Hierarchical Active Transfer Learning

Dave Kale¹ Marjan Ghazvininejad¹ Anil Ramakrishna¹ Jingrui He² Yan Liu¹

> ¹University of Southern California ²Arizona State University

Ŧ

May 1, 2015

Learning with few or no labels

A significant challenge in many domains - even in 21st century!

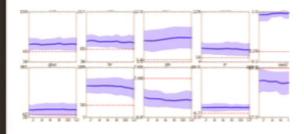
← Cost of acquiring observations ≪ cost of acquiring labels

Ŧ

Learning with few or no labels

A significant challenge in many domains – even in 21st century!

← Cost of acquiring observations ≪ cost of acquiring labels



Health

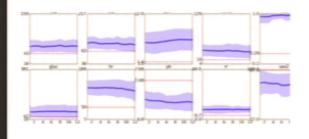
- Finding patients with specific diseases in EHRs (phenotyping [8])
- Identifying cancer in radiologic images [9]

Ŧ

Learning with few or no labels

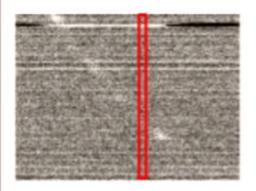
A significant challenge in many domains – even in 21st century!

← Cost of acquiring observations ≪ cost of acquiring labels



Health

- Finding patients with specific diseases in EHRs (phenotyping [8])
- Identifying cancer in radiologic images [9]



Science

- Detecting rare, transient events in astronomical sensor data [10]
- Virtual screening in drug discovery [11]

Personalization

- Cold starts in recommender systems [12]
- Activity recognition in wearables [13]

Learning with few or no labels: solutions

Active Learning: ask oracle to label only most informative examples

- Substantially reduce amount of labeled data needed
- Example: doctor labels CT-scans near SVM decision boundary
- Cold start problem: start w/0 labels, must use random sampling [5]

Ŧ

Learning with few or no labels: solutions

Active Learning: ask oracle to label only most informative examples

- Substantially reduce amount of labeled data needed
- Example: doctor labels CT-scans near SVM decision boundary
- Cold start problem: start w/0 labels, must use random sampling [5]

Transfer Learning: apply knowledge from similar problems to new one (related: domain adaptation, covariate shift, multi-task learning, etc.)

- Source provides a useful initial bias for Target, can then be adapted
- Example: adapt a diagnostic model for pediatric patients to adults
- Negative transfer problem: tasks too different or adaptation fails
- Also: Can be difficult to define task/domain similarity appropriately

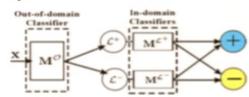
Complementary strengths...why not combine? Active+Transfer Learning!

Active+Transfer Learning: related work

Shi, Fan, and Ren, ECML 2008 [2] use Transfer classifier (TC) to choose queries

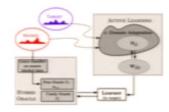
Partitioning Target data using Source model, train/combine separate classifiers

Query label when TC disagrees with classifier trained on $\mathcal{L}^{\mathrm{all}}$



Saha, et al., ECML 2011 [3]: two-step TL, then AL

Reweight Source points to match Source, Target P(X)'s Use Source classifier as free "oracle" to label Target points



Chattopadhay, et al., ICML 2013 [4]: Joint Optimization for TL and AL (JOTAL)

Jointly reweight source points, query target labels Objective: match P(X)'s for labeled (Source+Target), unlabeled data

$$\left| \frac{1}{n_s + n_l + b} \quad \left(\sum_{i \in S} \beta_i \Phi(x_i) + \sum_{j \in L} \Phi(x_j) + \sum_{i \in U} \alpha_i \Phi(x_i) \right) - \frac{1}{n_u - b} \sum_{i \in U} (1 - \alpha_i) \Phi(x_i) \right|_{\mathcal{H}}^2,$$
s.t. $\alpha_i \in \{0, 1\}, \beta_i \in [0, 1], \alpha^T \mathbf{1} = b.$

Kale and Liu, ICDM 2013 [5]: Transfer Importance-weighted Consistent AL (TIWCAL)

TL (convex combination of losses) + AL (IWCAL) Intuitive upper bound on Target generalization error

$$\begin{split} \epsilon_{\mathrm{T}}(\bar{h}_t) & \leq \epsilon_{\mathrm{T}}(h_{\mathrm{T}}^{\star}) + \alpha \left(\sqrt{\frac{2C_0 \log(t+1)}{t}} + \frac{2C_0 \log(t+1)}{t} \right) \\ & + 2(1-\alpha) \left(\sqrt{\frac{C_0 \log 2}{2m}} + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{\mathrm{S}}, \mathcal{D}_{\mathrm{T}}) + \epsilon_{\mathrm{ST}}^{\star} \right) \end{split}$$

Active+Transfer Learning: opportunities for innovation

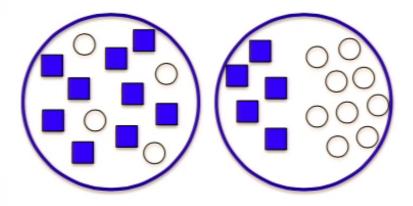
- ► AL algorithms with theoretical guarantees (e.g., consistency, no bias)
- ► TL frameworks with fewer or no assumptions (vs., e.g., MMD)
- ▶ Transfer by adapting P(Y|X) as well as P(X)
- ▶ General learning framework for AL, TL, semi-supervised learning, etc.

Active+Transfer Learning: opportunities for innovation

- ► AL algorithms with theoretical guarantees (e.g., consistency, no bias) Utilizes theoretically sound HSAL for AL [1]
- ▶ TL frameworks with fewer or no assumptions (vs., e.g., MMD) Clustering to capture similarities, differences in P(X)
- ► Transfer by adapting P(Y|X) as well as P(X)
 TL by relabeling both Source, Target points
- General learning framework for AL, TL, semi-supervised learning, etc.
 Can be used for AL, TL, ATL, semi-supervised learning (SSL)

Hierarchical Active Transfer Learning: a step in this direction!

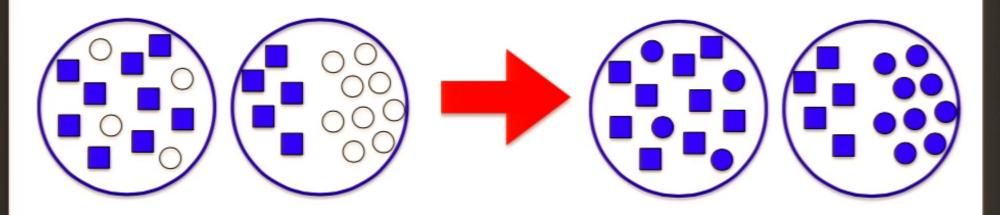
2 clusters, source labels only



Ŧ

2 clusters, source labels only

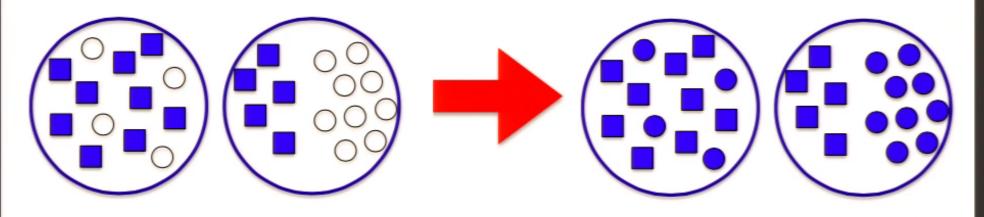
Impute cluster labels (TL)



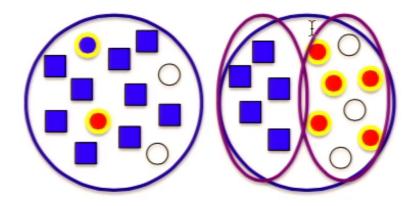
Ŧ

2 clusters, source labels only

Impute cluster labels (TL)

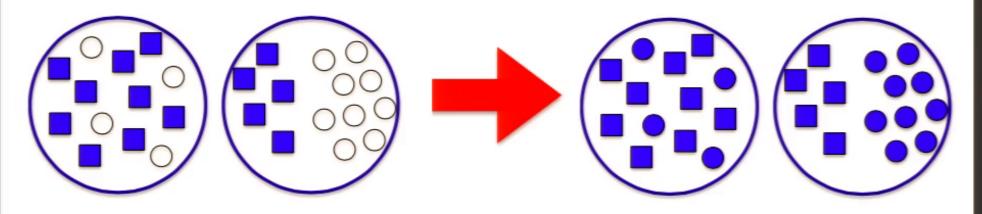


Query \propto cluster size (AL)



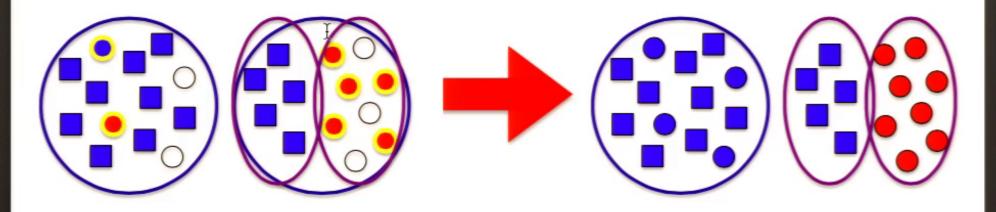
2 clusters, source labels only

Impute cluster labels (TL)



Query \propto cluster size (AL)

Split cluster, impute (TL)



HATL Overview

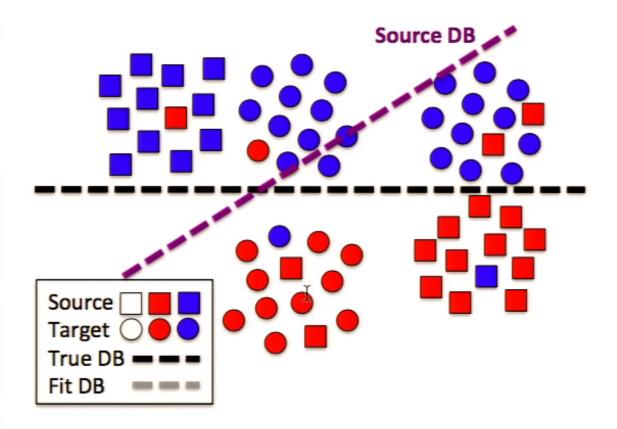
Inspired by Hierarchical Sampling for Active Learning (HSAL) [1]

Inputs: Source \mathcal{X}_S , Target \mathcal{X}_T , cluster tree T, budget B **Initialize** pruning P=0 (i.e., root), root label $L_0=0$

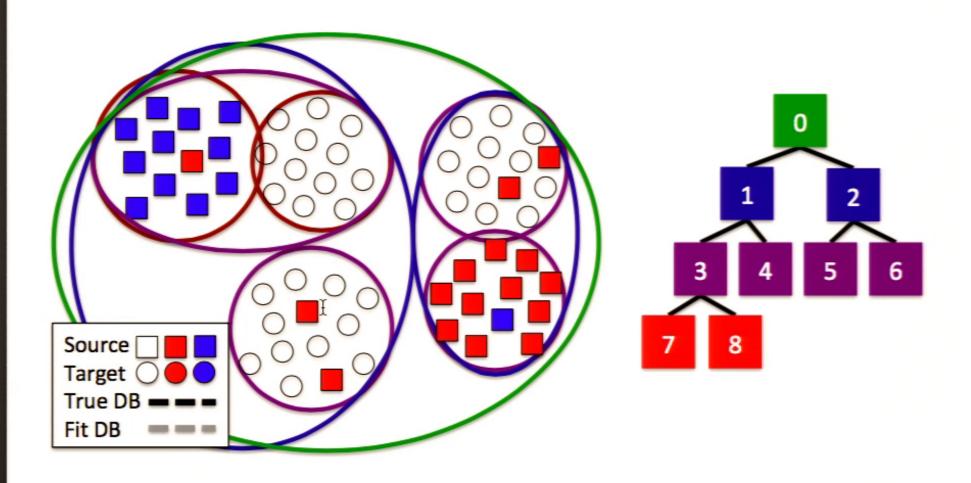
For each cluster $v \in T$, label ℓ : estimate CI for counts: $[C^l_{v,\ell}, C^u_{v,\ell}]$

- ▶ UpdateLabelCounts(\mathcal{X}_{S})
- $ightharpoonup P \leftarrow \mathsf{UpdatePruning}(P)$
- ▶ Run *HSAL* algorithm for *B* queries
 - $(v, x, y) \leftarrow \text{GetNextQueryAndLabel}(P)$
 - UpdateLabelCounts({(x,y)})
 - $P \leftarrow \mathsf{UpdatePruning}(P)$
- $\hat{y}(x) \leftarrow L_v$ for all $x \in v$, for each $v \in P$

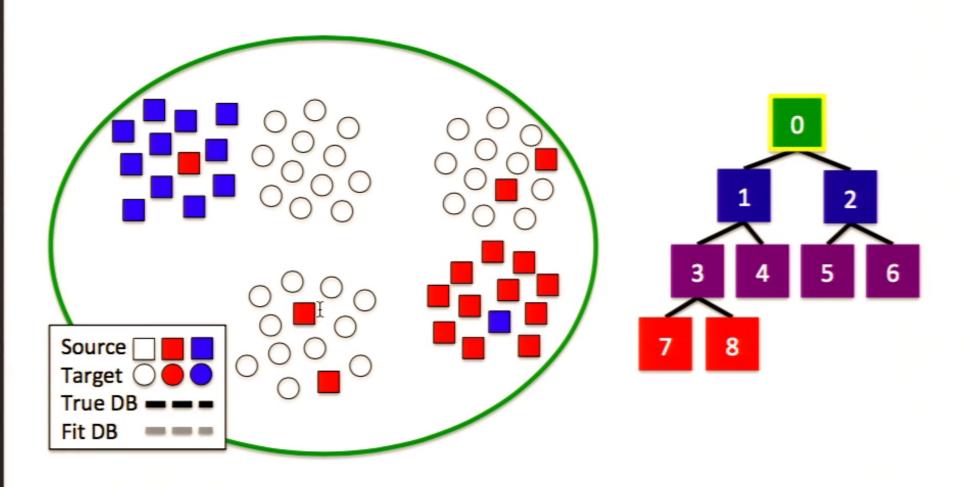
Assume these data, labeled w/dashed decision boundaries (w/some noise).



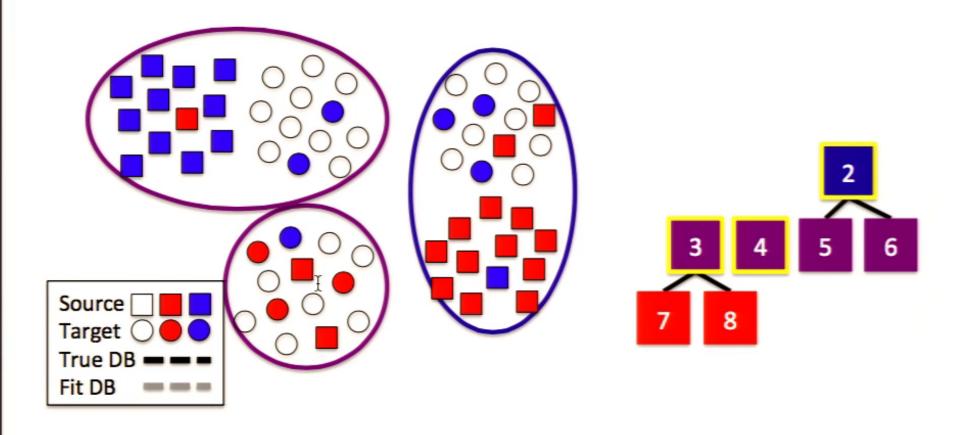
Start with only Source labels. Construct a hierarchical clustering.



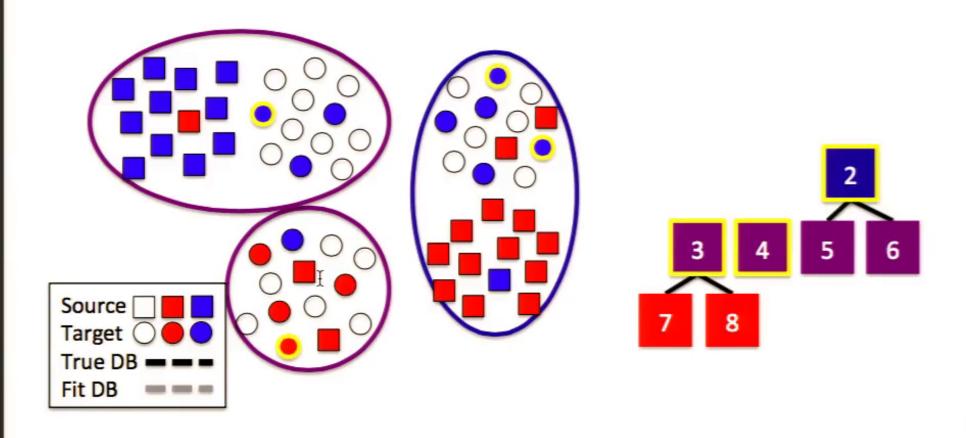
Initialize $P = \{0\}$ (1 cluster). UpdateLabelCounts(\mathcal{X}_S).



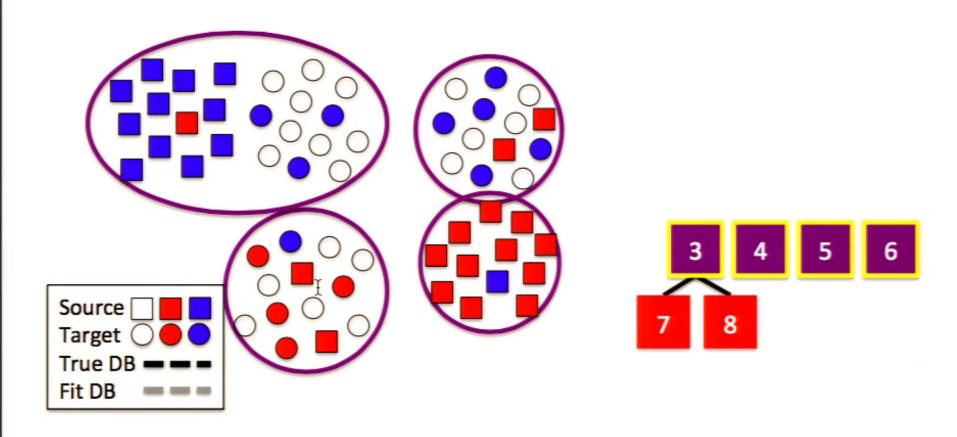
Iteratively query labels, update counts, refine pruning: $P = \{2, 3, 4\}$.



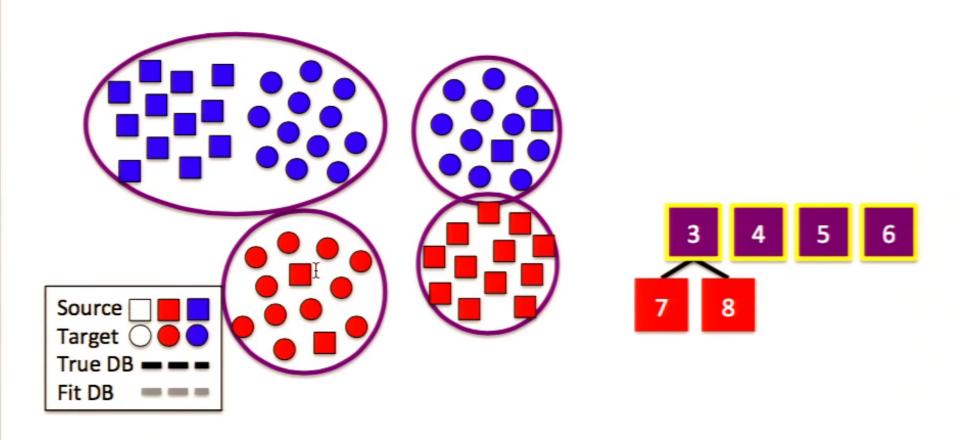
 $(2, x, Blue) \leftarrow GetNextQueryAndLabel(\{2, 3, 4\})$ UpdateLabelCounts($\{(x, y)\}$)



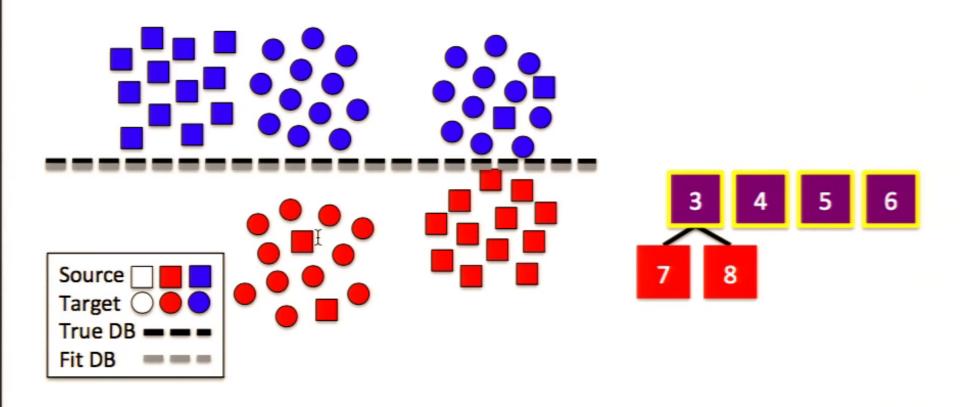
 $\{3,4,5,6\} \leftarrow \mathsf{UpdatePruning}(\{2,3,4\})$



Label imputation after 13 Target queries.



Final large margin classifier.



Expected label imputation error for Target data

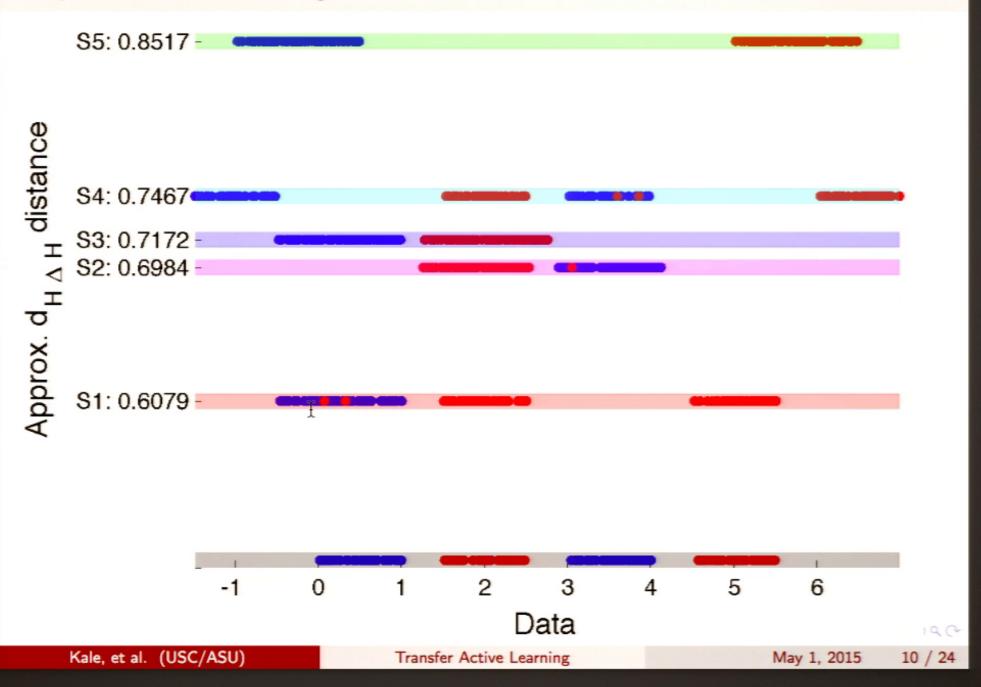
Theorem (Upper bound on target label imputation error)

Choose $\delta, \eta > 0$. We can find an "optimal" pruning P^* of T with overall (Source+Target) label imputation error $\epsilon(P^*) \leq \eta$. Suppose HATL discovers pruning P after B queries. With probability at least $1 - \delta$, the Target label imputation error $\epsilon_T(P)$ is

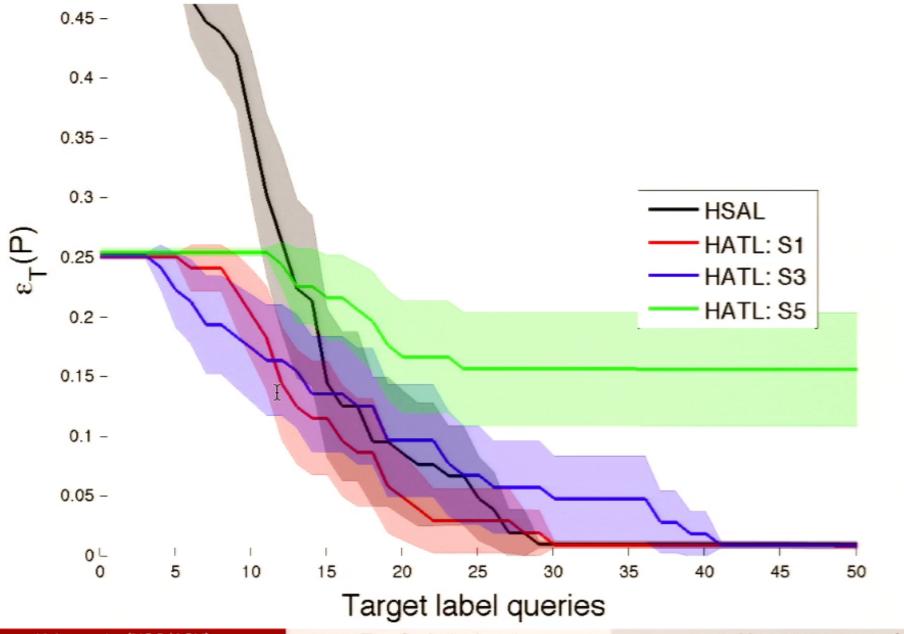
$$\epsilon_{\mathrm{T}}(P) \leq \widetilde{O}\left(\epsilon(P^*) + \eta + \frac{1-\alpha}{2}d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_{\mathrm{S}}, \mathcal{D}_{\mathrm{T}})\right)$$

- ▶ Optimal B is function of size, depth of P^* , η , δ (defined as in HSAL)
- $ightharpoonup lpha = N_{
 m T}/(N_{
 m S}+N_{
 m T})$: fraction of data from Target domain
- \blacktriangleright $d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T)$ [6]: distance between Source, Target distributions
 - hypothesis-class dependent similarity for distributions
 - can approximate from samples using domain separator classifer

Experiments with synthetic 1D data sets



Smaller $d_{H\Delta H}$ distance \Longrightarrow target error decreases faster



Sentiment classification experiments

Ran experiments with sentiment classification data set from [7]

Benchmark data set for transfer learning, domain adaptation

Task: classify sentiment of Amazon product reviews

4 categories, 2000 reviews per category

Ŧ

Sentiment classification experiments

Ran experiments with sentiment classification data set from [7]

Benchmark data set for transfer learning, domain adaptation

Task: classify sentiment of Amazon product reviews

4 categories, 2000 reviews per category

Experimental setup:

Target: 1800 unlabeled examples, e.g., kitchen

Source: 400 labeled, 1600 unlabeled examples from, e.g., dvd

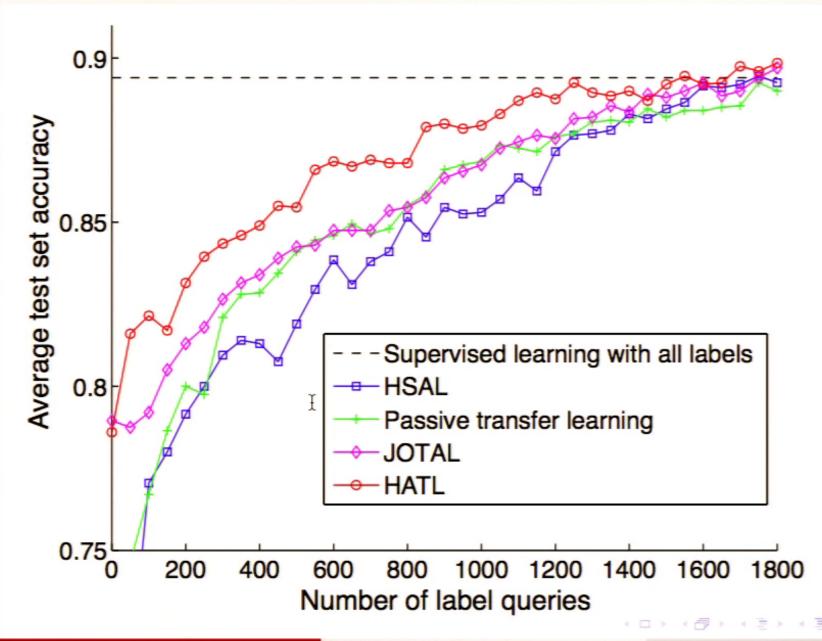
Compare against passive transfer learning, HSAL [1], JOTAL [?]

Query target labels, then train linear SVM with L2 regularization

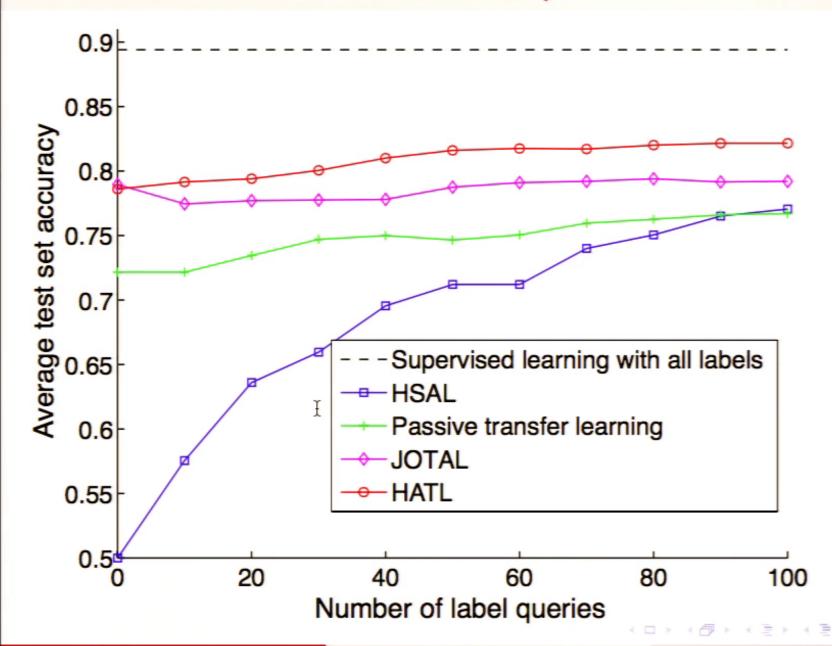
Measure SVM's classification performance on held out target data

Reminder: HATL, HSAL relabel ALL training data.

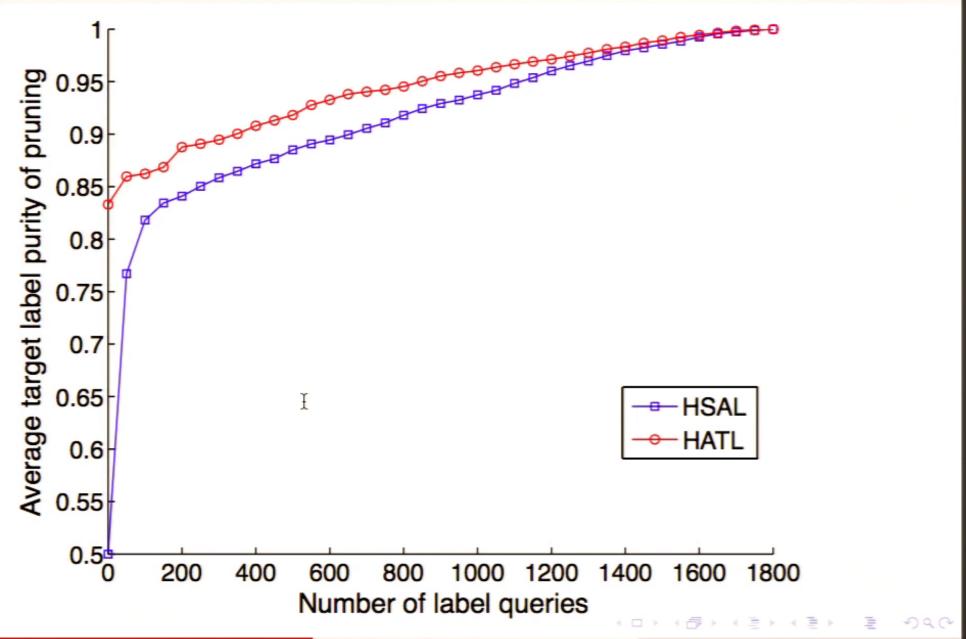
dvd→kitchen: SVM test set accuracy



dvd→kitchen: test set accuracy (over first 100 queries)



Effective SSL: dvd→kitchen imputation error



HATL: conceptually simple, agnostic, effective

- + Intuitive strategy: exploits cluster structure in data (handles differences in \mathcal{D}_S , \mathcal{D}_T)
- Leverages a theoretically sound AL algorithm (HSAL)
 (inherits good properties, e.g., no bias)
- + Simple, agnostic TL: no commitment to single TL framework (we use one in analysis but could use others)
- + No hyperparameters to tune, etc.
- + Efficient, scalable (slowest part is initial clustering!)

Generic framework for TL, AL, SSL

Thank you!

Code: http://www-bcf.usc.edu/~liu32/code.html.

Extended: http://www-scf.usc.edu/~dkale/publications.html

Thank you to my collaborators:

Marjan Ghazvininejad, Anil Ramakrishna, Jingrui He, Yan Liu

Support: NSF, DARPA, IBM Faculty Award, Alfred E. Mann Institute.

Thank you and fight on!

