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• PSL program = set of weighted first order rules  

• ground atoms have soft truth values in [0,1];  
are variables in Markov random field (MRF)

• features in MRF = ground rules

• MRF feature value for some interpretation (assignment of  
truth values to all atoms) = ground rule’s distance to 
satisfaction

MPE inference =  
fast convex optimization

[Broecheler et al., 2010]
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Fusion Results Example: Aligning Data Sources

A complex mapping between schemas is less probable

The most probable mapping can reconstruct missing 
answers from the sources

A mapping giving wrong answers is low probability

Inference running time is linear with table size

Inference finds correct alignment despite noise

(Joint work with UMD, UCSC, U Toronto, KU Leuven)
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Mini-theory Example: Raining and Flood conditions

For details please see: Dorr, B. J., Petrovic, M., Allen, J. F., Teng, C. M., & Dalton, A. 
(2014, September). Discovering and Characterizing Emerging Events in Big Data. In 
2014 AAAI Fall Symposium Series.
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18:39 (Joan) I am watching TV. 
19:00 (Mike) It's been raining really hard. 
19:02 (Joan) Cats and dogs all day! 
19:13 (Michelle) I had lamb curry for dinner. 
19:15 (Mark) There are six inches of water in the yard. 
19:21 (Michelle) It's pouring like mad. 
19:32 (Jessica) I've been developing pictures in the darkroom all day. 
19:34 (Billy) I have a burst pipe. 
19:40 (Jessica) I haven't seen any rain. 
20:04 (News) Water level at Wahoo River is five feet above normal. 
20:13 (Billy) The whole kitchen got flooded! 
23:17 (Alice) Water is seeping in around the door! 
23:32 (Bob) There is a car floating in the middle of the street! 
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Evolving Attack Behavior

For details please see: Fava, Daniel S., Stephen R. Byers, and Shanchieh Jay 
Yang. "Projecting cyberattacks through variable-length markov models." IEEE 
Transactions on Information Forensics and Security 3, no. 3 (2008): 359-369.
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