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Outline

1 Mathematicians and scientists often look for structure in
complex processes;

2 It is possible to find particular observations that remain
correlated for long times.

3 These observations directly provide important spatial
information about dynamic structures that decay or mix
slowly, but are otherwise very difficult to identify (e.g.
oceanic eddies and atmospheric vortices).
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Basic ergodic theorems: recurrence

Poincaré Recurrence for the lamington map: Let A be a fixed
region in the 2D lamington. Then under the action of the
lamington map, almost all crumbs in A return infinitely often to A.

Theorem (Poincaré Recurrence (1890))

If a probability measure µ on X is preserved by the action of

T : X → X, then for any A ⊂ X with positive µ-measure,

µ-almost all points return infinitely often to A.
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If a probability measure µ on X is preserved by the action of

T : X → X, then for any A ⊂ X with positive µ-measure,

µ-almost all points return infinitely often to A.

Proof sketch: Suppose there is a “bad set” B ⊂ A, with positive
µ-measure, which does not recur to A infinitely often.
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Basic ergodic theorems: frequency of returns

Frequency of returns for lamingtons: For any fixed region A in
the 2D lamington, the time-asymptotic frequency with which
crumbs return to A is exactly the area of A.

Proof: Put f=1A in the theorem below.

Theorem (Birkhoff’s Ergodic Theorem (1931))

Let f : X → R be an observable and define the n-step average

An[f ](x) :=
1

n

n−1∑

k=0

f ◦ T k(x), x ∈ X.

If µ is ergodic, then as n → ∞,

An[f ](x) →

∫

X

f dµ =: E(f ), for µ almost all x ∈ X.
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Fluctuations in finite-time averages

Birkhoff’s Theorem says

An[f ](x) :=
1

n

n−1∑

k=0

f ◦ T k(x) → Eµ(f ), for µ a.e. x ∈ X .
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What about the error |An[f ](x) − E(f )|? This is more subtle
and depends on how dependent or correlated the observables
f ◦ T k are.
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Temporal correlations of observables

Suppose I have two observables f , g : X → R and I observe f

now, but wait k units of time before observing g . How are the
observables f and g ◦ T k correlated?

Thinking of f , g as random variables (e.g. concentration of
chocolate sauce on the lamington or CO2 in the atmosphere):

cov (f , g ◦ T k) = Eµ

[

(f − Eµ(f )) · (g ◦ T k − Eµ(g ◦ T k))
]

= Eµ(f · g ◦ T k)− Eµ(f )Eµ(g ◦ T k)

= Eµ(f · g ◦ T k)− Eµ(f )Eµ(g)

Let’s suppose that cov(f , g ◦ T k) → 0 as k → ∞. What is
the rate at which cov (f , g ◦ T k) → 0? This subtle question
requires smoothness.
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Smooth ergodic theory and temporal correlations

Many wonderful things happen when you combine differential
structure with probability  smooth ergodic theory.
Let X be a manifold and T : X 	 a differentiable bijection (a
diffeomorphism).
The map T is called uniformly hyperbolic (Anosov, Sinai,
Smale) if one can identify local directions in the tangent space
of X at every point x ∈ X in which there is either strict local
expansion or strict local contraction.
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Smooth ergodic theory and temporal correlations

Theorem (Sinai’72, Bowen’75, Ruelle’76)

If T is C 2 and uniformly hyperbolic, f is C 1, and g is bounded,

then there is a 0 < λ < 1 such that

cov(f , g ◦ T k) ≤ C (f , g)λk for all k ≥ 0.

That is, T has “exponential decay of correlations”.

Q: What is driving this decay of correlation?

A: The exponential separation of nearby trajectories caused by
the strict local expansion of T .

Local expansion is a common feature in many dynamical
systems. This is why the weather is hard to predict one week

in advance using observations from the present.
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So what is this rate of decay?
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So what is this rate of decay?

The figure on the left shows the evolution of a small square of
points under the “standard” 4-fold lamington map.

The figure on the right is the tweaked lamington map.

Both lamington maps have expansion factors of 4,
meaning nearby trajectories separate by a factor 4 at each
iteration.

However, the “standard” version (on the left) appears to mix
faster. What’s going on?
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A dual point of view

We now write

Eµ(f · g ◦ T k) =

∫

X

f · g ◦ T k dµ =:

∫

X

Pk f
︸︷︷︸

∼f ◦T−k

·g dµ,

where the Perron-Frobenius operator or transfer operator
P is defined via a change of variables using T k .

If f ∈ L1(X ), g ∈ L∞(X ),

∣
∣
∣
∣

∫

X

Pk f · g dµ

∣
∣
∣
∣
≤ ‖Pk f ‖L1 · ‖g‖L∞ , k ≥ 0.

Thus, the spectrum of P is important for controlling
covariances and upper bounds of rates of decay of correlations.

Typically, one considers P : B 	, where B is a Banach space
of suitably regular functions, strictly contained in L1.
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Decay rates from the spectrum of the transfer operator

Left: Spectrum of P for the “standard” lamington map;
Right: Spectrum of P for the tweaked lamington map.
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Thus, the rate of decay of correlation is not a function of
expansion rates only, or “more chaotic” does not necessarily equal
“faster decay of correlations” or “faster mixing”
(Dellnitz/F/Sertl’00, Collet/Eckmann’04, F’07)
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Visualising the eigenfunction of P corresponding to λ2

Experiments of dye-mixing in periodically forced fluids (eg.
[Voth et al. ’02]) have shown that intricate, persistent
patterns can develop from an initial dye distribution.

You are watching convergence to f2, where Pf2 = λ2f2 and λ2

is the second largest eigenvalue of P.
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Garbage patches in the ocean

[van Sebille/England/F, ’12]; see also [Maximenko ’11,
Khatiwala/Visbeck/Cane ’05]
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Time-dependent dynamics

In applications, many systems are time-dependent, meaning
that the underlying dynamical rules change over time.

For example, the three-dimensional velocities of ocean
currents are governed by changing internal variations in
density controlled by salinity and heat, which in turn are
affected by changing external inputs.

In the atmosphere, similar variations occur on much faster
timescales.

Dynamical systems models of time-dependent evolution take
the forms:

Continuous time: A time-dependent ODE ẋ = f (x , t) rather
than ẋ = f (x).
Discrete time: A concatenation · · ·Tk ◦ Tk−1 ◦ · · · ◦ T2 ◦ T1,
where Ti , i = 1 . . . , k are different maps, rather than T k ,
iteration of a single map T .
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Slow mixing structures in time-dependent systems

There is no reason to expect the slowly-mixing structures to
be fixed in space (like almost-invariant sets) in
time-dependent systems.

In fact, they can be highly mobile, making their detection
considerably more difficult.
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Decay in time-dependent systems

Time-independent case
We found the eigenfunction f2 corresponding to the second
largest eigenvalue λ2. Thus,

‖Pk f2‖ ≤ C (f2)λ
k
2 , for all k ≥ 0.

But what are “eigenvalues” and “eigenfunctions” in the

time-dependent setting?

Time-dependent case
The analogous growth rate expression is

‖PTk
◦ · · · ◦ PT2 ◦ PT1 f ‖ ≤ C (f )λk

2 .

Or:

lim
k→∞

1

k
log ‖PTk

◦ · · · ◦ PT2 ◦ PT1 f ‖ ≤ logλ2.

Note that the PTi
are linear operators (or in numerical

experiments, matrices), so logλ2 is a Lyapunov exponent.
Thus, eigenvalues are replaced with Lyapunov exponents.
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Decay in time-dependent systems

The Oseledets Multiplicative Ergodic Theorem (MET), proven in
Oseledets’ thesis in 1965, creates time-dependent
generalisations of eigenvalues and eigenvectors for
concatenations of matrices.
Building on the work of Ruelle, Mañé, Thieullen, extensions of
Oseledets’ MET have been developed [F, González-Tokman, Lloyd,
Quas,...] to enable application to time-dependent dynamical
systems.
The Oseledets vectors corresponding to the second Lyapunov
exponent λ2 are the unique collection of f s that decays as
slowly as possible and evolve consistently with the
time-dependent dynamics:

lim
k→∞

1

k
log ‖PTk

◦ · · · ◦ PT2 ◦ PT1 f ‖

is exactly logλ2.

When studying systems over finite time durations, one uses

singular vectors of PTk
◦ · · · ◦ PT2 ◦ PT1 , which approximate

Oseledets vectors.
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Application 1: the Arctic and Antarctic Polar Vortices

The North American 2013-14 “Polar Vortex Winter”.

Source: National Weather Service, NOAA, Washington Post.
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Application 1: Stratospheric Polar Vortex

In the stratosphere over the south pole, there are strong
persistent transport barriers that give rise to the Antarctic
polar vortex.

Previous studies include Boffetta et al. ’01, Koh/Legras ’02,
Rypina et al. ’07, Lekien/Ross ’10, de la Cámara et al. ’12.

We numerically approximate transfer operators P using
ECMWF vector fields, compute singular vectors, and resolve
the polar vortex as the slowest decaying object.

We initialise the flow at September 1, 2008 on a 475K
isentropic surface and follow the flow for two weeks until
September 14.
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The second singular vectors

See [F/Santitissadeekorn/Monahan, Chaos, 2010.]
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Particle simulation demonstrating the identified vortex

inhibits global mixing
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Application 2: Tracking Agulhas Rings

NASA combined a general ocean circulation model with
observations (eg. sea surface height from satellites) to create a
(somewhat smoothed) visualisation of surface ocean currents.
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Application 2: Tracking Agulhas Rings

The transport of warm saline waters from the Indian Ocean
into the upper Atlantic Ocean is substantially affected by the
advection of large anticyclonic eddies or Agulhas Rings that
detach periodically at the Agulhas current retroflection eg.
[De Ruijter et al. 1999; Lutjeharms, 2006; Doglioli et al.,
2006].

How much heat and salt an Agulhas Ring transports, and how
far into the North Atlantic the Ring transports these tracers,
is sensitive to how long the water remains within a Ring
as well as its path [Treguier et al. 2003].

Previous LCS-based studies include Poje/Haller ’99,
Beron-Vera et al. ’08, Bettencourt et al. ’11,
Beron-Vera et al. ’13, Karrasch et al. 15, Wang et al. ’16.
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Agulhas ring as a mass transporter and slowly decaying

object

Ring locations each 28 days

longitude [degrees]
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We use velocity fields derived from satellite sea-surface height
data to construct numerical transfer operators.

We then compute the 2nd Oseledets vectors and identify an
Agulhas ring as the slowest decaying object, and track its
movement for 26 months.
[F/Horenkamp/Rossi/SenGupta/vanSebille, 2015].
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Particles initialised in the first ring at Dec 30, 1998
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Mixing and Geometry

There is a beautiful relationship between
coherence of a set in terms of slow mixing
and coherence of a set in terms of its
boundary remaining small [F’15].

a

b

c

These ideas lead to a theory of dynamic isoperimetry where
general nonlinear dynamics is injected into classical
isoperimetric theory on Riemannian manifolds.

This leads to a dynamic Laplace eigenproblem, extending
classical Laplace-based methods for reconstruction of manifold
geometry.

Surprisingly, the probabilistic notion of coherence (this talk)
and the above geometric notion of coherence are in fact
identical!
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Summary

Slowly decaying structures in dynamical systems are revealed by
observations that remain temporally correlated for long times.
These highly correlated observables are eigenvectors (resp.
Oseledets/singular vectors) of transfer operators in
time-independent (resp. time-dependent) dynamics.
These ideas also apply to time-dependent PDEs.
Accurately mapping and tracking slowly decaying structures is of
great importance in models of geophysical flows because these
structures are the predictable components of often highly
unpredictable dynamics.

Ultimate aim is to produce automated algorithms to process input

and present results in near-real time for predictive use.
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unpredictable dynamics.

Ultimate aim is to produce automated algorithms to process input

and present results in near-real time for predictive use.
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