x - p_j), \quad |p_i - p_j| \gg 1$$







spectrum of linearization about  $u_0(x)$ 



### Interaction of localized structures



- Nearest-neighbor coupling (to leading order)
- Exponential small in distances

### Summary: interaction of localized structures

- PDE dynamics of spots described by system of ODEs for positions
- To leading order, nearest-neighbor coupling
- Interaction through tails, hence exponentially slow dynamics
- Spectrum: finitely many eigenvalues



### Outline



Interactions of localized structures





### Infinitely many interacting spots











infinitely many interaction eigenvalues form curve

### Slowly varying modulations

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + f(u)$$

$$u(x,t) = u_*(kx - \omega_*(k)t;k)$$



k
$$\omega = \omega * (k)$$
 $c_p = \omega * / k$ 
 $c_g = d\omega * / dk$ 

wavenumber temporal frequency phase velocity c<sub>g</sub>=dω\*/dk group velocity



slowly varying modulations of wavenumber

### Summary: slowly-varying modulations

- Modulations are transported with uniform speed given by the group velocity
- Spectrum consists of a curve touching the imaginary axis



### Outline



Interactions of localized structures



Modulations of spatially-periodic structures



# Modulations of spiral waves



# Dynamics of spiral waves

Perturbing a spiral wave has two effects:

- Position of the spiral may change
- Far-field wave trains may be modulated







group velocities point away from core



### Spectra of sources





### Dynamics of sources



- Defect core converges exponentially to new position
- Modulation interface is localized and travels with speed given by the group velocity



### Caveats

#### Long-time dynamics for small localized initial data



$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$



#### Reaction diffusion

$$\frac{\partial u}{\partial_t} = \frac{\partial^2 u}{\partial x^2} + u^3$$



#### Burgers equation

$$\frac{\partial u}{\partial_t} = \frac{\partial^2 u}{\partial x^2} + u \frac{\partial u}{\partial x}$$

$$\frac{1}{2} \operatorname{Re} \lambda$$
 spectrum of  $\mathcal{L} = \frac{\partial^2}{\partial x^2}$ 

## Summary and outlook

- Spectra generally predict nonlinear dynamics
- Proofs utilize dynamical-systems and PDE techniques to account for nonlinear terms
- Open problems: planar spiral waves are not nearly as well understood

# Summary and outlook

- Spectra generally predict nonlinear dynamics
- Proofs utilize dynamical-systems and PDE techniques to account for nonlinear terms
- Open problems: planar spiral waves are not nearly as well understood



Alternans / period-doubled spiral waves

