On Preconditioning Newton Method for PDE Constrained Optimization Problems

Amir Gholami, George Biros mstrure ENGINEERING \& SCIENCES

May 26, 2016

Outline

(1) Introduction
(2) Forward Model
(3) Inverse Problem

4 Hessian

Gliomas:

- Account for $\mathbf{8 0 \%}$ of all malignant brain tumors.
- More than 60,000 new cases each year in US.

Initial FLAIR Scan

Time2 FLAIR Scan

This requires a patient specific method to approximate a tumor growth model parameters.

Image from (P. Mosayebi et.
(1) Introduction
(2) Forward Model
(3) Inverse Problem
4. Hessian

Forward Model

Phenomenological model:

$$
\frac{\partial c}{\partial t}-\nabla \cdot(k(x) \nabla c)-\rho c(1-c)=0 \text { in } U=\Omega \times(0, T]
$$

$$
\frac{\partial c}{\partial n}=0 \text { on } \Gamma \times(0,1)
$$

Forward Model

Phenomenological model:

$$
\begin{gathered}
\frac{\partial c}{\partial t}-\nabla \cdot(k(x) \nabla c)-\rho c(1-c)=0 \text { in } U=\Omega \times(0, T] \\
\frac{\partial c}{\partial t}-D c-r(c)=0 \text { in } U=\Omega \times(0, T] \\
\frac{\partial c}{\partial n}=0 \text { on } \Gamma \times(0,1)
\end{gathered}
$$

$$
\begin{gathered}
D c=\nabla \cdot(k(x) \nabla c) \\
k(x)=k_{0}(x) I+k_{f} T(x)
\end{gathered}
$$

- k_{0} : Inhomogeneous diffusion part
- $T(x)$: Anisotropic diffusion part
- k_{f} : Anisotropic diffusion coefficient

Principle direction extracted from DTI (raw data provided by LONI lab of USC).

Inhomogeneous part of the diffusion

Outline

(1) Introduction
(2) Forward Model
(3) Inverse Problem
4. Hessian

PDE-constrained optimization:

$$
\min _{p} \mathcal{J}:=\frac{1}{2}\left\|O_{0} c_{0}-d_{0}\right\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\left\|O_{1} c_{1}-d_{1}\right\|_{L^{2}(\Omega)}^{2}+\frac{\beta_{p}}{2}\|p\|_{\mathcal{R}^{N_{k}}}^{2}
$$

subject to:

$$
\begin{gathered}
\frac{\partial c}{\partial t}-D c-r(c)=0 \text { in } U \\
c_{0}-\Phi p=0
\end{gathered}
$$

Inverse Problem - KKT Optimality Conditions

By requiring stationarity of the Lagrangian with respect to the adjoint, state, and inversion variable, we obtain the so called KKT optimality conditions:

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial c}=0 \Rightarrow \text { adjoint equation } \\
& \frac{\partial \mathcal{L}}{\partial \alpha}=0 \Rightarrow \text { state equation } \\
& \frac{\partial \mathcal{L}}{\partial p}=0 \Rightarrow \text { inversion equation }
\end{aligned}
$$

Find c, α, p such that:

$$
\left\{\begin{array}{l}
-\frac{\partial \alpha}{\partial t}-D \alpha-\frac{\partial r(c)}{\partial c} \alpha=0 \\
\alpha_{1}+O_{1}^{T}\left(O_{1} c_{1}-d_{1}\right)=0 \\
\frac{\partial c}{\partial t}-D c-r(c)=0 \\
c_{0}-\Phi p=0 \\
\beta p+O_{0}^{T}\left(O_{0} p-d_{0}\right)-\Phi^{T} \alpha_{0}=0
\end{array}\right.
$$

Reduced Space Method

$$
H \tilde{p}=-\left.\partial_{p} \mathcal{L}\right|_{p^{0}} .
$$

where H is the reduced Hessian and $H \tilde{p}$ is computed by:

1. Given p^{0}, compute c^{0} and α^{0} from the state and adjoint equations.
2. Solve for \tilde{c} and $\tilde{\alpha}$:

$$
\begin{aligned}
& \frac{\partial \tilde{c}}{\partial t}-\nabla \cdot(k \nabla \tilde{c})-\rho\left(1-2 c^{0}\right) \tilde{c}=0 \\
& \tilde{c}(0)-\Phi \tilde{p}=0 \\
& -\frac{\partial \tilde{\alpha}}{\partial t}-\nabla \cdot(k \nabla \alpha)-\rho\left(1-2 c^{0}\right) \tilde{\alpha}+2 \rho \tilde{c} \alpha^{0}=0 \\
& \tilde{\alpha}(T)+O^{T} O \tilde{c}(T)=0
\end{aligned}
$$

Reduced Space Method

$$
H \tilde{p}=-\left.\partial_{p} \mathcal{L}\right|_{p^{0}} .
$$

where H is the reduced Hessian and $H \tilde{p}$ is computed by:

1. Given p^{0}, compute c^{0} and α^{0} from the state and adjoint equations.
2. Solve for \tilde{c} and $\tilde{\alpha}$:

$$
\begin{aligned}
& \frac{\partial \tilde{c}}{\partial t}-\nabla \cdot(k \nabla \tilde{c})-\rho\left(1-2 c^{0}\right) \tilde{c}=0 \\
& \tilde{c}(0)-\Phi \tilde{p}=0 \\
& -\frac{\partial \tilde{\alpha}}{\partial t}-\nabla \cdot(k \nabla \alpha)-\rho\left(1-2 c^{0}\right) \tilde{\alpha}+2 \rho \tilde{c} \alpha^{0}=0 \\
& \tilde{\alpha}(T)+O^{T} O \tilde{c}(T)=0
\end{aligned}
$$

Straing Splitting: Forward Problem

(1) Solve $\frac{\partial c}{\partial t}=D c$ over time $\Delta t / 2$ with c^{n} as initial condition, to obtain c^{\dagger}.
(2) Solve $\frac{\partial c}{\partial t}=R(c)$ over time Δt with c^{\dagger} as initial condition, to obtain $c^{\dagger \dagger}$.
(3) Solve $\frac{\partial c}{\partial t}=D c$ over time $\Delta t / 2$ with $c^{\dagger \dagger}$ as initial condition, to obtain c^{n+1}.

This scheme can more compactly be written as:

$$
c^{n+1}=S_{D}^{\frac{\Delta t}{2}} S_{R}^{\Delta t} S_{D}^{\frac{\Delta t}{2}} c^{n}
$$

Outline

(1) Introduction

2 Forward Model
(3) Inverse Problem
4. Hessian

Extensive work on Hessian preconditioners on stationary problems but much less work on solvers for nonlinear parabolic systems
General ideas:

- Low rank approximation,
- Domain-decomposition,
- Analytic preconditioners,
- Multilevel preconditioners,

Our approach fits in the last two categories with some elements on multilevel.

Hessian Preconditioner

1. Given p^{0}, compute c^{0} and α^{0} from the state and adjoint equations.
2. Solve for \tilde{c} and $\tilde{\alpha}$:

$$
\begin{aligned}
& \frac{\partial \tilde{c}}{\partial t}-\nabla \cdot(k \nabla \tilde{c})-\rho\left(1-2 c^{0}\right) \tilde{c}=0 \\
& \tilde{c}(0)-\Phi \tilde{p}=0 \\
& -\frac{\partial \tilde{\alpha}}{\partial t}-\nabla \cdot(k \nabla \alpha)-\rho\left(1-2 c^{0}\right) \tilde{\alpha}+2 \rho \tilde{c} \alpha^{0}=0 \\
& \tilde{\alpha}(T)+O^{T} O \tilde{c}(T)=0
\end{aligned}
$$

3. $H \tilde{p}=\beta \tilde{p}-\Phi^{T} \tilde{\alpha}(0)$.
\star Approximate J^{-1} by including the nonlinear reaction term, and using average diffusion coefficient (\bar{k})

Hessian Preconditioner

1. Given p^{0}, compute c^{0} and α^{0} from the state and adjoint equations.
2. Solve for \tilde{c} and $\tilde{\alpha}$:

$$
\begin{aligned}
& \frac{\partial \tilde{c}}{\partial t}-\nabla \cdot(\bar{k} \nabla \tilde{c})-\rho\left(1-2 c^{0}\right) \tilde{c}=0 \\
& \tilde{c}(0)-\Phi \tilde{p}=0 \\
& -\frac{\partial \tilde{\alpha}}{\partial t}-\nabla \cdot(\bar{k} \nabla \alpha)-\rho\left(1-2 c^{0}\right) \tilde{\alpha}+2 \rho \tilde{c} \alpha^{0}=0 \\
& \tilde{\alpha}(T)+O^{T} O \tilde{c}(T)=0
\end{aligned}
$$

3. $P_{H} \tilde{p}=\beta \tilde{p}-\Phi^{T} \tilde{\alpha}(0)$.

- $A P_{0}$: Use \bar{k} for the diffusion term and ignore the rest
- Computational cost independent of the number of time steps.
- $A P_{1}$: Use \bar{k} for the diffusion term and numerically solve the rest
- Computational cost scales linearly with the number of time steps.

OR
Compute the true H^{-1}, on a coarser grid $\rightarrow M L P_{i}$

$$
\tilde{H}=\tilde{J}^{-T} O^{T} O \tilde{J}^{-1}+\beta I
$$

Use an iterative solver to compute the matvec of \tilde{H}^{-1}

- Higher computational cost compared to APs.

Reduced Space Method - Compact Form

(1) Start with some p^{0}.
(2) $P_{H}^{-1} H \tilde{p}=-P_{H}^{-1} \frac{\partial J}{\partial p}$.
(3) Set $p^{0}=p^{0}+\gamma \tilde{p}$ (with line search).
(4) If tolerance is reached break, otherwise go back to 2.

$$
\frac{\partial c}{\partial t}-\nabla \cdot(k(x) \nabla c)-\rho c(1-c)=0
$$

$$
k=1+\sin (2 x) \text { and } \rho \text { constant }
$$

Preonditioner Performance: Test Case 1

The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3, $N=128^{2}$). AP: Analytical Preconditioner, $M L P_{i}$ Coarse Grid Preconditioner (level i coarsening).

ρ	No Prec	P_{0}	P_{1}	$M L P_{1}$	$M L P_{2}$	$M L P_{3}$
0	$\mathbf{6}$	$\mathbf{3 + 0 . 0 0}$	$3+0.07$	$3+1.50$	$3+0.29$	$4+0.07$
0.1	$\mathbf{6}$	$\mathbf{3 + 0 . 0 0}$	$3+0.07$	$3+1.50$	$3+0.29$	$4+0.07$
1	$\mathbf{8}$	$5+0.01$	$\mathbf{4 + 0 . 1 1}$	$3+1.82$	$4+0.51$	$6+0.11$
$\mathbf{5}$	$\mathbf{1 3}$	$15+0.02$	$\mathbf{6 + 0 . 4 0}$	$5+9.00$	$6+2.28$	$10+0.71$

"'Since the preconditioners perform very well, we can use them at the early stages of the Newton solves
\rightarrow hybrid inexact Newton Method

Preonditioner Performance: Test Case 1

The total of Hessian matvecs to required to reduce the L2 norm of the gradient below $1 \mathrm{E}-3$.

Method	$\rho=0$	$\rho=0.1$	$\rho=1.0$	$\rho=5.0$
UnPrec. Newton	$\mathbf{1 2}$	$\mathbf{1 2}$	$\mathbf{2 2}$	$\mathbf{8 5}$
Prec. Newton	8.90	8.90	15.00	44.43
Hybrid Newton	$\mathbf{2 . 3 4}$	$\mathbf{2 . 3 5}$	$\mathbf{5 . 6 9}$	$\mathbf{3 2 . 5 9}$

$$
\frac{\partial c}{\partial t}-\nabla \cdot(k(x) \nabla c)-\rho c(1-c)=0
$$

Checkerboard diffusion coefficient, and $\rho=1$ constant

Preonditioner Performance: Test Case 2

The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3, $N=128^{2}$). AP: Analytical Preconditioner, $M L P_{i}$ Coarse Grid Preconditioner (level i coarsening).

T	No Prec	P_{0}	P_{1}	$M L P_{1}$	$M L P_{2}$	$M L P_{3}$
0.2	$\mathbf{6}$	$\mathbf{3 + 0 . 0 1}$	$3+0.22$	$2+1.31$	$3+0.37$	$3+0.08$
0.5	$\mathbf{7}$	$4+0.01$	$4+0.14$	$3+2.19$	$\mathbf{3 + 0 . 3 9}$	$4+0.12$
1	$\mathbf{9}$	$\mathbf{6}+0.00$	$5+0.12$	$3+2.84$	$\mathbf{4 + 0 . 6 1}$	$\mathbf{6 + 0 . 1 8}$
2	$\mathbf{1 5}$	$12+0.01$	$8+0.15$	$5+7.77$	$\mathbf{6 + 1 . 4 6}$	$10+0.39$
$\mathbf{4}$	$\mathbf{2 2}$	$23+0.00$	$\mathbf{1 6 + 0 . 2 0}$	$\mathbf{1 0 + 2 3 . 8 4}$	$\mathbf{9 + 3 . 7 9}$	$\mathbf{1 4 + 0 . 0 5}$

Preonditioner Performance: Test Case 2

The total of Hessian matvecs to required to reduce the L 2 norm of the gradient below $1 \mathrm{E}-3$.

Method	$T=0.2$	$T=0.5$	$T=1.0$	$T=2.0$	$T=4.0$
UnPrec. Newton	$\mathbf{1 2}$	$\mathbf{1 2}$	$\mathbf{2 7}$	$\mathbf{4 3}$	$\mathbf{9 6}$
Prec. Newton	8.37	8.37	16.63	27.06	$\mathbf{5 4 . 4 1}$
Hybrid Newton	$\mathbf{2 . 6 3}$	$\mathbf{5 . 9 0}$	$\mathbf{1 1 . 8 1}$	$\mathbf{2 2 . 1 3}$	54.60

Preonditioner Performance: Test Case 3

$\frac{\partial c}{\partial t}-\nabla \cdot(k(x) \nabla c)-\rho c(1-c)=0$

Diffusion coefficient for test case 4.

The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3, $N=64^{3}$). AP: Analytical Preconditioner, $M L P_{i}$ Coarse Grid Preconditioner (level i coarsening).

ρ	No Prec	$A P_{0}$	$A P_{1}$	$M L P_{1}$	$M L P_{2}$
1.0	$\mathbf{7}$	$\mathbf{3 . 0 0}$	$3+0.05$	$3+0.25$	$3+0.02$
2.0	$\mathbf{8}$	$5+0.01$	$\mathbf{3 + 0 . 0 6}$	$5+0.63$	$6+0.10$
4.0	$\mathbf{9}$	$10+0.02$	$\mathbf{3 + 0 . 0 6}$	$\mathbf{1 2 + 0 . 0 6}$	$12+0.24$

Preonditioner Performance: Test Case 3

Total number of Hessian matvecs necessary to reach convergence (i.e. $\left\|\frac{\partial J}{\partial p}\right\|_{2}<1 \mathrm{E}-3$)

Method	$\rho=1.0$	$\rho=2.0$	$\rho=4.0$
UnPrec. Inexact Newton	$\mathbf{6 9}$	$\mathbf{7 4}$	$\mathbf{1 3 7}$
Prec. Inexact Newton	34.34	38.42	47.66
Hybrid Inexact Newton	$\mathbf{2 8 . 0 6}$	$\mathbf{2 8 . 0 1}$	$\mathbf{4 2 . 6}$

(a) $\rho=1.0$

(b) $\rho=4.0$

Thank You

- Andreas Mang
- Florian Tramnitzke
- Hari Sundar
- Dhairya Malhotra
- Nick Alger

