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Introduction and Power Laws

Tornado Pic

Tornado in Campo, CO on 05/31/2010
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Introduction and Power Laws

Definition and Properties

Power Law

y = f(x) = Axb

Scale Invariance (homogeneous of degree b)

y = f(kx) = A(kx)b = Akbxb

ln y = lnA+ b lnx

ln y = lnA+ b ln kx

Self - Similarity
f(x)

xb
=
f∗(x, z)

xb
= φ

( z

xb∗

)
= A
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Introduction and Power Laws

Weatherquake

M. Walter [2010], Earthquakes and Weatherquakes: Mathematics and Climate
Change. Notices of the AMS, 57, v. 10, 1278–1284

∆F = b ln

(
C

C0

)
, e∆F =

(
C

C0

)b
, e−∆F =

(
C0

C

)b

Weatherquake Hypothesis: (X is the magnitude of the event)

N(x) = αpx, 0 ≤ p ≤ 1, 0 ≤ x <∞, α = − ln p

E(x) = − 1

ln p
, P (X > a) = pa

P (X > a) =
1

2
, a = − ln 2

ln p
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Introduction and Power Laws

Fractal Dimension

f(ε) = ε−D

3 =

(
1

3

)−1

, 9 =

(
1

3

)−2

, 27 =

(
1

3

)−3

.
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Radar Data and Implications

H. Cai [2005], Comparison between tornadic and nontornadic mesocyclones using
the vorticity (pseudovorticity) line technique, Mon. Wea. Rev., 133, 2535–2551

ζ = Aε−b
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Radar Data and Implications

J. Wurman and S. Gill [2000], Finescale Radar Observations of the Dimmitt,
Texas (2 June 1995), Tornado, Mon. Wea. Rev., 128, 2135–2164

Dimmit, TX, 1995, tornado: Velocity drop-off ∝ r−0.6
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Power Law in Axisymmetric Solutions

J. Serrin [1972], The swirling vortex. Phil. Trans. Roy. Soc. London, Series A,
Math & Phys. Sci., 271, 325–360

velocity ∼ 1

r

Spherical coordinates: (R,α, θ)

vR =
G(x)

rb
, vα =

F (x)

rb
, vθ =

Ω(x)

rb
,

x = cosα, r = R sinα,

b > 0
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Power Law in Axisymmetric Solutions

Case ν > 0, b = 1

Three types of solutions:

Downdraft core with radial outflow

Downdraft core with a compensating radial inflow

Updraft core with radial inflow
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Power Law in Axisymmetric Solutions

Case ν > 0, b 6= 1 and Case ν = 0

Běĺık et al. [2014], Fractal powers in Serrin’s vortex solutions, Asymptotic
Analysis, 90, No. 1, p. 53–82.

ν > 0 and b 6= 1, no solutions of the form v =
K(x)

rb
exist.

ν = 0 and b > 0, purely rotational flow F = G ≡ 0, Ω ≡ Cω is a solution.

ν = 0 and b ≥ 2, no nontrivial solutions of the form v =
K(x)

rb
exist.

ν = 0 and 1 < b < 2, any nontrivial solution of the form v =
K(x)

rb
is unstable.

ν = 0 and b = 1, every solution of the form v =
K(x)

rb
satisfies, for c ∈ R,

Ω ≡ Cω, F = c
√
x(1− x), G = c

(1− 2x)
√

1 + x

2
√
x

.

ν = 0 and 0 < b < 1, numerical simulations indicate the existence of solutions
that are stable with respect to axisymmetric perturbations.
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Běĺık et al. [2014], Fractal powers in Serrin’s vortex solutions, Asymptotic
Analysis, 90, No. 1, p. 53–82.

ν > 0 and b 6= 1, no solutions of the form v =
K(x)

rb
exist.

ν = 0 and b > 0, purely rotational flow F = G ≡ 0, Ω ≡ Cω is a solution.

ν = 0 and b ≥ 2, no nontrivial solutions of the form v =
K(x)

rb
exist.

ν = 0 and 1 < b < 2, any nontrivial solution of the form v =
K(x)

rb
is unstable.

ν = 0 and b = 1, every solution of the form v =
K(x)

rb
satisfies, for c ∈ R,

Ω ≡ Cω, F = c
√
x(1− x), G = c

(1− 2x)
√

1 + x

2
√
x

.

ν = 0 and 0 < b < 1, numerical simulations indicate the existence of solutions
that are stable with respect to axisymmetric perturbations.

Power Laws and Self-Similarity in Tornadogenesis 14 / 23



Power Law in Axisymmetric Solutions

Case ν > 0, b 6= 1 and Case ν = 0
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Dimension of a Singular Set

Singular set is not too “large”

M. Cannone [2004], Handbook of MFD, 3, Chapter 3, p. 164

One may imagine that blow-up of initially regular solutions never happens, or that
there is blow-up, but only on a very “thin” set. Clay Mathematical Institute is
offering a prize for the answer. Fefferman remarks that finite blow-up in the Euler
equation of an “ideal” fluid is an open and challenging mathematical problem as it
is for the Navier-Stokes equations. Constantin suggests that it is finite time
blow-up in the Euler equations that is the physically more important problem,
since blow-up requires large gradients in the limit of zero viscosity. The best result
in this direction concerning the possible loss of smoothness for the Navier-Stokes
equations was obtained by Caffarelli, Kohn and Nirenberg, who proved that the
one-dimensional Hausdorff measure of the singular set is zero.

Y. G. Sinai [2014], Private Communication, “Tornado is a (possibly point)
singularity in 3D”
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Dimension of a Singular Set

Kolmogorov Theory [1941]

Velocity: v = v + v′, Kinetic energy:

∫ ∞
0

〈E〉(k) dk

Kolmogorov: Midrange Scales: 〈E〉(k) is a function of only L and ε.

〈E〉(k) = Cεαkβ , α =
2

3
, β = −5

3
, k = 2π/L

A. Chorin [1994], Vorticity and Turbulence, Springer Verlag.

−β ≈ fractal dimension, 〈E〉(k) = Ck−DΣ−1

DΣ is the dimension of the vortex cross section.

Direct and inverse cascades
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Dimension of a Singular Set

Reflectivity Image
© J. Wurman, PBS NOVA, Hunt for Supertwister, 03/30/2004
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Dimension of a Singular Set

Box Counting Dimension

DB = lim
ε→0

lnN(ε)

ln 1
ε
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Numerical Evidence

L. Orf et al. [2017], Evolution of a long-track violent tornado within a simulated
supercell, B. Am. Meterol. Soc., 98, 55–68
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Conclusions

Summary

Connection between the exponent in power laws for vorticity and the intensity
of tornadic flow

Connection between the exponent in power laws for the energy spectrum and
intensity of tornadic flow

Connection between exponent in power laws and fractal dimension of the
corresponding structure of the tornado vortex

Fractal nature of the cross section of a tornado vortex

(Possibly) fractal nature of the transfer mechanism from smaller vortices to
larger ones (inverse cascade)

Extensions: Power law for helicity of the tornadic flow

THANK YOU!
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