On Preconditioning Newton Method for PDE Constrained Optimization Problems

Amir Gholami, George Biros



THE UNIVERSITY OF TEXAS

May 26, 2016



## Outline



1 Introduction







## Introduction - Gliomas



Gliomas:

- Account for 80% of all malignant brain tumors.
- More than 60,000 new cases each year in US.

Goals of biophysical tumor growth model:

- Determining the extent of tumor infiltration
- Pre- and post-operative planning

This requires a patient specific method to approximate a tumor growth model parameters.



**Initial FLAIR Scan** 



**Time2 FLAIR Scan** 

Image from (P. Mosayebi et.

al.)

## Outline



1 Introduction





#### 4 Hessian

SIAM Imaging Science 16 May 26, 2016 2 / 2

## Forward Model





Phenomenological model:

$$rac{\partial c}{\partial t} - 
abla . (k(x) 
abla c) - 
ho c(1-c) = 0 ext{ in } U = \Omega imes (0,T],$$

$$\frac{\partial c}{\partial n} = 0 \text{ on } \Gamma \times (0,1),$$

## Forward Model





Phenomenological model:

$$\frac{\partial c}{\partial t} - \nabla (k(x)\nabla c) - \rho c(1-c) = 0 \text{ in } U = \Omega \times (0,T],$$

$$\frac{\partial c}{\partial t} - Dc - r(c) = 0$$
 in  $U = \Omega \times (0, T]$ ,

$$\frac{\partial c}{\partial n} = 0 \text{ on } \Gamma \times (0,1),$$

#### Forward Model - Diffusion



$$Dc = \nabla .(k(x)\nabla c),$$

$$k(x) = k_0(x)I + k_f T(x)$$

- $k_0$ : Inhomogeneous diffusion part
- T(x): Anisotropic diffusion part
- $k_f$ : Anisotropic diffusion coefficient

## Forward Model - Diffusion





Principle direction extracted from DTI (raw data provided by LONI lab of USC).

Inhomogeneous part of the diffusion

## Outline



1 Introduction







## Inverse Problem - Setup



PDE-constrained optimization:

$$\min_p \mathcal{J} := rac{1}{2} \| O_0 c_0 - d_0 \|_{L^2(\Omega)}^2 + rac{1}{2} \| O_1 c_1 - d_1 \|_{L^2(\Omega)}^2 + rac{eta_p}{2} \| p \|_{\mathcal{R}^{N_k}}^2,$$

subject to:

$$\frac{\partial c}{\partial t} - Dc - r(c) = 0 \text{ in } U$$
$$c_0 - \Phi p = 0.$$

## Inverse Problem - KKT Optimality Conditions



By requiring stationarity of the Lagrangian with respect to the adjoint, state, and inversion variable, we obtain the so called KKT optimality conditions:

$$\frac{\partial \mathcal{L}}{\partial c} = 0 \Rightarrow \text{ adjoint equation}$$
$$\frac{\partial \mathcal{L}}{\partial \alpha} = 0 \Rightarrow \text{ state equation}$$
$$\frac{\partial \mathcal{L}}{\partial p} = 0 \Rightarrow \text{ inversion equation}$$

## Inverse Problem - First Optimality Conditions



Find  $c, \alpha, p$  such that:

$$\begin{cases} -\frac{\partial \alpha}{\partial t} - D\alpha - \frac{\partial r(c)}{\partial c}\alpha = 0\\ \alpha_1 + O_1^T(O_1c_1 - d_1) = 0\\ \frac{\partial c}{\partial t} - Dc - r(c) = 0\\ c_0 - \Phi p = 0\\ \beta p + O_0^T(O_0p - d_0) - \Phi^T \alpha_0 = 0 \end{cases}$$

## Reduced Space Method



$$H\tilde{p}=-\partial_p\mathcal{L}|_{p^0}.$$

where H is the reduced Hessian and  $H\tilde{p}$  is computed by:

- 1. Given  $p^0$ , compute  $c^0$  and  $\alpha^0$  from the state and adjoint equations.
- **2.** Solve for  $\tilde{c}$  and  $\tilde{\alpha}$ :

$$\begin{aligned} \frac{\partial \tilde{c}}{\partial t} &- \nabla \cdot (k \nabla \tilde{c}) - \rho (1 - 2c^0) \tilde{c} = 0\\ \tilde{c}(0) &- \Phi \tilde{p} = 0\\ &- \frac{\partial \tilde{\alpha}}{\partial t} - \nabla \cdot (k \nabla \alpha) - \rho (1 - 2c^0) \tilde{\alpha} + 2\rho \tilde{c} \alpha^0 = 0\\ \tilde{\alpha}(T) &+ O^T O \tilde{c}(T) = 0 \end{aligned}$$

## Reduced Space Method

- ~



$$H\tilde{p}=-\partial_p\mathcal{L}|_{p^0}.$$

where H is the reduced Hessian and  $H\tilde{p}$  is computed by:

1. Given  $p^0$ , compute  $c^0$  and  $\alpha^0$  from the state and adjoint equations.

2. Solve for 
$$c$$
 and  $\alpha$ :  

$$\frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (k \nabla \tilde{c}) - \rho (1 - 2c^{0}) \tilde{c} = 0$$

$$\tilde{c}(0) - \Phi \tilde{p} = 0$$

$$- \frac{\partial \tilde{\alpha}}{\partial t} - \nabla \cdot (k \nabla \alpha) - \rho (1 - 2c^{0}) \tilde{\alpha} + 2\rho \tilde{c} \alpha^{0} = 0$$

$$\tilde{\alpha}(T) + O^{T} O \tilde{c}(T) = 0$$

## Straing Splitting: Forward Problem



Solve <sup>∂c</sup>/<sub>∂t</sub> = Dc over time Δt/2 with c<sup>n</sup> as initial condition, to obtain c<sup>†</sup>.
 Solve <sup>∂c</sup>/<sub>∂t</sub> = R(c) over time Δt with c<sup>†</sup> as initial condition, to obtain c<sup>††</sup>.
 Solve <sup>∂c</sup>/<sub>∂t</sub> = Dc over time Δt/2 with c<sup>††</sup> as initial condition, to obtain c<sup>n+1</sup>.
 This scheme can more compactly be written as:

$$c^{n+1}=S_D^{rac{\Delta t}{2}}S_R^{\Delta t}S_D^{rac{\Delta t}{2}}c^n,$$

## Outline



1 Introduction

- 2 Forward Model
- 3 Inverse Problem



## Hessian Preconditioners



Extensive work on Hessian preconditioners on stationary problems but much less work on solvers for nonlinear parabolic systems General ideas:

- Low rank approximation,
- Domain-decomposition,
- Analytic preconditioners,
- Multilevel preconditioners,

Our approach fits in the last two categories with some elements on multilevel.

# Hessian Preconditioner



- 1. Given  $p^0,$  compute  $c^0$  and  $\alpha^0$  from the state and adjoint equations.
- **2**. Solve for  $\tilde{c}$  and  $\tilde{\alpha}$ :

$$\begin{split} &\frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (\mathbf{k} \nabla \tilde{c}) - \rho (1 - 2c^0) \tilde{c} = 0 \\ &\tilde{c}(0) - \Phi \tilde{p} = 0 \\ &- \frac{\partial \tilde{\alpha}}{\partial t} - \nabla \cdot (\mathbf{k} \nabla \alpha) - \rho (1 - 2c^0) \tilde{\alpha} + 2\rho \tilde{c} \alpha^0 = 0 \\ &\tilde{\alpha}(T) + O^T O \tilde{c}(T) = 0 \end{split}$$

3.  $H\tilde{p} = \beta \tilde{p} - \Phi^T \tilde{\alpha}(0)$ .

 $\star$  Approximate  $J^{-1}$  by including the nonlinear reaction term, and using average diffusion coefficient  $(\bar{k})$ 

# Hessian Preconditioner



- 1. Given  $p^0$ , compute  $c^0$  and  $\alpha^0$  from the state and adjoint equations.
- **2**. Solve for  $\tilde{c}$  and  $\tilde{\alpha}$ :

$$\begin{aligned} &\frac{\partial \tilde{c}}{\partial t} - \nabla \cdot (\bar{k} \nabla \tilde{c}) - \rho (1 - 2c^0) \tilde{c} = 0 \\ &\tilde{c}(0) - \Phi \tilde{p} = 0 \\ &- \frac{\partial \tilde{\alpha}}{\partial t} - \nabla \cdot (\bar{k} \nabla \alpha) - \rho (1 - 2c^0) \tilde{\alpha} + 2\rho \tilde{c} \alpha^0 = 0 \\ &\tilde{\alpha}(T) + O^T O \tilde{c}(T) = 0 \end{aligned}$$

3.  $P_H \tilde{p} = \beta \tilde{p} - \Phi^T \tilde{\alpha}(\mathbf{0}).$ 



- $AP_0$ : Use  $\overline{k}$  for the diffusion term and ignore the rest
  - Computational cost independent of the number of time steps.
- $AP_1$ : Use  $\overline{k}$  for the diffusion term and numerically solve the rest
  - Computational cost scales linearly with the number of time steps.

#### OR

Compute the true  $H^{-1}$ , on a coarser grid  $ightarrow MLP_i$ 

## Multi Level Preconditioner



$$\tilde{H} = \tilde{J}^{-T} O^T O \tilde{J}^{-1} + \beta I.$$

Use an iterative solver to compute the matvec of  ${\tilde {\cal H}}^{-1}$ 

• Higher computational cost compared to APs.





- (1) Start with some  $p^0$ . (2)  $P_H^{-1}H\tilde{p} = -P_H^{-1}\frac{\partial J}{\partial p}$ . (3) Set  $p^0 = p^0 + \gamma \tilde{p}$  (with line search).
- (4) If tolerance is reached break, otherwise go back to 2.



$$\frac{\partial c}{\partial t} - \nabla . (k(x)\nabla c) - \rho c(1-c) = 0$$



k=1+sin(2x) and ho constant



The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3,  $N = 128^2$ ). AP: Analytical Preconditioner,  $MLP_i$  Coarse Grid Preconditioner (level i coarsening).

| $\rho$ | No Prec | $P_0$   | $P_1$  | $MLP_1$ | $MLP_2$ | $MLP_3$ |
|--------|---------|---------|--------|---------|---------|---------|
| 0      | 6       | 3+0.00  | 3+0.07 | 3+1.50  | 3+0.29  | 4+0.07  |
| 0.1    | 6       | 3+0.00  | 3+0.07 | 3+1.50  | 3+0.29  | 4+0.07  |
| 1      | 8       | 5+0.01  | 4+0.11 | 3+1.82  | 4+0.51  | 6+0.11  |
| 5      | 13      | 15+0.02 | 6+0.40 | 5+9.00  | 6+2.28  | 10+0.71 |



Since the preconditioners perform very well, we can use them at the early stages of the Newton solves  $\rightarrow$  hybrid inexact Newton Method



The total of Hessian matvecs to required to reduce the L2 norm of the gradient below 1E-3.

| Method         | ho = 0 | $\rho = 0.1$ | $\rho = 1.0$ | ho = 5.0 |
|----------------|--------|--------------|--------------|----------|
| UnPrec. Newton | 12     | 12           | 22           | 85       |
| Prec. Newton   | 8.90   | 8.90         | 15.00        | 44.43    |
| Hybrid Newton  | 2.34   | 2.35         | 5.69         | 32.59    |





$$\frac{\partial c}{\partial t} - \nabla . (k(x) \nabla c) - \rho c (1 - c) = 0$$



Checkerboard diffusion coefficient, and  $\rho = 1$  constant



The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3,  $N = 128^2$ ). AP: Analytical Preconditioner,  $MLP_i$  Coarse Grid Preconditioner (level i coarsening).

| Т   | No Prec | $P_0$   | $P_1$   | $MLP_1$  | $MLP_2$ | $MLP_3$ |
|-----|---------|---------|---------|----------|---------|---------|
| 0.2 | 6       | 3+0.01  | 3+0.22  | 2+1.31   | 3+0.37  | 3+0.08  |
| 0.5 | 7       | 4+0.01  | 4+0.14  | 3+2.19   | 3+0.39  | 4+0.12  |
| 1   | 9       | 6+0.00  | 5+0.12  | 3+2.84   | 4+0.61  | 6+0.18  |
| 2   | 15      | 12+0.01 | 8+0.15  | 5+7.77   | 6+1.46  | 10+0.39 |
| 4   | 22      | 23+0.00 | 16+0.20 | 10+23.84 | 9+3.79  | 14+0.05 |



The total of Hessian matvecs to required to reduce the L2 norm of the gradient below 1E-3.

| Method         | T = 0.2 | T = 0.5 | T = 1.0 | T = 2.0 | T = 4.0 |
|----------------|---------|---------|---------|---------|---------|
| UnPrec. Newton | 12      | 12      | 27      | 43      | 96      |
| Prec. Newton   | 8.37    | 8.37    | 16.63   | 27.06   | 54.41   |
| Hybrid Newton  | 2.63    | 5.90    | 11.81   | 22.13   | 54.60   |





$$\frac{\partial c}{\partial t} - \nabla (k(x)\nabla c) - \rho c(1-c) = 0$$



Diffusion coefficient for test case 4.



The number of Hessian matvecs to solve the optimality conditions for one iteration (tol=1E-3,  $N = 64^3$ ). AP: Analytical Preconditioner,  $MLP_i$  Coarse Grid Preconditioner (level i coarsening).

| ρ   | No Prec | $AP_0$  | $AP_1$ | $MLP_1$ | $MLP_2$ |
|-----|---------|---------|--------|---------|---------|
| 1.0 | 7       | 3.00    | 3+0.05 | 3+0.25  | 3+0.02  |
| 2.0 | 8       | 5+0.01  | 3+0.06 | 5+0.63  | 6+0.10  |
| 4.0 | 9       | 10+0.02 | 3+0.06 | 12+0.06 | 12+0.24 |



Total number of Hessian matvecs necessary to reach convergence (i.e.  $\|\frac{\partial J}{\partial p}\|_2 < 1$ E-3)

| Method                 | ho = 1.0 | ho = 2.0 | $\rho = 4.0$ |
|------------------------|----------|----------|--------------|
| UnPrec. Inexact Newton | 69       | 74       | 137          |
| Prec. Inexact Newton   | 34.34    | 38.42    | 47.66        |
| Hybrid Inexact Newton  | 28.06    | 28.01    | 42.6         |



#### Acknowledgment



# Thank You

- Andreas Mang
- Florian Tramnitzke
- Hari Sundar
- o Dhairya Malhotra
- Nick Alger