Trans-D Methods for Quantifying Uncertainty in Seismic Inversion

Human Energy®

Anandaroop Ray

Acknowledgments: Sam Kaplan, John Washbourne, Uwe Albertin, Anusha Sekar, Mike Hoversten

© 2019 Chevron

Problems with the FWI objective function

$\arg\min\phi(\mathbf{m}) = ||\mathbf{W}(\mathbf{d} - \mathbf{f}(\mathbf{m}))||_2^2 + \lambda^2 ||\mathbf{Rm}||_p^p$

Limitations in conventional approach

Bad choices for ${\bm R}$ and λ^2 lead to slow convergence

Solution requires linearization

Local minima abound

No convergence guarantees exist

Model **m** is high dimensional

Problems with the FWI objective function

$$\arg\min\phi(\mathbf{m}) = ||\mathbf{W}(\mathbf{d} - \mathbf{f}(\mathbf{m}))||_2^2 + \lambda^2 ||\mathbf{Rm}||_p^p$$

Limitations in conventional approach	Bayesian solutions
Bad choices for ${\bf R}$ and λ^2 lead to slow convergence	Appeal to a parsimonious model basis
Solution requires linearization	Do not linearize
Local minima abound	Sample in parallel (parallel tempering)
No convergence guarantees exist	Sample the model space (Markov chain Monte Carlo or McMC)
Model m is high dimensional	Appeal to parsimony (trans-D McMC)

updated belief \propto likelihood of belief \cdot prior belief $p(\mathbf{m}|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m}) \cdot p(\mathbf{m})$ Given the Given the **m** is a model observed obtained from model **m**, seismic data accuracy of prior notions, d, new belief e.g., well data, seismic geology, etc. in model **m** prediction

But non-linearity (i.e., non-uniqueness), high model dimension and model parametrization make equivalence more of a *theoretical* comfort

Trans-dimensional (trans-D) Bayesian inversion

Ordinary McMC	Change model parameters while sampling
trans-D McMC	Add/delete parameters while sampling
	Add/derete parameters while sampling

$$p(k|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m}_{\mathbf{k}}, k) \cdot \left[f_1.f_2...f_k\right].$$

Noisy synthetic data

F-X data for inversion (SYNTHETIC EXAMPLE)

© 2019 Chevron

Maximum likelihood source spectrum, data noise and misfit function

Bayesian posterior model PDFs (SYNTHETIC EXAMPLE)

Black = true model, Red = Median model, Blue = P5 and P95

PDFs normalized at every depth (SYNTHETIC EXAMPLE)

Posterior vs true wavelet (SYNTHETIC EXAMPLE)

© 2019 Chevron

Trans-dimensional (trans-D) Bayesian inversion

Ordinary McMC	Change model parameters while sampling
trans-D McMC	Add/delete parameters while sampling

$$p(k|\mathbf{d}) \propto p(\mathbf{d}|\mathbf{m}_{\mathbf{k}}, k) \cdot \left[f_1.f_2...f_k\right].$$

Feasible Trans-D beyond 1D

Ordinary McMC	Change model parameters while sampling
trans-D McMC	Add/delete parameters while sampling
tree based trans-D McMC	Do trans-D on wavelet transform trees

Required coefficients

As a sum of basis functions, this is how many coefficients we need for a given level of approximation.

Choice of basis is important!

Gauss-Newton: Fails due to cycle skipping

with incorrect background velocity.

 $\phi(\mathbf{m}) = \frac{1}{2} [\mathbf{d} - \mathbf{f}(\mathbf{m})]^t [\mathbf{d} - \mathbf{f}(\mathbf{m})]$ $\nabla_{\mathbf{m}} \phi = \mathbf{J}^t [\mathbf{f}(\mathbf{m}) - \mathbf{d}]$

Trans-D sampling: On the other hand ...

Background velocities are quickly recovered, with more detail appearing later

Trans-D sampling progress

But why provide only a summary statistic - What if the uncertainties are multi-modal?

Uncertainty on inverted Vp

Uncertainty on inverted Vp

Data match for 2 shots

The AVO characteristics as well as kinematics for both shot gathers are well matched

This includes multiples, refractions as well as reflections!

Conclusions

- Current production methods (AVA inversion) for elastic parameters have large uncertainty
 - May even be Zoeppritz incompatible
- Standard optimization methods (FWI) suffer from
 - Local minima problem (cycle skips)
 - Massive crosstalk problem (trade-offs)
- Stochastic methods can avoid these problems by
 - Dimension reduction, Trans-D, Parallel Tempering
- Key challenges
 - Large number of forwards, cost of forwards is very high
 - can be addressed using
 - gradient based sampling
 - using **optimized FD** engines
 - Modeling a reduced basis set directly
 - Using less shots

Backup

Parallel tempering in action

The discrete wavelet transform and its tree representation

Chevron

Histogram of residuals from 100 sampled models

Chevron