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Big Data = Information Overload
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and collaborators
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Traditional Event Extraction
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Weakly Supervised Learning

Unstructured Text

N\ =

w B
=

Alan Ritter (PIl, Ohio State)
and collaborators

©2016 LEIDOS. ALL RIGHTS RESERVED. ’leidos i ihmc R I T TI{FN?‘},IEI(;SSIF;@TE




L

Weakly Supervised Learning

Unstructured Text

N < Information Extraction
' >
w B

=

Alan Ritter (PIl, Ohio State)
and collaborators

©2016 LEIDOS. ALL RIGHTS RESERVED. ’leidos i ihmc R I T TI{}EN?‘I;IEI(;SSIF;?{TE




L

Weakly Supervised Learning

Unstructured Text
Structured Data

Information Extraction
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System Overview

Seed Examples
+ Keyword

(Associated Press, 4/23/2013)
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Learning from Unlabeled Data and Positive Seeds

N
0(0) = Zlogpg(yilsci)

7

Log Likelihood

For details please see: Ritter, A., Wright, E., Casey, W., & Mitchell, T.
(2015, May). Weakly supervised extraction of computer security events
from twitter. In Proceedings of the 24th International Conference on
World Wide Web (pp. 896-905). ACM.
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Safe to assume all unlabeled
are negatives?
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Augment conditional likelihood with label regularization:

N
0(6) = " log po(yilz:) — AY D(pl 5>
g ‘ Label reg?flarization
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For details please see: Ritter, A., Wright, E., Casey, W., & Mitchell, T.
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al U ‘~ ~unlabeled
0(0) = ) _logpe(yils) — AV D(5||95 )
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Augment conditional likelihood with label regularization:
Kullback—Leibler (KL) divergence

al U ‘~ ~unlabeled
0(0) = ) _logpe(yils) — AV D(5||95 )

WV
Label regularization

Safe to assume all unlabeled
are negatives?

D =plog——+4+ (1 —p)lo ~
(Pl|po) = plog = + (1 — p) log T—

. . For details please see: Ritter, A., Wright, E., Casey, W., & Mitchell, T.
User—prowded target eXpeCtaUO” (2015, May). Weakly supervised extraction of computer security events

of frequency of positives from twitter. In Proceedings of the 24th International Conference on
« y . ’ World Wide Web (pp. 896-905). ACM.
(“ddos” vs. “breach”)
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Learning from Unlabeled Data and Positive Seeds

Augment conditional likelihood with label regularization:
Kullback—Leibler (KL) divergence

al U ‘~ ~unlabeled
0(0) = ) _logpe(yils) — AV D(5||95 )

Label regularization

Safe to assume all unlabeled
are negatives?

Empirical expectation of positives on unlabeled examples

J

| 4 ~ ~
D =plog—— + (1 —p)lo -
(Pl|po) = plog = + (1 — p) log T—

For details please see: Ritter, A., Wright, E., Casey, W., & Mitchell, T.

User—prowded target eXpeCtaUO” (2015, May). Weakly supervised extraction of computer security events
from twitter. In Proceedings of the 24th International Conference on

of frequency of positives .
(uddosu VS ubreach,,) World Wide Web (pp 896-905) ACM.
> leidos Fihmc R I'T "Tavenerr -

©2016 LEIDOS. ALL RIGHTS RESERVED. UNIVERSITY




L

KL Divergence Gradient
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KL Divergence Gradient

3

1 [ 1-p
N (1 > p9> E po(yi = Hzi)(1 —po(y: = 1|wi)) i

)

No Change if P = Do
Otherwise push weights up or down
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KL Divergence Gradient
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Area Under Precision / Recall Curve

B Heuristic Negatives
Expectation Regularization
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0
Hijacking DDOS Data Breach
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Fusion » Projection
Diverse Incomplete,
evidence evolving
Probabilistic Mini-theories,
logical models VLMM
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Forecasting Cyber Attacks Using Big Data

Signals » Fusion » Projection

Training Diverse Incomplete,
Challenges data evidence evolving
Techniques Weak Probabilistic Mini-theories,
q supervision ogical models VLMM
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Fusion Results Example: Aligning Data Sources
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Fusion Results Example: Aligning Data Sources

Inference finds correct alignment despite noise

A complex mapping between schemas is less probable 102
1.00 o= L=U =0 = —0—0—0—0—0—0—0—0—0—0—0
size(F') : in(F) — L o 098
S 0.96
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- 0.92 ® CMD
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The most probable mapping can reconstruct missing 08 012345678 9101112131415

% of relations with random foreign keys added

answers from the sources

1: J(T) — dF.covers(F,T) Nin(F)
Inference running time is linear with table size

1400
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£ 1000
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A mapping giving wrong answers is low probability

1:in(F) A creates(F,T) — J(T)

secon
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atomic values in (I, J)

(Joint work with UMD, UCSC, U Toronto, KU Leuven)
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Forecasting Cyber Attacks Using Big Data

Signals » Fusion » Projection

Training Diverse Incomplete,
data evidence evolving
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q supervision logical models VLMM
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Mini-theory Example: Raining and Flood conditions

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

clear

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

clear

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

clear high_volume_rain

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

clear high_volume_rain

Event of Interest

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

not(flood)

\ Event of Interest

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

noi(io0d) B o
\ Event of Interest /
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

How to discover events of interest when
evidence from sensors is incomplete?

noifo00) B ool 4
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

entails .
How to discover events of interest when

evidence from sensors is incomplete?

noi(io0d) B oo
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

entails .
How to discover events of interest when

evidence from sensors is incomplete?

v
not(water_falls)

noi(io0d) B oo
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

entails .
How to discover events of interest when

evidence from sensors is incomplete?

v
not(water_falls)

|
noi(1000) B oo
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

entails entails

How to discover events of interest when

evidence from sensors is incomplete?
water levels >normal

v
not(water_falls)

1
noi1000) B ool 4
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
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Surface markers from sensors
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entails entails
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

™~

clear high_volume_rain

entails entails

| water_levels >normal
not(water_falls) ‘

| ,
r01(1000) B ool 2
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

/ S

clear rain high_volume_rain

entails entails

| water_levels >normal
not(water_falls) ‘

| ,
r01(1000) B ool 2
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

/ S

clear rain high_volume_rain
entails entails entails
v
water falls water levels >normal

v
not(water_falls) ‘

| ,
noi(1000) B ool 2
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
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Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

/ S

clear rain high_volume_rain
entails entails entails
cause cause
v
! water falls O water levels >normal
not(water_falls) rising_water ‘

| ,
noi(1000) B ool 2
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
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= THE OHIO STATE

©2016 LEIDOS. ALL RIGHTS RESERVED. ’ Ieidos i i h mc R I T UNIVERSITY




Mini-theory Example: Raining and Flood conditions

Surface markers from sensors

/ S

clear rain high_volume_rain
entails entails entails
cause cause
v
! water falls O water levels >normal
not(water_falls) rising_water ‘

| ,
noi(1000) BN ool S
\ Event of Interest /

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini Theory of Cyber Attack

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”
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(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

stable

poipcked e 2

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

stable

not(hacked)

poipcked e 2

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

stable exploit discovered

not(hacked)

poipcked e 2

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

VICTIM VICTIM
stable exploit discovered
not(hacked) hacked
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

VICTIM THREAT-ACTOR VICTIM
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

VICTIM THREAT-ACTOR VICTIM

brewing
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”
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stable discontent — " converging plan exploit discovered
not(hacked) hacked
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”

VICTIM THREAT-ACTOR VICTIM
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stable discontent — " converging plan exploit discovered
not(hacked) target list generation hacked

roiacked S e
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Mini Theory of Cyber Attack
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Mini Theory of Cyber Attack

“‘Whaling protesters hacked Japanese PM’s website.”
VICTIM THREAT-ACTOR VICTIM
brewing _ o
stable discontent — " converging plan exploit discovered
THREAT
/\ -ACTOR
not(hacked) target list generation attack hacked credit taken

roiacked S e

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
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Distributed Sub-Events: Most Coherent Mini-Theory

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.

7 THE OHIO STATE

©2016 LEIDOS. ALL RIGHTS RESERVED. ’ Ieidos i i h mc R I T UNIVERSITY




L

Distributed Sub-Events: Most Coherent Mini-Theory

18:39 (Joan) | am watching TV.

19:00 (Mike) It's been raining really hard.

19:02 (Joan) Cats and dogs all day!

19:13 (Michelle) | had lamb curry for dinner.

19:15 (Mark) There are six inches of water in the yard.

19:21 (Michelle) It's pouring like mad.

19:32 (Jessica) I've been developing pictures in the darkroom all day.
19:34 (Billy) | have a burst pipe.

19:40 (Jessica) | haven't seen any rain.

20:04 (News) Water level at Wahoo River is five feet above normal.
20:13 (Billy) The whole kitchen got flooded!

23:17 (Alice) Water is seeping in around the door!

23:32 (Bob) There is a car floating in the middle of the street!

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.

17
©2016 LEIDOS. ALL RIGHTS RESERVED. ’ Ieidos i i h mc R I T TI—{IEN(I)‘I,{EI(I;SSI’;AYTE




L

Distributed Sub-Events: Most Coherent Mini-Theory

18:39 (Joan) | am watching TV.

19:00 (Mike) It's been raining really hard.

19:02 (Joan) Cats and dogs all day!

19:13 (Michelle) | had lamb curry for dinner.

19:15 (Mark) There are six inches of water in the yard.

19:21 (Michelle) It's pouring like mad.

19:32 (Jessica) I've been developing pictures in the darkroom all day.
19:34 (Billy) | have a burst pipe.

19:40 (Jessica) | haven't seen any rain.

20:04 (News) Water level at Wahoo River is five feet above normal.
20:13 (Billy) The whole kitchen got flooded!

23:17 (Alice) Water is seeping in around the door!

23:32 (Bob) There is a car floating in the middle of the street!

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F,, Teng, C. M., & Dalton, A.
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In
2014 AAAI Fall Symposium Series.

17
©2016 LEIDOS. ALL RIGHTS RESERVED. ’ Ieidos i i h mc R I T TI—{IEN(I)‘I,{EI(I;SSI’;AYTE




L

Distributed Sub-Events: Most Coherent Mini-Theory
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Evolving Attack Behavior

For details please see: Fava, Daniel S., Stephen R. Byers, and Shanchieh Jay
Yang. "Projecting cyberattacks through variable-length markov models." IEEE
Transactions on Information Forensics and Security 3, no. 3 (2008): 359-369. . O THE OHIO S
! Y (2008) »leidos Fihmc RI'T "o
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Evolving Attack Behavior
- Aims at finding adversary patterns due to

= Routines, habits, human preference
= Uses of toolkits, ...
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= Uses of toolkits, ...
- Variable Length Markov Model (VLMM) [Fava08,Du10]
= Effective graphical model to combine various orders of Markov Models —
from text compression community

= Fuzzy system to fuse VLMM predictions based on different attack
attributes, e.g., target IP and attack method
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High Efficiency Attack Example

- Direct attack penetrating through the network
= Critical and can be predicted relatively well

Department G Department F Department E Department C Department D

S. Jay Yang (PI, RIT)

o L
and collaborators ©2016 LEIDOS. ALL RIGHTS RESERVED. ’leidos x |hmc R I T TI{}EN?‘I,{;(;:I?;TE

20




e -

High Efficiency Attack Example

- Direct attack penetrating through the network
= Critical and can be predicted relatively well

@ Server @ Host Cluster

8 Database Server @ WebDAV
Q File Server % Mail Server
0 Web Server DC Domain Controller

Department G Department F Department E Department C

S. Jay Yang (PI, RIT)

o L
and collaborators ©2016 LEIDOS. ALL RIGHTS RESERVED. ’leidos x |hmc R I T TI{}EN?‘I,{;(;:I?;TE

20




e -

High Efficiency Attack Example

- Direct attack penetrating through the network
= Critical and can be predicted relatively well

Department G Department F Department E Department C Department D

S. Jay Yang (PI, RIT)

o L
and collaborators ©2016 LEIDOS. ALL RIGHTS RESERVED. ’leidos x |hmc R I T TI{}EN?‘I,{;(;:I?;TE

20




e -

High Efficiency Attack Example

- Direct attack penetrating through the network
= Critical and can be predicted relatively well

Department G Department F Department E Department C Department D

S. Jay Yang (PI, RIT)

o L
and collaborators ©2016 LEIDOS. ALL RIGHTS RESERVED. ’leidos x |hmc R I T TI{}EN?‘I,{;(;:I?;TE

20




e -

High Efficiency Attack Example

- Direct attack penetrating through the network
= Critical and can be predicted relatively well

Department G Department F Department E Department C Department D

S. Jay Yang (PI, RIT)

o L
and collaborators ©2016 LEIDOS. ALL RIGHTS RESERVED. ’leidos x |hmc R I T TI{}EN?‘I,{;(;:I?;TE

20




High Efficiency Attack Example

- Direct attack penetrating through the network
= Critical and can be predicted relatively well

@ Server @ Host Cluster

Step Percentile Rank

(0 Dpatavase server @  webnav 1 N/A

Q rresener Ry waisener 2 [96.78%,100%]

@ ‘eosee DG o Contoter 3 [93.75%,96.88%|
4 [96.88%,100%]
5 [96.88%,100%]
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8 [96.75%.,96.88%|
9 [90.63%.,93.75%]
10 [93.75%.,96.88%]
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Low Efficiency Attack Example

- Random movements spreading all over the network
= Noisy with some less predictable movement
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Low Efficiency Attack Example

- Random movements spreading all over the network
= Noisy with some less predictable movement
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