Genome-wide polygenic scores and common diseases

Sekar Kathiresan, M.D.

Director, Center for Genomic Medicine, MGH Director, Cardiovascular Disease Initiative, Broad Professor of Medicine, Harvard Medical School

May 14, 2019

Massachusetts General Hospital

Harvard Medical School

Health care scenario: 42yo male with dizziness, profuse sweating

	41 mm
The stretcher was brought into the residence and the pt was getting ready for transfer from t	he !
chair to the stretcher when he started posturing and having a seizure. Pt was lifted from the	chair
to the stretcher, placed supine on the stretcher and a nasal airway was inserted and breathin	ig was
assisted with a BVM and O2. Pt was transported to the unit. Oxygen initiated at 25 lpm via E	SVM by
	The stretcher was brought into the residence and the pt was getting ready for transfer from to chair to the stretcher when he started posturing and having a seizure. Pt was lifted from the to the stretcher, placed supine on the stretcher and a nasal airway was inserted and breathin assisted with a BVM and 02. Pt was transported to the unit. Oxygen initiated at 25 lpm via B Dem Demonstrate. Pt. Response: Unchanged.

42yo male with cardiac arrest due to acute myocardial infarction (MI)

1:15 Initiate IV	000 Once inside the unit the pt went into cardiac ar	V-Fib rest, ALS back-up was	3041A #2 s called, CPR was started, V-
MACANCE AT	Fib was noted on the monitor, precardial thump, fixed. Peripheral IV initiated by	CPR continued. Pupils with 18ga. at LF. Att	empts: 1, successful.
	Authorization: Via Protocol. Pt. Response: Uncha	nged. IUUUCC'S OF NSS	av av
			ΛΛ
MAA		AAAAAAA	AMAMAM
			V V V V V V V
V Y	V V V V V V V V V V V V V V V V V V V		

Anoxic brain injury Expired after 10 days in hospital

1:15	000 V-Fib 3041A	#2
Initiate IV	ce inside the unit the pt went into cardiac arrest, ALS back-up was called, CPR was	started, V-
	b was noted on the monitor, precardial thump, CPR continued. Pupils noted to be dial xed. Peripheral IV initiated by the second with 18ga. at LF. Attempts: 1, success	sted and
	thorization: Via Protocol. Pt. Response: Unchanged. 1000cc's of NSS wide open.	
		49
		A
		INNA A
	A A A A A A A A A A A A A A A A A A A	1 7 7 2 1
	$(\downarrow \uparrow \uparrow \land $	V
V V		

42yo male with fatal, early-onset MI

MI risk factors prior to event

Total cholesterol 198 mg/dl LDL cholesterol 124 mg/dl HDL cholesterol 40 mg/dl Triglycerides 170 mg/dl Blood pressure 122/78 Body mass index 26 Non-smoker No type 2 diabetes Family history: father with MI at 54

ACC/AHAI0y ASCVD risk calculator typically used for statin allocation decision: I.7% ('low-risk')

Pooled Cohort Risk Assessment Equations

Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event

LinCalc.com » Cardiology » Pooled Cohort 10-Year ASCVD Risk Assessment Equations

Gender	Male Female	2	Systolic BP	122	mmHg
Age	42 years		Receiving treatment for high blood pressure (if SBP > 120 mmHg)	No	Yes
Race	White or other	•	Diabetes	No	Yes
Total Cholesterol	198 mg/dL		Smoker	No	Yes
HDL Cholesterol	40 mg/dL				
		Reset	Calculate		

ASCVD Risk Evaluation

10-year risk of atherosclerotic cardiovascular disease: 10-year risk in a similar patient with optimal risk factors (?):

Why is the ACC/AHA pooled cohort equation <u>not useful</u> in young people?

Pooled Cohort Risk Assessment Equations

Predicts 10-year risk for a first atherosclerotic cardiovascular disease (ASCVD) event

L ClinCalc.com » Cardiology » Pooled Cohort 10-Year ASCVD Risk Assessment Equations

Risk Facto	ors for ASCVE)				
Gender	Male Female		Systolic BP		122	mmHg
Age	42 years		Receiving treatme	· ·	No	Yes
Race	White or other -		(if SBP > 120 mmł Diabetes	1g)	No	Yes
Total Cholesterol	198 mg/dL		Smoker		No	Yes
HDL Cholesterol	40 mg/dL					
	Res	et	Calculate			
					Ŧ	⊐ US units

<u>Model almost entirely</u> <u>driven by 'age'</u>

In population, older you are, more likely you are to have a heart attack!

Health care scenario

What is predicted?	Risk for heart attack
Intended target population	Men/women < 55yo
How	Gene variant(s)
For what purpose	Statin initiation at early age

Janssens, Martens, Prediction Research Manual http://www.cecilejanssens.org/wpcontent/uploads/2018/01/PredictionManual2.0.pdf

For early-onset disease, stratifying individuals based on inborn DNA variation an option

Most diseases inherited component

Stratify individuals based on inherited DNA variation

Myocardial infarction (MI) or heart attack: a classic common, complex disease

Heritable & lifestyle components

MI at age < 55 Age onset at MI

Traditional approach: Genetic prediction focuses on rare, <u>monogenic</u> mutations

Traditional approach: Genetic prediction focuses on rare, <u>monogenic</u> mutations

Traditional approach: Genetic prediction focuses on rare, <u>monogenic</u> mutations

0.4% of the general population2% of early MI patients

Question: Can we identify additional at-risk individuals with a polygenic risk model?

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk <u>equivalent</u> to

a familial hypercholesterolemia mutation

<u>Step I</u> Training data set: effect sizes for 6.6 million variants from genome-wide association study

Cases N = 60K Controls N = 120K

Genotypes: from arrays + imputation

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk <u>equivalent</u> to

a familial hypercholesterolemia mutation

Step I Training data set: effect sizes for 6.6 million variants from genome-wide association study

Cases N = 60K

Controls N = 120K

Genotypes: from arrays + imputation

Hypothesis: a polygenic score including a genomewide set of SNPs can identify individuals with risk <u>equivalent</u> to

a familial hypercholesterolemia mutation

Genotypes: from arrays + imputation

```
Khera*, Chaffin*, Nat Genet (2018)
```

A new quantitative metric of genetic liability to heart attack

Genome-wide polygenic score: <u>little correlation</u> with currently measured MI risk factors

Using polygenic model, can we identify group with risk for MI equivalent to a familial hypercholesterolemia mutation?

>20-fold gradient in risk across bins of score

What if we label top 5% tail of distribution as 'carriers' and remainder as 'non-carriers'?

Top 5% of polygenic MI score: risk equivalent to monogenic mutations

Polygenic score of 6.6 million common variants

High polygenic score definition	Odds ratio
Тор 5%	3.3
Тор 1%	4.7

Putting it all together:

External generalizability outside UK?

Extension to those of non-European ancestry?

Simultaneously evaluate monogenic & polygenic models

2,081 Early-onset MI patients | 3,761 Controls United States

30X whole genome sequences

MI Cases:

 VIRGO: Patients hospitalized across US with first MI at age ≤ 55 years

Controls:

 MESA: Multiethnic population free of cardiovascular disease

NHGRI Centers for Common Disease Genomics

Monogenic familial hypercholesterolemia mutation identified in <u>1.7% patients</u> -> 3.8-fold increased risk

Khera*, Chaffin*, Circulation 2019

High polygenic score identified in <u>17% of</u> patients and confers a 3.7-fold increase in risk

Khera*, Chaffin*, Circulation 2019

What about extension to those of non-European ancestry?

Khera*, Chaffin*, Circulation 2019

Comparison

Prevalence among early MI cases

Odd ratio for MI

Mode of detection

Mechanism of risk

Intervention

Monogenic	Polygenic
I.7%	17%
3.8	3.7
↑ LDL cholesterol	Currently UNAWARE
apoB lipoproteins	'Gemish'
Lifestyle Medications	?

Is polygenic risk for MI modifiable? Yes

Lifestyle

Medicines

↓**48%**

Khera, N Engl J Med (2016)

Mega*, Stitziel*, Lancet (2015) Natarajan, Circulation (2017)

Heart attack risk assessment today

Khera, Kathiresan, Nat Rev Genet (2017)

Heart attack risk assessment next 5y: incorporation of polygenic score

Khera, Kathiresan, Nat Rev Genet (2017)

Polygenic risk for other common diseases . . . including those without monogenic risk factors

	% of population at >3-fold risk
llation	6.2%
	3.6%
ory Bowel Disease	3.0%
cer	2.1%

Potential for impact on clinical practice

Conclusions

- Now possible to score polygenic component to any complex trait (from genotyping array data, simultaneous for many diseases, at birth)
- Those in <u>extremes</u> of score: at risk for disease approaching monogenic mutations
- Use scores to
 - guide prevention, treatment, or screening strategies
 - gain new biologic understanding of common diseases

Predicting Genetic Risk for Diverse Populations and Complex Traits

Eimear Kenny, PhD

Founding Director, The Center for Genomic Health Associate Professor of Medicine Associate Professor of Genetics and Genomic Medicine Icahn School of Medicine at Mount Sinai

From Fisher to Visscher

Animals Plants Domestication ~12,000 years ago Domestication ~12,000 years ago 1860 • 1860s Discovery of the rules of inheritance (Mendel) 1886 Concept of regression to describe relationship between offspring and parents (Galton) **1903** Pure-line breeding theory (Johannsen) 1908 Hardy-Weinberg law 1908 Exploitation of heterosis (Shull) 1908 Law of population genetics 1910 Modern pedigree selection (Nilsson-Ehle) 1910 -(Hardy & Weinberg) 1918 Population genetics introduced as 1920 Mutation breeding (Stadler) an extension of the laws of inheritance (Fisher, Wright & Haldane) 1939 Concept of single-seed-descent breeding method (Goulden) 1935 Improved breeding methods (Lush) 1945 Recurrent selection method of breeding (Hull) 1950 Estimation of breeding values as 1952 Methods for double-haploid lines (Chase) random effects (Henderson) 1953 Model for DNA structure (Watson & Crick) 1953 Model for DNA structure (Watson & Crick) 1960 **1960** Quantitative genetics (Falconer) **1970** Nobel Prize for the Green Revolution (Borlaug) 1972 Genetic engingeering, first 1980s Biotechnology, from the early 1980s recombinant DNA molecules (Berg) 1983 Nobel Prize for discovery of mobile genetic 1975 Best linear unbiased prediction elements (McClintock) (BLUP) (Henderson) 1990 Molecular markers used for improved selection 1980s Biotechnology, from the early 1980s (Lande & Thompson) 1990 Molecular markers used for improved 1994 First approval of commercial GM variety selection (Lande & Thompson) 1998 Best linear unbiased prediction based on trait and marker data (TM-BLUP), a form of genomic selection, introduced (Bernardo) 2001 Introduction and application of **2001** Introduction of theoretical approaches to genomic genomic selection (Meuwissen 2010 selection (Meuwissen et al.) et al.) 2010s Application of genomic prediction in plant breeding 2013 CRISPR-Cas9-based genome editing 2013 CRISPR-Cas9-based genome editing

Figure 1 Some key milestones of selective animal and plant breeding.

Hickey, J.M., et al (2017). Nature Genetics. 49, 1297-1303

"The Correlation between Relatives on the Supposition of Mendelian Inheritance" by R.A. Fisher was published in the *Transactions of the Royal* Society of Edinburgh (1918)

"Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans" by N.R. Wray, K.E. Kemper, B.J. Hayes, M.E. Goddard, P.M. Visscher was published in *Genetics* (2019)

GWAS are increasing in size and scope

Martin, et al. (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet

Sample size is the key factor for maximizing accuracy

N.R. Wray, K.E. Kemper, B.J. Hayes, M.E. Goddard, P.M. Visscher (2019) Complex Trait Prediction from Genome Data: Contrasting EBV in Livestock to PRS in Humans.

Applications of polygenic risk prediction

lugust 7, 2014 • https://doi.org/10.1371/journal.pgen.1004412 • >> See

Slide adapted from Alicia Martin

What is a Polygenic Risk Score?

Polygenic risk score: genetic prediction of an individual's phenotype. Calculated by summing across the products of GWAS effect sizes and number of trait-increasing alleles.

Measure accuracy with R² (continuous), pseudo-R² (binary), or AUC.

Martin, et al. (2018) Predicting polygenic risk of psychiatric disorders. Biological Psychiatry

How to calculate a Polygenic Risk Score

S.W. Choi, T.S. Heng Mak, P.F. O'Reilly (2018) A guide to performing Polygenic Risk Score analysis. BioRxiv

7

Model development and evaluation

Discovery of risk factors

High-quality epidemiological studies with large sample

sizes and refined and objective measurements of phenotypes and exposures are needed to identify novel risk factors (including genetic variation, environmental risk factors, biomarkers of exposure or internal dose).

Characterization of relative risk

Building of relative risk models that combine information on multiple risk factors (including polygenic risk scores, environmental risk factors and their interactions).

Estimation of absolute risk

Projecting risk of developing disease over a specified time interval based on a subject's risk factors (using relative risk models, distribution of risk factors, overall age-specific disease incidence and mortality rates in the target population).

Evaluation of model calibration

Comparison of the number of projected and observed disease diagnoses over a specified time period, within strata of people at different projected risk in prospective cohort studies.

Evaluation of public health utility

Evaluating effectiveness of primary and secondary prevention strategies tailored according to people's levels of projected risk.

Nature Reviews | Genetics

Building and evaluating absolute risk models for general population (Chatterjee et al, 2016)

Slide adapted from Gen Wojcik

nature REVIEWS GENETICS

Opinion | Published: 18 June 2013

Pitfalls of predicting complex traits from **SNPs**

Naomi R. Wray, Jian Yang, Ben J. Hayes, Alkes L. Price, Michael E. Goddard & Peter M. Visscher 📟

Nature Reviews Genetics 14, 507–515 (2013) Download Citation

New Results

A guide to performing Polygenic Risk Score analyses

Image: Shing Wan Choi, Image: Shing Wan Ch doi: https://doi.org/10.1101/416545

This article is a preprint and has not been peer-reviewed [what does this mean?].

nature genetics

Analysis | Published: 03 March 2013

Projecting the performance of risk prediction based on polygenic analyses of genome-wide association studies

Nilanjan Chatterjee 🖾, Bill Wheeler, Joshua Sampson, Patricia Hartge, Stephen J Chanock & Ju-Hyun Park

Nature Genetics 45, 400–405 (2013) Download Citation ±

nature genetics

Technical Report | Published: 02 February 2015

LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nick Patterson, Mark J Daly, Alkes L Price & Beniamin M Neale 🔤

Nature Genetics 47, 291–295 (2015) Download Citation 4

GWAS are increasing in size and scope ...

Martin, et al. (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet

.... but genomics is failing on diversity

Martin, et al. (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet

What effect does ancestry have on prediction?

European ascertainment of GWAS signals yield unpredictably biased risk scores in other populations

Alicia Martin

Martin et al., Population genetic history and polygenic risk biases in 1000 Genomes populations, AJHG 2017

What effect does ancestry have on prediction?

Alicia Martin

Martin et al., Population genetic history and polygenic risk biases in 1000 Genomes populations, AJHG 2017

What effect does ancestry have on prediction?

Martin et al., Population genetic history and polygenic risk biases in 1000 Genomes populations, AJHG 2017

N.

Genetic diversity improves our understanding of complex traits

- Goal: Investigate ancestrally diverse populations to gain a better understanding of how genetic factors influence susceptibility to disease.
- Focus on US minority populations.

Gen Wojcik

Population Architecture using Genomics and Epidemiology

Challenge defining population groups

European effect sizes are weaker in non-European populations

Gen Wojcik

Diversity increases confidence in potential causal variants

LD differences across populations can pinpoint causal variants

Environmental, selection and other factors impact PRS

Liz Cirulli, Ph.D. Nicole Washington, Ph.D. Dr. Cirulli is Principal Scientist and Dr. Washington is the Associate Director of Research at Helix. March 27 2019

Researchers have access to new data on thousands of exomes. Here's what we found.

3. TYRP1 variants and Blonde Hair

One of our novel findings is the association of *TYRP1* variants with blonde hair color in those of British ancestry. *TYRP1* made a big splash in 2012 when researchers found that a variant in this gene caused blonde hair in dark-skinned individuals of Melanesian ancestry from the Solomon Islands. This genetic variation is separate from the ones that are known to cause blonde hair in those of European ancestry and, until now, there has been no evidence that this gene also played a role in European hair coloring. The specific variant that causes blonde hair in Solomon Islanders, rs387907171, an arginine to cysteine substitution at amino acid position 93, was only found in 3 of the 40,648 individuals analyzed in our UK Biobank study. However, more than 30 other rare coding variants in this gene were found in 1% of the 4,671 British ancestry blonde individuals. Previous studies have shown that the Solomon Island variant is recessive,

BREVIA

Melanesian Blond Hair Is Caused by an Amino Acid Change in TYRP1

Eimear E. Kenny^{1,*}, Nicholas J. Timpson^{2,*}, Martin Sikora¹, Muh-Ching Yee¹, Andrés Moreno-Estrada¹, Celeste Eng³, Scott ... + See all authors and affiliations

PRS can be affected in unpredictable ways by unexpected or hidden factors

H Mostafavi*, A Harpak*, D Conley, J.K. Pritchard and M Przeworski (2019) Variable prediction accuracy of polygenic scores within an ancestry group. BioRxiv 20

Future directions

PRS are gaining in accuracy, but the path to demonstrate robustness and utility is not straightforward

Complex disease is complex, need to deepen diversity (ancestral, SES, age, etc) to understand range of genetic and environmental factors involved.

Acknowledgements

Center for Genomic Health:

Noura Abul-Husn, Clinical Director **Gillian Belbin Gabrielle Bertier** Dean Bobo Sinead Cullina Sumita Kohli **Jacqueline Odgis** Jessica Rodriguez Sabrina Suckiel **Stephane Wenric** Institute for Personalized Medicine: Judy Cho, Director Amanda Merkelson Steve Ellis

Steve Ellis Bernadette (Bibi) Liggayu Janice Morinigo Ben Song Rajiv Nadukuru Tom Kaszemacher University of Colorado: Chris Gignoux

Broad Institute:

Alicia Martin

Stanford University: Genevieve Wojcik Elena Sorokin the Bustamante lab Carlos Bustamante

THANK YOU

to the thousands of research participants who make this work possible.

BROAD

PAGE Collaborators:

Lucia Hindorff (NHGRI) Kari North (UNC) Chris Carlson (Fred Hutch) Charles Kooperberg (Fred Hutch) Chris Haiman (MEC) Ruth Loos (MSSM) Tara Matise (Rutgers) Steve Buyske (Rutgers) Jose-Luis Ambite (USC) Christy Avery (UNC) Ulrike Peters (Fred Hutch)

NIH Funding:

NHGRI/U01HG109391 NHGRI/U01HG009080 NHLBI/X01HL134588 NIDDK/R01HL104608 NHLBI/R01DK110113