

Learning Outcomes

- Know the major aluminum alloy groups and their uses
- Know the principal structural properties of aluminum
- Become proficient in designing aluminum structural members and connections

Course Outline

- 1 Overview
- 2 Alloys and tempers
- 3 Products
- 4 Material properties
- 5 Structural design overview

Designing Aluminum Structures

3

1. Overview

- Examples of aluminum structures
- Aluminum's main attributes
- Sources of information

Designing Aluminum Structures

4

Examples of Aluminum Structures

- Curtain walls and storefronts
- Roofing and canopies
- Space frames
- Tanks and vessels (corrosive & cryogenic)
- Portable structures (scaffolding, ladders)
- Highway products (signs, light poles, bridge rail)

Designing Aluminum Structures

5

Cira Center Curtain Wall

Designing Aluminum Structures

courtesy of Larson Engr.

6

Science Land Egg (164' wide)

Designing Aluminum Structures

courtesy of Temcor

/

Science Land Egg

Designing Aluminum Structures

courtesy of Temcor

Aluminum's Main Attributes

- Formability
- High strength-to-weight ratio
- Corrosion resistance
- Better strength, ductility at low temperature
- Low modulus of elasticity (10,000 ksi)
- High electrical and thermal conductivity
- Low melting point (1200°F)

Designing Aluminum Structures

9

Low Melting Point

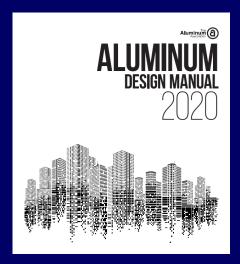
Designing Aluminum Structures

Where Aluminum Structures Make Sense

- Members with complex cross sections
- Long clear spans
- Portable or moving structures
- Retrofitting existing structures
- Structures in cryogenic environments
- Structures in corrosive environments
- Structures in seismically active zones

Designing Aluminum Structures

1



- Founded in 1933, its 120 members include the major US producers
- AA writes most standards on aluminum; has worldwide influence
- Contact: www.aluminum.org
 1400 Crystal Drive, Suite 430
 Arlington, VA 22202
 703-358-2960; pubs 480-779-6259

Designing Aluminum Structures

12

The Aluminum Design Manual

Designing Aluminum Structures

13

Aluminum Design Manual (ADM)

- Issued every 5 years; latest is 2020
- Prior editions: 1994, 2000, 2005, 2010, 2015
- 1st ed (1994) was compilation of several AA pubs previously issued separately; most importantly, the *Specification for Aluminum Structures* (SAS)
- Errata: http://aluminum.org/resources/industry-standards

Designing Aluminum Structures

14

Aluminum Design Manual Contents

- The Aluminum Design Manual (ADM)
 - Part I Specification for Aluminum Structures
 - Part II Commentary
 - Part III Design Guide
 - Part IV Material Properties
 - Part V Section Properties

Designing Aluminum Structures

15

Aluminum Design Manual Contents

- The Aluminum Design Manual (ADM)
 - Part VI Design Aids
 - Part VII Illustrative Examples
 - Part VIII Guidelines for Aluminum Sheet Metal Work in Building Construction
 - Part IX Code of Standard Practice for Fabricating and Erecting Structural Aluminum

Designing Aluminum Structures

16

Specification for Aluminum Structures (SAS)

- The Specification for Aluminum Structures is Part I of the Aluminum Design Manual
- SAS is also called "the Aluminum Specification"
- Adopted in IBC (and previously by BOCA, UBC, SBC)
- It's the source of all aluminum structural design requirements in the US

Designing Aluminum Structures

17

Specification for Aluminum Structures (SAS)

- 2010 edition was a major rewrite
- It's a unified Specification, with both:
 - Allowable Strength Design (ASD)
 - For buildings and bridges
 - Load and Resistance Factor Design (LRFD)
 - For buildings only
 - Load factors from ASCE 7 (= $1.2D + 1.6L \dots$)
 - Every edition since 1994 has had LFRD

Designing Aluminum Structures

18

2020 Specification for Aluminum Structures (SAS)

- A. General Provisions
- B. Design Requirements
- C. Design for Stability*
- D. Design of Members for Tension
- E. Design of Members for Compression
- F. Design of Members for Flexure
- G. Design of Members for Shear
- H. Design of Members for Combined Forces and Torsion
- J. Design of Connections

Designing Aluminum Structures

19

2020 Specification for Aluminum Structures (SAS)

- L. Design for Serviceability*
- M. Fabrication and Erection
- N. Quality Control and Quality Assurance** Appendices
- 1. Testing
- 3. Design for Fatigue
- 4. Design for Fire Conditions*
- 5. Evaluation of Existing Structures*
- 6. Member Stability Bracing*
 - *New in 2010; **New in 2015

Designing Aluminum Structures

20

2. Alloys and Tempers

- Wrought alloy designation system
- Aluminum temper designation system
- Material specifications

Designing Aluminum Structures

21

Aluminum Isn't Just One Thing

- Like other metals, aluminum comes in many alloys
- Alloy = material with metallic properties, composed of 2 or more elements, of which at least one is a metal
- Different aluminum alloys can have very different properties
- Alloying elements are usually < 5%

Designing Aluminum Structures

22

Wrought Alloy Designation System

Number	Main Alloy	Strength	Corrosion
1xxx	<u>></u> 99% Al	Fair	Excellent
2xxx	Cu	High	Fair
3xxx	Mn	Fair	Good
4xxx	Si	Good	Good
5xxx	Mg	Good	Good
6xxx	Mg Si	Good	Good
7xxx	Zn	High	Fair
8xxx	others		

Designing Aluminum Structures

23

Wrought Alloy Key

- 1st digit denotes main alloying element
- 3rd and 4th digits are sequentially assigned
- 2nd digit denotes a modification
- Example:
 - 2319 = AlCu alloy (2xxx) modification on 2219
 - 2319 composition is identical to 2219 except slightly more Ti (grain refiner to improve weld strength); both have 6.3% Cu

Designing Aluminum Structures

24

1xxx Alloys (pure Al)

- Common uses:
 - Electrical conductors
 - Corrosive environments
- Examples
 - 1060 (99.60% aluminum)
 - 1100 (99.00% aluminum)
- Pro: corrosion resistant, good conductors
- Con: Not very strong

Designing Aluminum Structures

25

2xxx Alloys (Al-Cu)

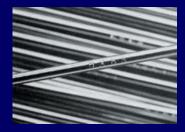
- Common Uses
 - Aircraft parts, skins
 - **■** Fasteners
- Example
 - **2024**
- Pro: Strong
- Con: Not very corrosion resistant; hard to weld when Cu is about 1 to 5%

Designing Aluminum Structures

26

3xxx Alloys (Al-Mn)

- Common Uses
 - Roofing and siding
 - Gutters and downspouts
- Examples
 - **3003**, 3004, 3105
- Pro: Formable, good corrosion resistance
- Con: Not that strong



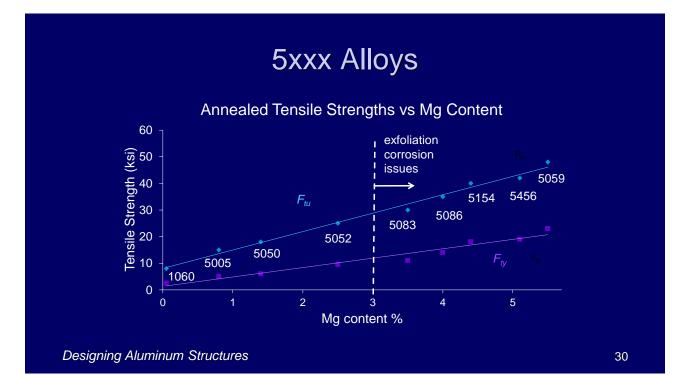
Designing Aluminum Structures

27

4xxx Alloys (Al-Si)

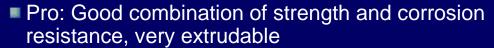
- Common Uses
 - Welding and brazing filler metal
- Example
 - **4043**
- Pro: Flows well
- Con: Lower ductility

Designing Aluminum Structures


28

5xxx Alloys (Al-Mg)

- Common Uses
 - Marine applications
 - Welded plate structures
- Examples
 - **5052**, 5083
- Pro: Strong, even when welded
- Con: Hard to extrude; those with 3%+ Mg can have corrosion resistance issues



29

6xxx Alloys (Al-Mg₂Si)

- Common Uses
 - Structural shapes
 - Pipe
- Examples
 - **6061**, 6063

Con: Lose considerable strength when welded

Designing Aluminum Structures

31

7xxx Alloys (Al-Zn)

- Common Uses
 - Aircraft parts
- Two classes
 - With copper (example: 7075)
 - Without copper (example: 7005)
- Pro: Very strong (7075-T6 F_{tu} = 80 ksi)
- Con: Not very corrosion resistant; hard to arc weld (except those w/ no Cu)

Designing Aluminum Structures

32

How Alloys are Strengthened

- Alloying elements (Mg is good example)
- Tempering:
 - Strain hardening (cold working)
 - Heat treatment
- Heat treatable: 2xxx, 6xxx, 7xxx
- Non-heat treatable: 1xxx, 3xxx, 5xxx

Designing Aluminum Structures

33

Annealed Condition

- Before tempering, alloys start in the annealed condition (-O suffix)
- Annealed condition is weakest but most ductile
- Tempering increases strength, but decreases ductility
- Most alloys are annealed by heating to 650°F (melting point is about 1100°F)

Designing Aluminum Structures

34

Strain Hardening

- Mechanical deformation at ambient temps
- For sheet and plate, deformation is by rolling to reduce the thickness
- Some non-heat treatable alloys undergo a stabilization heat treatment
 - Purpose: to prevent age softening
 - Only used for some Al-Mg (5xxx) alloys

Designing Aluminum Structures

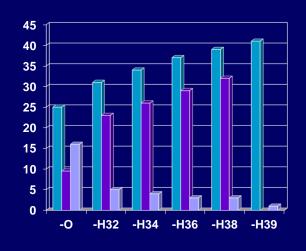
35

Strain Hardened Tempers

- H1x Strain hardened only (1100-H14)
- H2x Strain hardened & partially annealed (3005-H25)
- H3x Strain hardened & stabilized (5005- H34)
- H4x Strain hardened and lacquered or painted and thermally cured

Designing Aluminum Structures

36


Strain Hardened Tempers

Temper	F_{tu} (ksi)	Description
5052-O	25	Annealed
5052-H32	31	1/4 hard
5052-H34	34	½ hard
5052-H36	37	¾ hard
5052-H38	39	Full hard
5052-H39	41	Really hard

Designing Aluminum Structures

37

Effect of Strain Hardening 5052

- Ultimate Strength (ksi)
- Yield Strength (ksi)
- **■** Elongation

Designing Aluminum Structures

38

Heat Treating

- Solution heat treatment
 - Annealed material (6061-O) is heated to 990°F, then guenched
 - Resulting temper is 6061-T4
- Precipitation heat treatment (artificial aging)
 - Solution heat treated material (6061-T4) is heated to 350°F and held for 8 hrs
 - Resulting temper is 6061-T6

Designing Aluminum Structures

39

Tempers Summarized

- -H is for strain hardened tempers
 - 1xxx, 3xxx, 5xxx alloys
 - Higher 2nd digit: stronger, less ductile
- -T is for heat treated tempers
 - 2xxx, 6xxx, 7xxx alloys
 - T4 = solution heat treated
 - T5 and greater = precipitation heat treated

Designing Aluminum Structures

40

ASTM Aluminum Specifications Typically Include:

Minimum mechanical properties:

 F_{tv} , F_{tu} , elongation e

- Dimensional tolerances (ANSI H35.2)
- Chemical composition limits
- Identification marking requirements
- Sometimes, other requirements like bendability, corrosion resistance.

Designing Aluminum Structures

41

41

ASTM Wrought Aluminum Specifications

- B209 Sheet and Plate
- B210 Drawn Seamless Tubes
- B211 Bar, Rod, and Wire
- B221 Extruded Bars, Rods, Wire, Profiles and Tubes
- B241 Seamless Pipe and Seamless Extruded Tube
- B247 Die Forgings, Hand Forgings, Rolled Ring Forgings

Designing Aluminum Structures

ASTM Wrought Aluminum Specifications

- B308 Standard Structural Profiles
- B316 Rivet and Cold Heading Wire and Rod
- B429 Extruded Structural Pipe and Tube
- B632 Rolled Tread Plate
- B928 High Magnesium Aluminum Alloy Sheet and Plate for Marine and Similar Service (has corrosion resistance reqs)
- There are others not included in SAS

Designing Aluminum Structures

43

3. Aluminum Product Forms

- Wrought products
 - Made by mechanically working the metal
 - Example: rolling to produce sheet
 - Tolerances are in ANSI H35.2 or AS&D
- Castings
 - Made by pouring molten metal into a mold
 - Example: sand casting
 - Tolerances are up to you

Designing Aluminum Structures

44

Sheet and Plate

- Rolled product with slit, sheared, or sawed edges
- Sheet: 0.006" < *t* < 0.25"
 - <u>t < 0.006</u> is foil
 - **■** $t \ge 0.020$ " for most construction applications
 - IBC specifies 0.024" min t for roofing
- Plate: *t* ≥ 0.25"
 - t up to 8" available in some alloys, strength is slightly less in thicker plates

Designing Aluminum Structures

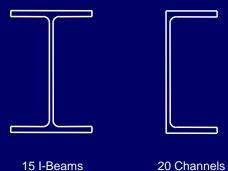
45

Extrusions

- Made by pushing solid material through an opening called a die
- Offers great flexibility to designers
- Solid and hollow shapes can be extruded
- Some alloys are easier to extrude
- Maximum circle size
 - for common products ≈ 19"
 - for special products ≈ 30"

Designing Aluminum Structures

46


Extruded Shapes

Designing Aluminum Structures

47

Aluminum Association Standard

I-beams and Channels

Designing Aluminum Structures

48

4. Aluminum Material Properties

- Strengths
- Modulus of Elasticity, Poisson's Ratio
- Ductility
- Effect of Welding on Properties
- Effect of Temperature on Properties
- Physical Properties

Designing Aluminum Structures

Designing Aluminum Structures

49

50

49

Types of Strengths

Type of Stress	Yield	Ultimate
Tension	F_{ty}	F_{tu}
Compression		
H temper:	$F_{cy} = 0.9 F_{ty}$	_
other tempers:	$F_{cy} = 1.0 F_{ty}$	
Shear	$F_{sy} = 0.6F_{ty}$	$F_{su} = 0.6F_{tu}$

Designing Aluminum Structures

51

Some Aluminum Alloy Strengths

Alloy-temper, product	<i>F_{ty}</i> ksi	<i>F_{tu}</i> ksi
5052-H32 sheet & plate	23	31
5083-H116 plate <u><</u> 1.5" thick	31	44
6061-T6 extrusions	35	38
6063-T5 extrusions \leq 0.5" thick	16	22
Designing Aluminum Structures		

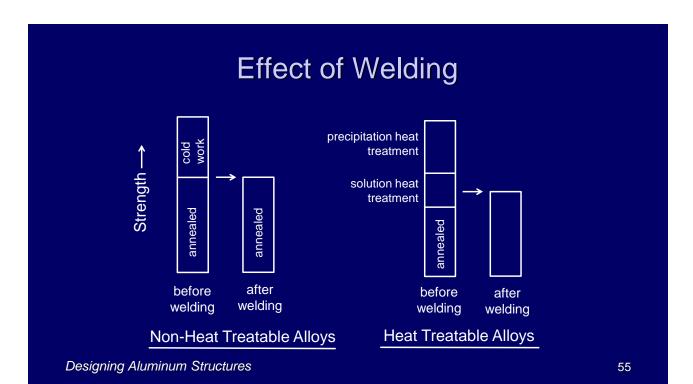
52

Modulus of Elasticity, Poisson's Ratio

- Modulus of Elasticity (Young's Modulus) E
 - Measures stiffness and buckling strength
 - Compressive E = 1.02(Tensile E)
 - Varies by alloy; E_c = 10,100 to 10,900 ksi for SAS alloys, but use 10,100 ksi for all
 - Compares to 29,000 ksi for steel
- Poisson's ratio v
 - Average value = 0.33
- Shear Modulus G = 3,800 ksi = E/[2(1+v)]

Designing Aluminum Structures

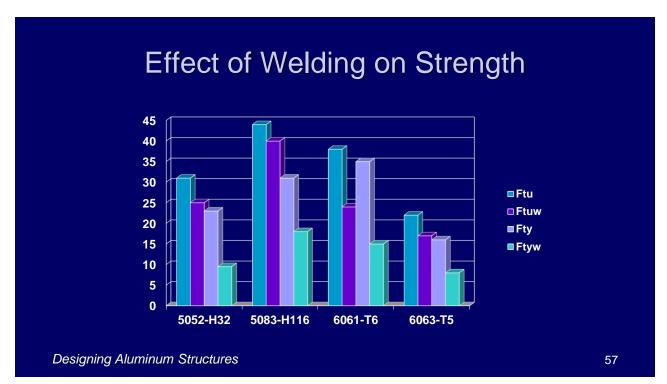
53


Ductility

- Ductility: the ability of a material to withstand plastic strain before rupture
- Fracture Toughness: Aluminum doesn't have a transition temperature like steel
- Elongation e
- ASTM E292 Notch-Yield Ratio = $(F_{tu} \text{ of standard notched specimen})/F_{ty}$ If notch-yield ratio > 1, not brittle

Designing Aluminum Structures

54



55

Welded Strengths

- Welded strengths are in SAS Table A.4.3
- Notation: add w to subscript
 - $F_{tuw} = \text{welded } F_{tu}$
- AWS D1.2 Table 3.2 gives same *F_{tuw}* as SAS Table A.4.3
 - To qualify groove weld procedures in D1.2, F_{tuw} must be achieved
- Beware: SAS F_{tyw} 's decreased in 1994

Designing Aluminum Structures

57

Effect of Temperature

- Below room temperature:
 - Elongation and strengths increase
 - Risk of brittle fracture does not increase
- Above about 150°F:
 - Elongation increases
 - Strengths and modulus of elasticity decrease
 - Aluminum is pretty worthless (structurally) above about 450°F

Designing Aluminum Structures

Physical Properties

- Density γ
 - Average value = 0.1 lb/in³
 - Varies by alloy; for alloys in ASD, +3%, -5%
 - Example: 6061-T6 density = 0.098 lb/in³
- Coefficient of Thermal Expansion α
 - Average value = 13 x 10⁻⁶/°F
 - Varies slightly by alloy and temperature
 - Lengths over 30 ft: consider expansion joints

Designing Aluminum Structures

59

5. Structural Design Overview

- Types of structures
- Limit states
- Strength limit state design methods:
 - Allowable Strength Design (ASD)
 - Load and Resistance Factor Design (LRFD)
- Determining required forces

Designing Aluminum Structures

60

Types of Structures

- Building-type structure: a structure of the type addressed by a building code
- Bridge-type structure: a structure not addressed by building codes and designed for highway, pedestrian, or rail traffic
- Other structures: everything else (for example, lifting equipment)
- Required reliability depends on structure type

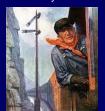
Designing Aluminum Structures

61

Limit States

- A structural engineer considers limit states
 - Static strength
 - available strength ≥ required strength
 - Serviceability (deflection, vibration, etc.)
 - Fatigue
 - allowable stress range ≥ applied stress range

Designing Aluminum Structures


62

ENGINEER

What my friends think I do

What society thinks I do

Designing Aluminum Structures

What my mother thinks I do

What I think I do

What my wife thinks I do

What I really do

63

What a Structural Engineer Does

- Analysis: determine forces, moments in the structure (required strength)
 - Use the same methods for all materials
 - But beware: since aluminum is more flexible than steel, 2nd order effects may be more significant
- Design: proportion the aluminum structure to safely resist the loads (provide available strength)

Designing Aluminum Structures

64

ASD vs. LRFD

- Allowable Strength Design (ASD):
 - (strength)/(safety factor) ≥ load effect
 - allowable strength ≥ load effect
- Load & Resistance Factor Design (LRFD):
 - (strength)(resistance factor) ≥ (load factor)(load effect)
 - design strength ≥ (load factor)(load effect)
- In both, available strength > reg'd strength
- The difference is load factors

Designing Aluminum Structures

65

Aluminum ASD vs. LRFD

- Since dead load is a small part of the load in most aluminum structures, LRFD isn't as significant for aluminum:
 - If D = 0.05L, LRFD is 1.2D + 1.6L = 1.66L
 - w/ same load factors, 1.6D + 1.6L = 1.68L
- Also, many aluminum structures are designed for a single load (e.g., curtain walls are designed for wind only)

Designing Aluminum Structures

66

Safety/Resistance Factors for Aluminum Building Structures

Limit State	Safety Factor Ω	Resistance Factor ϕ
Yield	$\Omega_{\rm y}$ = 1.65	$\phi_y = 0.90$ (was 0.95)
Rupture	$\Omega_{\rm u}$ = 1.95	$\phi_{\rm u} = 0.75$ (was 0.85)
Fastener Rupture	$\Omega_{\rm f}$ = 2.34	$\phi_f = 0.65$

Designing Aluminum Structures

67

Safety Factors Ω for Aluminum Building Structures

yielding	buckling or rupture
1.65	1.95
1.65	1.95
1.65	1.65 (was 1.95)
1.65	1.65
1.65	1.95
	1.65 1.65 1.65 1.65

Designing Aluminum Structures

68

SAS Section C.2: Analysis Must Account for:

- Axial, flexural, and shear deformations
- Second-order effects (P- Δ and P- δ)
- Geometric imperfections (use construction and fabrication tolerances)
- Effect of inelasticity on flexural stiffness (use τ_b / in place of /)
- Uncertainty in stiffness and strength (use 0.8E in place of E, i.e. 8,000 ksi)

Designing Aluminum Structures

69

69

Thank You

- Please contact me with questions
 - rkissell@trinityconsultants.com
 - office: 919-493-8952; cell: 919-636-0072

Designing Aluminum Structures