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For the large class of problems considered in this  
talk, a surprisingly effective method of analysis  
will be presented. 
 
It is hoped that the results available from this  
work give valuable insight into the broad topic  
of emergent dynamical behavior in large  
complex systems. 
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•  Pacemaker cells in the heart. 
•  Pedestrians on a foot bridge. 
•  Synchronous flashing of fireflies. 
•  Josephson junction circuits. 
•  Laser arrays. 
•  Oscillating chemical reactions. 
•  Brain dynamics. 
•  Etc. 
 

Some Examples of the Types of 
Problems considered 
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Cellular clocks in the brain (day-night cycle).  

Yamaguchi et al., Science 302, 1408 (‘03). 

Incoherent 

Coherent 
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Framework for the Kuramoto 
Model •  N oscillators described only by 
their phase θ.  N is very large. 

g(ω) 

ω 

•  The oscillator frequencies are randomly chosen 
from a distribution g(ω ) with a single local 
maximum. 

θi 

ωi 
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 The Kuramoto Model (1975) 
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•  Macroscopic coherence of the system is 
characterized by 
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Analogy: F=ma for the particles in a fluid coupled by collisions 
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Order parameter measures the coherence 

1≈r 0≈r
Analogy: macroscopic description of a fluid 
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   Result for the Kuramoto model 
There is a transition of the macroscopic steady state 
attractor to synchrony that occurs at a critical value of the 
coupling constant. 
g(ω) = PDF of natural oscillator frequencies ω. 

[Explanation of suprachiasmatic nucleus result] 

ck

r 

k
Incoherence 

Synchronization 
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Generalizations of the Kuramoto model 
         Networks of excitable and firing neurons: T.Luke, P.So & 

E.Barreto, Neural. Comp. 25 (2013); D.Pazo & E.Montbrio, 
Phys. Rev. X 4 (2014), C.Laing, Phys. Rev. E 90 (2014). 

         Modeling circadian rhythm and jet-lag in humans: Z.Lu, 
T.Antonsen, & M.Girvan, et al., Chaos (2016).                                    

        Josephson junction circuits: S. A. Marvel & S. H. Strogatz, 
Chaos 19 , 013132 (2009).                                                                                                 

        Birdsong model compared with experiments: L.M.Alonso, J. 
A. Alliende, & G. B. Mindlin, Euro. Phys. J. 60, 361 (2010). 

       Effect of network topology: P. S. Skardal, J .G. Restrepo & 
E. Ott, Phys. Rev. E 91 060902 (2015). 

O   Oscillators distributed in space with local coupling:  C. Laing, 
Chaos 19, 013113 (2009); and W. S. Lee, J. G. Restrepo, E.Ott, 
& T. M. Antonsen, Chaos 21  023122 (2011).  

Main message of this talk: There is an analysis technique for 
obtaining the macroscopic dynamics of all these problems (see 
above papers), as well as many others of this type. We now 
illustrate this using the Kuramoto model as an example. 
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The ‘Order Parameter’ Description 
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The Kuramoto 
model as an 
example: 
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N → ∞ 
Introduce the distribution function f(θ,ω,t) 

[the fraction of oscillators 
with phases in the range 
(θ, θ + dθ ) and frequencies 
in the range (ω, ω + dω ) ] 
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Can We Solve for the Evolution of f  ? 
Ansatz*: 

( ) exp( ) *exp( )( , , ) 1
2 1 exp( ) 1 *exp( )
g i if t

i i
ω α θ α θ

ω θ
π α θ α θ

⎧ ⎫⎡ ⎤−
= + +⎨ ⎬⎢ ⎥− − −⎣ ⎦⎩ ⎭

( , ),tα α ω=

[ ]

∫
∞+

∞−

=

=+−+
∂

∂

ωα

ωαα
α

dgR

iRRk
t

*

*2 0
2

Analogy: the local 
Maxwellian for a gas ( , ) 1.tα ω ≤ This form  

specifies M. 

Ott & Antonsen, Chaos 18, 037113 (‘08); and Chaos 19, 023119 
(‘09). Also Ott, Hunt & Antonsen, Chaos 21 025112 (’11). 

* 
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Comments  
•  f  lies on an invariant manifold M   in the space of all 
  possible distributions: M 

•   For f on M and appropriate g(ω) one can obtain a low 
dimensional macroscopic description of the evolution. 

•  Is it useful?                           Yes, very. 
• THEOREM (Ott & Antonsen; Chaos 19 ‘09): For a large 
class of g(ω) all solutions are attracted to M. 
• Relaxation of f to M is due to the spread in ω.  
• Thus our result can be used to discover and analyze all 
the long term behaviors of these systems (including all of 
their bifurcations and attractors) ! 

(Watanabe & 
Strogatz PRL) 
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Ex.: Exact Solution of Kuramoto  for Lorentzian g(ω) 
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Analogy: Navier-Stokes equations for macroscopic fluid state 

For this g(ω) (and others) the integral  
for R(t) can be done by contour  
integration in the complex ω-plane: 
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Another Example: Crowd Synchronization on  
 the Millennium Bridge  

Bridge opened in June 2000, London. 
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The Phenomenon: 

London, 
Millennium bridge: 
Opening day 
June 10, 2000 
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Studies by    
Arup: 
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MODEL 

REDUCED MODEL 

Model expansion for bridge + phase oscillators for walkers 
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Ref.: M.M.Abdulrehem and E.Ott, Chaos 19, 013129(‘09).   
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NUMERICAL SOLUTIONS OF REDUCED 
EQS. 

Arup’s fix: They increased the damping ν. 
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Conclusion  
 
Explicit mathematical descriptions of the emergent 
macroscopic behavior of a large class of complex 
systems of heterogeneous phase oscillators can be 
obtained and utilized to discover and analyze all the 
long time behavior (e.g., the attractors and 
bifurcations) of these systems. 
 
Refs.: The ansatz for the special form of f was given in 
Ott & Antonsen, Chaos 18, 037113 (2008). For the 
demonstration of attraction to M  see: Chaos 19, 
023117 (2009), and Ott, Hunt & Antonsen, Chaos 21, 
025112 (2011). 
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X Synchrony in the brain 
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X         Coupled phase oscillators 
θ

Change of variables 

Limit cycle in 
phase space 

Many such ‘phase 
oscillators’: 
Couple them: 

Kuramoto: 
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A Key Point of This Lecture*  
   Considering the Kuramoto model and its generalizations,  

for i.c.’s f( ω,θ,0 ) of a specific special form (specified later),  

•   f(ω,θ, t) continues to have that specific special 
form, 

 
   Ott & Antonsen, Chaos 18, 037113 (‘08); and Chaos 
19, 023119 (‘09). Also Ott, Hunt & Antonsen, Chaos 
21 025112 (’11). 

* 
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The Kuramoto Model as an Example  
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The manifold M is specified by a constraint on 

the form of   f(ω,θ, t).   
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Ex.: Exact Solution of Kuramoto  for Lorentzian g(ω) 
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Solution for |R(t)|=r(t) 
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Thus the steady solution  is nonlinearly stable and 
globally attracting.   
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Kinetic Theory   Relaxation to local Maxwellian 
 
 
 
Phase Oscillators  Relaxation to M (‘Poisson kernel’) 
 
 
 
 
 
 
Mixing 
Kinetic theory: Mixing is due to chaos caused by collisions. 
Phase oscillators: Mixing is due to the spread in osc. freqs. 

X      An Analogy (Continued) 
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f is flat for a=0. For 0<a<1, f is 
peaked at θ=φ, and the peak’s 
width decreases with a. 
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  X            AN ANALOGY 
                       PHASE OSCILLATORS                                                    

N               N eqs. for N>>1 oscillator phases. 
 
                               Relaxation to M (exact!). 
 
                     ODE description for order parameter. 
 
                  KINETIC THEORY FOR A GAS 
      Hamilton’s eqs. for N>>1 interacting fluid particles. 
 
   Relaxation to a local Maxwellian (asymptotic expansion) 
 
      Fluid eqs. for moments (density, velocity, temp., …). 
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X            References 
•  Main Refs.: E. Ott and T.M. Antonsen, 
   “Low Dimensional Behavior of Large Systems                                     

of Globally Coupled Oscillators,”                   
Chaos 18 ,037113 (‘08). 

    “Long Time Behavior of Phase Oscillator 
Systems”, Chaos 19, 023117 (‘09). 

 Our other related work that is referred to in 
this talk can be found at:  

    http://www-chaos.umd.edu/umdsyncnets.htm 
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 External Drive: 
Generalizations of the Kuramoto 

Model 
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drive E.g., circadian rhythm. 

Ref.: Sakaguchi, ProgTheorPhys(‘88); Zhixin Lu et al., Chaos 26 
(‘16); Childs & Strogatz, Chaos 18 (‘08). 

Groups of Oscillators: 
σ = group (σ = 1,2,.., s); Nσ = # of oscillators in group σ. 
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E.g., Barreto et al., PhysRevE (‘08);Martens et al., PhysRevE(‘09); 
Abrams,et al., PhysRevLett(‘08); Laing, Chaos19(‘09); and 
Pikovsky & Rosenblum, PhysRevLett 101 (‘08). 
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X  Generalizations (continued)  
 
Millennium Bridge Problem: 
 
 

∑=Ω++
i

ifM
ydtdydtyd 1// 222 ν (Bridge mode) 

))(cos()( 0 tftf iii θ=  (Walker force on bridge) 

 (Walker phase) 

  Ref.: Eckhardt, Ott, Strogatz, Abrams, & McRobie, 
PhysRevE 75, 021110(‘07); Abdulrehem and Ott, Chaos 
19, 013129 (‘09). 

  
 
 
 

)cos(// 22 βθωθ +−= iii dtybddtd
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    X    Other Frequency Distributions 
g(ω)    

Our method can treat certain other g(ω)’s, e.g., 

                   g(ω) ~  [(ω-ω0 )4 + Δ4 ]-1, or 
  
                 g(ω)=[polynomial]/[polynomial]. 
  
Then there are s coupled ODE’s for s order 
parameters where s is the number of poles of 
g(ω) in Im(ω)<0. 
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X COMMENT ON ATTRACTION TO 
M 

Due to the analyticity requirement on g(ω), 
our result of attraction to M does not 
apply if g(ω) is a delta function, and, in 
that case, long time behavior not on M 
can occur [e.g., Pikovsky & Rosenblum, 
PhysRevLett (‘08); Marvel & Strogatz, 
Chaos 19 (‘09)]. Thus the long time 
behavior is, in a sense, simpler when the 
oscillator frequencies are heterogeneous.  



35 

X TRANSIENT BEHAVIOR: 
ECHOES •  The transient behavior that occurs as the orbit relaxes 

to M can be nontrivial. An example of this is the ‘echo’ 
phenomenon studied in Ott, Platig, Antonsen & Girvan, 
Chaos 18, 037115 (‘08). [Similar to Landau echoes in 
plasmas; e.g., T.M.O’Neil & R.W.Gould, Phys. Fluids 
(1968).]  

•  For the classical Kuramoto model with k below its 
critical value and external stimuli (figure below). 

•  Chemical experiment in progress by Showalter et al. 

k < kc 

r

t Stimulus Stimulus Echo 
τ τ
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The Frequency of Walking: 

People walk at 
a rate of about 
2 steps per 
second (one 
step with each  
foot). 

Matsumoto et al., Trans JSCE 5, 50 (1972) 
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If α(ω,0) → 0  as  Im(ω) → -∞ ,                       
then so does α(ω,t)  

     Since  |α| < 1, we also have (recall that                          )  
 

     | R(t)|< 1 and                                          . 
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|α| → 0  as Im(ω) → -∞ for all time t. 
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If, for Im(ω)< 0, |α(ω,0)|<1, then |α(ω,t)|<1 : 
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At |α(ω,t)|=1: 
         
       |α| starting in |α(ω,0)| < 1 cannot cross into |
α(ω,t)| > 1.  
 
|α(ω,t)| < 1 and the solution exists for all t           
( Im(ω)< 0  ) . 
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