Genome-wide polygenic scores and common diseases

Sekar Kathiresan, M.D.
Director, Center for Genomic Medicine, MGH
Director, Cardiovascular Disease Initiative, Broad
Professor of Medicine, Harvard Medical School

May 14, 2019

Health care scenario: 42 yo male with dizziness, profuse sweating

```
21:10 Airway The stretcher was brought into the residence and the pt was getting ready for transfer from the
        chair to the stretcher when he started posturing and having a seizure. Pt was lifted from the chair
        to the stretcher, placed supine on the stretcher and a nasal airway was inserted and breathing was
        assisted with a BVM and 02. Pt was transported to the unit. Oxygen initiated at 25 lpm via BVM by
        Bunmumumowil. Pt. Response: Unchanged.
```


$42 y o$ male with cardiac arrest due to acute myocardial infarction (MI)

Anoxic brain injury Expired after 10 days in hospital

42yo male with fatal, early-onset MI

MI risk factors prior to event

Total cholesterol $198 \mathrm{mg} / \mathrm{dl}$
LDL cholesterol $124 \mathrm{mg} / \mathrm{dl}$
HDL cholesterol $40 \mathrm{mg} / \mathrm{dl}$
Triglycerides $\quad 170 \mathrm{mg} / \mathrm{dl}$
Blood pressure 122/78
Body mass index 26
Non-smoker
No type 2 diabetes
Family history: father with MI at 54

ACC/AHAIOy ASCVD risk calculator typically used for statin allocation decision: I.7\% ('low-risk')

Pooled Cohort Risk Assessment

Equations

Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event

Risk Factors for ASCVD					
Gender	Male	Female	Systolic BP	122	mmHg
Age	42	years	Receiving treatment for high blood pressure (if SBP $>120 \mathrm{mmHg}$)	No	Yes
Race	White or other -				
			Diabetes	No	Yes
Total Cholesterol	198	$\mathrm{mg} / \mathrm{dL}$	Smoker	No	Yes
HDL Cholesterol	40	$\mathrm{mg} / \mathrm{dL}$			
		Reset	Calculate		

ASCVD Risk Evaluation

10-year risk of atherosclerotic cardiovascular disease:	1.7%
10-year risk in a similar patient with optimal risk factors (3):	0.8%

Why is the ACC/AHA pooled cohort equation not useful in young people?

Pooled Cohort Risk Assessment

Equations

Predicts 10-year risk for a first atherosclerotic
cardiovascular disease (ASCVD) event
\& ClinCalc.com " Cardiology » Pooled Cohort 10-Year ASCVD Risk Assessment Equations

Model almost entirely driven by 'age'

In population, older you are, more likely you are to have a heart attack!

Health care scenario

What is predicted?	Risk for heart attack
Intended target population	Men/women < 55yo
How	Gene variant(s)
For what purpose	Statin initiation at early age

Janssens, Martens, Prediction Research Manual http://www.cecilejanssens.org/wpcontent/uploads/2018/0I/PredictionManual2.0.pdf

For early-onset disease, stratifying individuals based on inborn DNA variation an option

Most diseases inherited component

Stratify individuals based on inherited DNA variation

Myocardial infarction (MI) or heart attack: a classic common, complex disease

Symptoms

EKG change

Elevation in
cardiac biomarkers

Heritable \& lifestyle components

Inherited component to early heart attack

Ml at age < 55 Age onset at MI

Traditional approach:
Genetic prediction focuses on rare, monogenic mutations

Traditional approach:
Genetic prediction focuses on rare, monogenic mutations

Familial

 hypercholesterolemia

Heart attack
~3x
increased risk

Traditional approach:
Genetic prediction focuses on rare, monogenic mutations

Familial

 hypercholesterolemia

Cholesterol

Heart attack ~3x increased risk

0.4% of the general population 2\% of early MI patients

Question: Can we identify additional at-risk individuals with a polygenic risk model?

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk equivalent to
a familial hypercholesterolemia mutation

Genotypes: from arrays + imputation
Khera*, Chaffin*, Nat Genet (2018)

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk equivalent to
a familial hypercholesterolemia mutation

Genotypes: from arrays + imputation
Khera*, Chaffin*, Nat Genet (2018)

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk equivalent to
a familial hypercholesterolemia mutation

Genotypes: from arrays + imputation
Khera*, Chaffin*, Nat Genet (2018)

A new quantitative metric of genetic liability to heart attack

Polygenic score of
6.6 million common variants

Amit V. Khera
Khera*, Chaffin*, Nat Genet (2018)

Genome-wide polygenic score: little correlation with currently measured MI risk factors

Khera*, Chaffin*, Nat Genet (2018)

Using polygenic model, can we identify group with risk for MI equivalent to a familial hypercholesterolemia mutation?

>20-fold gradient in risk across bins of score

Khera*, Chaffin*, Nat Genet (2018)

What if we label top 5\% tail of distribution as 'carriers' and remainder as 'non-carriers'?

Khera*, Chaffin*, Nat Genet (2018)

Top 5\% of polygenic MI score: risk equivalent to monogenic mutations

Polygenic score of
6.6 million common variants

High polygenic score definition	Odds ratio
Top 5\%	3.3
Top 1\%	4.7

Khera*, Chaffin*, Nat Genet (2018)

Putting it all together:

External generalizability outside UK?

Extension to those of non-European ancestry?

Simultaneously evaluate monogenic \& polygenic models

2,081 Early-onset MI patients | 3,76I Controls United States
 30X whole genome sequences

MI Cases:

- VIRGO: Patients hospitalized across US with first Ml at age $\mathbf{\leq 5 5}$ years

Controls:

- MESA: Multiethnic population free of cardiovascular disease

NHGRI Centers for Common Disease Genomics

Monogenic familial hypercholesterolemia mutation identified in I.7\% patients -> 3.8-fold increased risk

个 Risk
$\uparrow i$
Monogenic
3.8-fold

Khera*, Chaffin*, Circulation 2019

High polygenic score identified in 17% of patients and confers a $\mathbf{3 . 7}$－fold increase in risk

100 patients with myocardial infarction			\uparrow Risk
	Ti	Monogenic	3．8－fo
¢Tititititim			
カTtititnti官分分分分分分	Tititio	High polygenic	3．7－fold
	TTTT		

What about extension to those of non-European ancestry?

A Raw Polygenic Score

B Ancestry Adjusted Polygenic Score

C High Polygenic Score and Risk of Early-onset Myocardial Infarction

Khera*, Chaffin*, Circulation 2019

Comparison

	Monogenic	Polygenic
Prevalence among early MI cases	1.7%	17%
Odd ratio for MI	3.8	3.7
Mode of detection	\uparrow LDL cholesterol	Currently UNAWARE 'Gemish’
Mechanism of risk	apoB lipoproteins	Lifestyle
Intervention	Medications	\square

Is polygenic risk for MI modifiable? Yes

Lifestyle

$\downarrow 48 \%$

Khera, N Engl J Med (2016)

Medicines

$\downarrow 44 \%$

Mega*, Stitziel*, Lancet (2015)
Natarajan, Circulation (2017)

Heart attack risk assessment today

Khera, Kathiresan, Nat Rev Genet (2017)

Heart attack risk assessment next 5y: incorporation of polygenic score

Khera, Kathiresan, Nat Rev Genet (2017)

Polygenic risk for other common diseases . . . including those without monogenic risk factors

\% of
population
at $>\mathbf{3}$-fold risk

Atrial fibrillation
6.2\%
3.6\%
3.0\%
2.1 \%

Potential for impact on clinical practice

Conclusions

- Now possible to score polygenic component to any complex trait (from genotyping array data, simultaneous for many diseases, at birth)
- Those in extremes of score: at risk for disease approaching monogenic mutations
- Use scores to
- guide prevention, treatment, or screening strategies
- gain new biologic understanding of common diseases

Predicting Genetic Risk for Diverse Populations and Complex Traits

Eimear Kenny, PhD

Founding Director, The Center for Genomic Health
Associate Professor of Medicine
Associate Professor of Genetics and Genomic Medicine Icahn School of Medicine at Mount Sinai

From Fisher to Visscher

> "The Correlation between Relatives on the Supposition of Mendelian Inheritance" by R.A. Fisher was published in the Transactions of the Royal
> Society of Edinburgh (1918)

"Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans"
by N.R. Wray, K.E. Kemper, B.J.
Hayes, M.E. Goddard, P.M.
Visscher was published in
Genetics (2019)

Animals
Plants

Figure 1 Some key milestones of selective animal and plant breeding.

GWAS are increasing in size and scope

Sample size is the key factor for maximizing accuracy

N.R. Wray, K.E. Kemper, B.J. Hayes, M.E. Goddard, P.M. Visscher (2019) Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans.

Applications of polygenic risk prediction

ScIENCE

An Enormous Study of the Genes Related to Staying in

School

Researchers have found 1,271 gene variants associated with years of formal
education. That's important, but not for the obvious reasons.
ED YONG JUL 23, 2018

Clues to Your Health Are Hidden

By Gina Kolata at 6.6 Million Spots in Your DNA

Aug. 13, 2018
With a sophisticated new algorithm, scientists have found a way to
forecast an individual's risks for five deadly diseases.

Forecasts of genetic
Why Progressives Should Embrace the Genetics of Education

MIT Review

 Technology fate just got alot more accurate by Antonio Regalado February 21,2018By Kathryn Paige Harden
Dr. Harden is a psychologist who studies how genetic factors shape adolescent development.
July $24,2018 \rightarrow \boldsymbol{f} \boldsymbol{y} \rightarrow \square$
Why We Shouldn't Embrace the Genetics of Education
// July 26, 2018 43 COMMENTS Q ROIIEAF DAG

A Population Genetic Signal of Polygenic Adaptation Jeremy J. Berg 回, Graham Coop 回
© PLOS |enencrs

- Evolutionary genetics
- Social sciences
- Disease risk
- Preventive Health

Slide adapted from Alicia Martin

What is a Polygenic Risk Score?

Martin, et al. (2018) Predicting polygenic risk of psychiatric disorders. Biological Psychiatry

How to calculate a Polygenic Risk Score

S.W. Choi, T.S. Heng Mak, P.F. O'Reilly (2018) A guide to performing Polygenic Risk Score analysis. BioRxiv

Model development and evaluation

nature
 REVIEWS Genetics
 Opinion | Published: 18 June 2013
 Pitfalls of predicting complex traits from SNPs
 Naomi R. Wray, Jian Yang, Ben J. Hayes, Alkes L. Price, Michael E. Goddard \& Peter M. Visscher

 bioRxiv
 the preprint server for biology

New Results

A guide to performing Polygenic Risk Score analyses

(ㄷ) Shing Wan Choi, (D) Timothy Shin Heng Mak, © Paul O'Reilly doi: https://doi.org/10.1101/416545
This article is a preprint and has not been peer-reviewed [what does this mean?].

nature
 ```genetics```

Analysis | Published: 03 March 2013
Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies

Nilanjan Chatterjee ${ }^{\text {a }}$, Bill Wheeler, Joshua Sampson, Patricia Hartge, Stephen J Chanock \& Ju-Hyun Park

Nature Genetics 45, 400-405 (2013) | Download Citation $£$

nature
 genetics

Technical Report Published: 02 February 2015
LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nick Patterson, Mark J Daly, Alkes L Price \& Benjamin M Neale ${ }^{\text {ad }}$

Nature Genetics 47, 291-295 (2015) Download Citation \downarrow

Discovery of risk factors
High-quality epidemiological studies with large sample 1 sizes and refined and objective measurements of phenotypes and exposures are needed to identify novel risk factors (including genetic variation, environmental risk factors, biomarkers of exposure or internal dose).

Characterization of relative risk

Building of relative risk models that combine information on multiple risk factors (including polygenic risk scores, environmental risk factors and their interactions).
Estimation of absolute risk

Projecting risk of developing disease over a specified time interval based on a subject's risk factors (usingrelative risk models, distribution of risk factors, overal age-specific disease incidence and mortality rates in the target population).

Evaluation of model calibration

Comparison of the number of projected and observed disease diagnoses over a specified time period, within strata of people at different projected risk in prospective cohort studies.

Evaluation of public health utility

Evaluating effectiveness of primary and secondary prevention strategies tailored according to people's levels of projected risk.

Nature Reviews | Genetics
Building and evaluating
absolute risk models for
general population
(Chatterjee et al, 2016)

GWAS are increasing in size and scope ...

.... but genomics is failing on diversity

What effect does ancestry have on prediction?

European ascertainment of GWAS signals yield unpredictably biased risk scores in other populations

Martin et al., Population genetic history and polygenic risk biases in 1000 Genomes populations, AJHG 2017

What effect does ancestry have on prediction?

Gravel et al 2011

Alicia Martin
Martin et al., Population genetic history and polygenic risk biases in 1000 Genomes populations, AJHG 2017

What effect does ancestry have on prediction?

Alicia Martin
Martin et al., Population genetic history and polygenic risk biases in 1000 Genomes populations, AJHG 2017

Genetic diversity improves our understanding of complex traits

- Goal: Investigate ancestrally diverse populations to gain a better understanding of how genetic factors influence susceptibility to disease.
- Focus on US minority populations.

The PAGE Network

Population Architecture using Genomics and Epidemiology
Wojcik GL\#, Graff $M^{\#}$, Nishimura KK\#, Tao $R^{\#}$, Haessler $J^{\#}$, Gignoux $C R^{\#}$, Highland $H M^{\#}$, Patel YM ${ }^{\#}$, ... Kenny EE ${ }^{\$}$, Carlson CS\$. Genetic diversity improves our understanding of complex traits. BioRxiv (2019)

Challenge defining population groups

Wojcik GL\#, Graff $M^{\#}$, Nishimura KK\#, Tao $R^{\#}$, Haessler $J^{\#}$, Gignoux $C R^{\#}$, Highland $H M^{\#}$, Patel YM ${ }^{\#}$, ... Kenny EE ${ }^{\$}$, Carlson CS\$. Genetic diversity improves our understanding of complex traits. BioRxiv (2019)

European effect sizes are weaker in non-European populations

Gen Wojcik

Wojcik GL\#, Graff $M^{\#}$, Nishimura KK\#, Tao R", Haessler J\#, Gignoux CR ${ }^{\#}$, Highland HM ${ }^{\#}$, Patel YM ${ }^{\#}$, ... Kenny EE ${ }^{\$}$, Carlson CS\$. Genetic diversity improves our understanding of complex traits. BioRxiv (2019)

Diversity increases confidence in potential causal variants

Gen Wojcik
 Carlson CS\$. Genetic diversity improves our understanding of complex traits. BioRxiv (2019)

LD differences across populations can pinpoint causal variants

 Carlson CS\$. Genetic diversity improves our understanding of complex traits. BioRxiv (2019)

Environmental, selection and other factors impact PRS

Science

BREVIA
Melanesian Blond Hair Is Caused by an Amino Acid Change in TYRP1

+ See all authors and affiliations

biobank ${ }^{\prime \prime}$
 Improving the health of future generations

Liz Cirulli, Ph.D.
Nicole Washington, Ph.D.
Dr. Cirullii is Principal Scientist and Dr. Washington is the Associate Director of Research at Helix
March 27, 2019
Researchers have access to new data on thousands of exomes. Here's what we found.
3. TYRP1 variants and Blonde Hair

One of our novel findings is the association of TYRPIvariants with blonde hair color in those of British ancestry. TYRP1made a big splash in 2012 when researchers found that a variant in this gene caused blonde hair in dark-skinned individuals of Melanesian ancestry from the Solomon Islands. This genetic variation is separate from the ones that are known to cause blonde hair in those of European ancestry and, until now, there has been no evidence that this gene also played a role in European hair coloring. The specific variant that causes blonde hair in Solomon Islanders, rs387907171, an arginine to cysteine substitution at amino acid position 93 , was only found in 3 of the 40,648 individuals analyzed in our UK Biobank study. However, more than 30 other rare coding variants in this gene were found in 1% of the 4,671 British ancestry blonde individuals. Previous studies have shown that the Solomon Island variant is recessive,

PRS can be affected in unpredictable ways by unexpected or hidden factors

BMI

H Mostafavi*, A Harpak*, D Conley, J.K. Pritchard and M Przeworski (2019) Variable prediction accuracy of polygenic scores within an ancestry group. BioRxiv

Future directions

- PRS are gaining in accuracy, but the path to demonstrate robustness and utility is not straightforward
- Complex disease is complex, need to deepen diversity (ancestral, SES, age, etc) to understand range of genetic and environmental factors involved.

Acknowledgements

Center for Genomic Health:
Noura Abul-Husn, Clinical
Director
Gillian Belbin
Gabrielle Bertier
Dean Bobo
Sinead Cullina
Sumita Kohli
Jacqueline Odgis
Jessica Rodriguez
Sabrina Suckiel
Stephane Wenric
Institute for Personalized
Medicine:
Judy Cho, Director
Amanda Merkelson
Steve Ellis
Bernadette (Bibi) Liggayu
Janice Morinigo
Ben Song
Rajiv Nadukuru
Tom Kaszemacher

Genomic Health

University of Colorado:
Chris Gignoux

Broad Institute:

Alicia Martin

Stanford University:
Genevieve Wojcik
Elena Sorokin the Bustamante lab Carlos Bustamante

THANK YOU

to the thousands of research participants who make this work possible.
binstitute

PAGE Collaborators:

Lucia Hindorff (NHGRI)
Kari North (UNC)
Chris Carlson (Fred Hutch)
Charles Kooperberg (Fred Hutch)
Chris Haiman (MEC)
Ruth Loos (MSSM)
Tara Matise (Rutgers)
Steve Buyske (Rutgers) Jose-Luis Ambite (USC) Christy Avery (UNC)
Ulrike Peters (Fred Hutch)

NIH Funding:

NHGRI/U01HG109391
NHGRI/U01HG009080
NHLBI/X01HL134588
NIDDK/RO1HL104608
NHLBI/RO1DK110113

