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Patterns ...

copper beads
[Umbanhowar et al.]

Danio margaritatus



... and waves
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Calcium waves in
Xenopus oocytes

[Clapham et al.]
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spiral waves




Outline

Existence: = How many degrees of freedom do these structures have!?

Stability: What happens when spots or spiral waves are perturbed?

Interaction: How do these structures interact with each other?




Outline

Interactions of localized structures

Modulations of spatially-periodic structures
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Dynamics of one-dimensional spiral waves



| ocalized structures

Ou 0%u

. q(%)
= Dl u xeER, vueR
u(x,t) represents vector of concentrations
or displacements at position x and time t localized steady state
u(xt) = q(x)

Assess stability under small perturbations:

Setting u=q+v with |v| small gives
Perturfed solygion converges

Im A

expoperreialy iy tinfe(géxav Re A
appropriate translate of q(x)
has solutions of the form v(x,t) = e vo(x),
where A is in the spectrum of the operator spectrum of the
52 linearization about q(x)

£ 1= D +fu(9(x)



Interaction of localized structures
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localized stable steady state Pi() paAt) P3(t)

spectrum of Im A spectrum of
linearization Re A linearization
about q(x) about uo(x)

N eigenvalues
near zero



Interaction of localized structures
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P2 invariant manifold
parametrized
pi(t) paA(t)  P3() by positions of spots
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dps

dt
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P3

Nearest-neighbor coupling (to leading order)
Exponential small in distances



Summary: interaction of localized structures

PDE dynamics of spots described by system of ODEs for positions
To leading order, nearest-neighbor coupling
Interaction through tails, hence exponentially slow dynamics

Spectrum: finitely many eigenvalues

[Neu], [Ei], [S.], [Mielke & Zelik]
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Interactions of localized structures

Modulations of spatially-periodic structures
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Dynamics of one-dimensional spiral waves



Infinitely many interacting spots

Re A

finitely many spots

infinitely many spots
infinitely many interaction

eigenvalues form curve



Slowly varying modulations
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slowly varying modulations of wavenumber



Summary: slowly-varying modulations

Modulations are transported with uniform speed given by the group velocity

Spectrum consists of a curve touching the imaginary axis

group velocity

>
local wavenumber

A

[Howard & Kopell], [Kuramoto], [Doelman et al.], [Johnson et al.]
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Interactions of localized structures

Modulations of spatially-periodic structures
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Dynamics of one-dimensional spiral waves



Modulations of spiral waves




Dynamics of spiral waves

Perturbing a spiral wave has two effects:
Position of the spiral may change
Far-field wave trains may be modulated

group velocities point space
away from core

I
|




Spectra of sources
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Dynamics of sources

time ¢ 9 ¢ ’
shock shock
defect
core
X=-Cgt =cgt
space

Defect core converges exponentially to new position Im A
Modulation interface is localized and travels with speed Re A
given by the group velocity




Caveats

Long-time dynamics for small localized initial data

initial
condition

Heat equation Reaction diffusion Burgers equation
ou O ou Ok : ou Ok ou
e — = — 44 u e - u
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82
spectrum of £L = —
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Summary and outlook

Spectra generally predict nonlinear dynamics

Proofs utilize dynamical-systems and PDE techniques to account for
nonlinear terms

Open problems: planar spiral waves are not nearly as well understood
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Spectra generally predict nonlinear dynamics

Proofs utilize dynamical-systems and PDE
techniques to account for nonlinear terms

Open problems: planar spiral waves are not nearly
as well understood
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Alternans / period-doubled spiral waves




