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Coexistence and Extinction

Deterministic and Stochastic Models

Real populations do not evolve in isolation and as a result much of ecology
is concerned with understanding the characteristics that allow two species
to coexist, or one species to take over the habitat of another.
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Coexistence and Extinction

Deterministic and Stochastic Models

It is of fundamental importance to understand what will happen to an
invading species. Will it invade successfully or die out in the attempt? If
it does invade, will it coexist with the native population?

The fluctuations of the environment make the dynamics of populations
inherently stochastic.
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Coexistence and Extinction

Deterministic and Stochastic Models

The combined effects of biotic interactions and environmental fluctuations
are key when trying to determine species richness.

Sometimes biotic effects can result in species going extinct. However, if
one adds the effects of a random environment extinction might be reversed
into coexistence.

In other instances deterministic systems that coexist become extinct once
one takes into account environmental fluctuations.
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Coexistence and Extinction

Deterministic and Stochastic Models

A successful way of studying this interplay is modelling the populations as
discrete or continuous time Markov processes and looking at the long-term
behavior of these processes.
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Coexistence and Extinction

Deterministic and Stochastic Models

One of the simplest deterministic models of population growth is

dXt = rXtdt, X0 = x0 > 0.

1. The growth rate is r

2. The solution is given by Xt = x0e
rt, t ≥ 0
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Coexistence and Extinction

Deterministic and Stochastic Models

Note that the long term log growth is given by

lim
t→∞

lnXt

t
= r.

1. The population goes extinct when r < 0.

2. The population blows up when r > 0.
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Coexistence and Extinction

Deterministic and Stochastic Models

Now, assume that due to environmental noise the growth rate r is perturbed

r 7→ r + σẆt

where Ẇt is white noise. We can write the evolution as a stochastic
differential equation

dXt = rXtdt+ σXtdWt, X0 = x0 > 0.
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Coexistence and Extinction

Deterministic and Stochastic Models

In this setting (Wt)t≥0 is a one dimensional Brownian motion.

Using Ito’s formula we get

lim
t→∞

lnXt

t
= r − σ2

2
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Coexistence and Extinction

Deterministic and Stochastic Models

1. If r − σ2

2 < 0 the population goes extinct almost surely.

2. If r − σ2

2 > 0 the population blows up.

3. If r − σ2

2 = 0 the process is null-recurrent.
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Coexistence and Extinction

Deterministic and Stochastic Models

The previous model does not take into account competition for resources
and therefore it can blow up. This can be ammended by adding a compe-
tition term

dXt = Xt(r − kXt)dt+ σXtdWt, X0 = x0 > 0.
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Coexistence and Extinction

Deterministic and Stochastic Models

One can show in this setting

1. If r − σ2

2 < 0 the population goes extinct almost surely.

2. If r− σ2

2 > 0 the population is persistent and converges to its unique
invariant probability measure on (0,∞).

3. If r − σ2

2 = 0 the process is null-recurrent. This is the limit case
where the population does not go extinct but also does not have an
‘equilibrium’ (invariant probability measure).
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Coexistence and Extinction

Deterministic and Stochastic Models

The factor that determines whether the system persists or goes extinct is
the stochastic growth rate

r − σ2

2 .

If the stochastic growth rate is 0 our methods do not work.
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Coexistence and Extinction

Deterministic Model

The dynamics of n interacting populations X(t) = (X1(t), . . . , Xn(t))t≥0
is given by

dXi(t) = Xi(t)fi(X(t))dt, i = 1, . . . , n
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Coexistence and Extinction

Stochastic Model

If we add stochastic effects we get

dXi(t) = Xi(t)fi(X(t))dt+Xi(t)gi(X(t))dEi(t), i = 1, . . . , n

We assume E(t) = (E1(t), . . . , En(t))T = Γ>B(t) where Γ is a n × n
matrix such that Γ>Γ = Σ = (σij)n×n and B(t) = (B1(t), . . . , Bn(t)) is
a vector of independent standard Brownian motions.
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Coexistence and Extinction

General Stochastic Model

If π is invariant measure of X this means that if we start the process
with initial distribution π then the distribution of X(t) is π for all
t ≥ 0.
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Coexistence and Extinction

Lyapunov Exponents

lnXi(t)
t

= lnXi(0)
t

+ 1
t

∫ t

0

[
fi(X(s))− g2

i (X(s))σii
2

]
ds

+ 1
t

∫ t

0
gi(X(s))dEi(s)
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Coexistence and Extinction

Lyapunov Exponents

If X is close to the support of an ergodic invariant measure µ supported
on ∂Rn+ for a long time, then

1
t

∫ t

0

[
fi(X(s))− g2

i (X(s))σii
2

]
ds

can be approximated by the average with respect to µ

λi(µ) =
∫
∂Rn

+

(
fi(x)− g2

i (x)σii
2

)
µ(dx), i = 1, . . . , n
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Coexistence and Extinction

Lyapunov Exponents
As t→∞ the term

lnXi(0)
t

+ 1
t

∫ t

0
gi(X(s))dEi(s)

is negligible. This implies that

λi(µ) =
∫
∂Rn

+

(
fi(x)− g2

i (x)σii
2

)
µ(dx), i = 1, . . . , n

are the Lyapunov exponents of µ.
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Coexistence and Extinction

Lyapunov Exponents

It can also be seen that λi(µ) gives the long-term growth
rate of Xi(t) if X is close to the support of µ.

LetM be the set of ergodic invariant probability measures
of X supported on the boundary ∂Rn+ := Rn+ \ R

n,◦
+ .
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Coexistence and Extinction

Lyapunov Exponents

For an ergodic measure µ the Lyapunov exponents of the compo-
nents supported by the measure are 0

λi(µ) = 0, i ∈ Iµ

Intuitively this is expected because µ is in a way an ‘equilibrium’
so the process should not tend to grow or decay when it evolves in
Rµ+.
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Coexistence and Extinction

Lyapunov Exponents

If the process gets close to the boundary ∂Rn+ it is attracted
or repelled according to the Lyapunov exponents of the ergodic
invariant measures it is close to.

When the process is far from the boundary then our condition on
the drift makes the process return to compact sets expnentially fast.
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Coexistence and Extinction

Persistence

Condition for persistence: For any µ ∈ Conv(M) one has

max
i=1,...,n

{λi(µ)} > 0

This says that any invariant probability measure is a repeller. We can
show that X is persistent and converges exponentially fast to its unique
invariant probability measure π∗ on Rn,◦+ .
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Coexistence and Extinction

Extinction

Condition for extinction: There exists µ ∈M such that

λi(µ) < 0, i ∈ Icµ

where Icµ are the directions which are not supported by the ergodic
measure µ.
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Coexistence and Extinction

Theorem
Suppose that there is at least one transversal attractor, i.e. M1 6=
∅. Then, there exists α > 0 such that for any initial condition
X(0) = x ∈ Rn,◦+ we have with with probability 1 that

lim sup
t→∞

ln
(
d
(
X(t), ∂Rn+

))
t

≤ −α,

where d(y, ∂Rn+) = min{y1 . . . , yn} is the distance to the boundary.
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Coexistence and Extinction

Extinction

If an ergodic invariant measure µ with support on the boundary is
an “attractor”, it will attract solutions starting nearby. Intuitively,
the condition

λi(µ) < 0, i ∈ Icµ

forces Xi(t), i ∈ Icµ to get close to 0 (so, to the support Rµ+ of µ)
if the solution starts close to Rµ,◦+ .
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Coexistence and Extinction

Extinction

We need an additional assumption which ensures that apart from those
in Conv(M1), invariant probability measures are “repellers”. We cannot
treat the limit cases when some of the Lyapunov exponents are zero.
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Coexistence and Extinction

Extinction

Theorem
SupposeM1 6= ∅. Then for any x ∈ Rn,◦+∑

µ∈M1

Pµx = 1

where for x ∈ Rn,◦+ , µ ∈M1

Pµx := Px

{
X → µ and lim

t→∞

lnXi(t)
t

= λi(µ) < 0, i ∈ Icµ
}
> 0.
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Thank you for your attention!


