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Dynamics in the ocean 

NEMO: Met Office Hadley Centre 
Mike Bell 

Arctic Ocean Eddies 

Beaufort Gyre Exploration Program 

Global temperature 1/10 deg - POP 



Outline  
o  Ocean models (climate, weather) & HPC in the next decade 

ACME, ESCAPE, NextGenIO,  ESiWACE, UK Met Office - Gung Ho, ECMWF, 
etc. 

o  Implications for physics with oscillatory and dissipative stiffness  
  (including numerical models of weather and climate) 
 

o  Introduction to disruptive algorithms: time-parallelism 
Some examples: RDIC, results for the time-parallel matrix exponential  (REXI), 
Parareal 
 

o  Mathematics underpinning the algorithms: oscillatory and 
dissipative stiffness  

o  Final thoughts 



Meeting and projections about this topic are 
happening world-wide, what can we do with the 
new architectures? 
o  SIAM CSE 2017 
o  ReCoVER - UK EPSRC  
o  DOE-ACME  
o  ESCAPE  
o  Horizon2020 - NextGenIO,   
o  Horizon2020 - ESiWACE 
o  UK Met Office - Gung Ho, ECMWF, etc. 



Some attributes of Climate & weather models 

o  have “physics” models for clouds, land surface (trees!), 
sometimes even “economic forcing” 

o  assimilate data into the simulations 
o  Tightly coupled physics and numerics: the Gent McWilliams 

model example 

 
o  Different resolutions require different physics models. A weather 

or climate model that ‘converges’ as the grid spacing 
decreases is generally much more complex than simple grid 
convergence studies 

Paper: The Gent-McWilliams Parameterization: 20/20 hindsight, 
P. Gent, Ocean Modelling, Vol 39, 2011 

Climate and weather models are complex fusions of numerical 
and physical models. 



Potential temperature - vertical cross section 

Baroclinic Instability – improvement in models 
Can be more important than improvements In numerics! 

Surface temperature 

low resolution-0.8º 
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Algorithms for climate and weather and new computing 
architectures 
o  Fixed grid on N processors 

 For a fixed grid you may already have an optimal distribution of the grid 
on N processors.  If you add more processors, more communication 
would be required. 

o  Grid refinement (we’ll still have to wait for each time step) 
      Because current algorithms need to reduce their maximum time step 

as the number of grid points increases, these new machines may not 
significantly reduce wall clock time. You may be able to have a higher 
resolution grid but you will still wait a longer time for each time step to 
complete.  

 



Example: Linear Rotating Shallow-water equations 

l  2x 14 cores, Intel 
Xeon(R) CPU E5-2697, 
no hyperthreading, 
compact affinities 

l  Shared-memory 
parallelization only, no 
distributed-memory 
communication 
overheads 

l  Scalability limited 

Finite Differences 

Spectral Methods 

Schreiber, Peixoto, Haut & Wingate, Beyond spatial scalability limitations with a 
massively parallel method for linear oscillatory problems  accepted 
International Journal of High Performance Computing Applications 2017 



Time-parallel performance models? We need these 
kinds of models. 

“Monolithic serial” “Sliding Window time-parallelism” 



Time-parallel performance models? We need these 
kinds of models. 

“Monolithic serial” “Sliding Window time-parallelism” 

Are there models like this for different types of time-
parallelism, simple equation sets and new 
architectures? 



Challenges for Parareal and Climate/Weather models: 
Stiffness in Parareal – dissipative & oscillatory stiffness 

SLOW singular limit 
Taylor Series useful 

FAST singular limit 
Taylor Series only useful on 
small time scales 



Disruptive Algorithms: Parellelisation in time is 50 years old 

 o  RIDC – Revisionist Integral Deferred Correction 
     Pereyra, 1966 & Ong et al 2010 
o  Shooting type methods – Parareal –  Lions, Turinici, Maday, 2001  

o  Multi-grid type methods – Emmett and Minion 2012 
o  exp( t L ) – exponential integrators 
o  Iterative and direct 
 

50 years of time parallel time integration, 
Gander, M.J. In Carraro, T., Geiger, M., Korkel, S., 
Rannacher, R (Eds). Multiple Shooting and Time 
Domain Decomposition. Springer-Verlag, 2015 
 



o  Based on the idea of promoting a lower order scheme to 
a higher one, then using ideas from predictor corrector 

o  Small-scale parallelism – you compute the iterates in 
parallel 

o  Pereyra, 1966 & Ong et al 2010 

Friendly Example: RIDC Revisionist Integral Deferred 
Correction 



Serial Time Stepping versus Parallel Exp 
 

d u(t)

dt
= L u(t), u(0) = u0

The problem: 

Has matrix 
exponential 
solution:    

u(t) = etLu0

Has serial time stepping 
solution:    

un = (I+�TL)n u0

Exponential Integrators for Weather 
Clancy C and Pudykiewicz J, 2013 
Garcia F, Bonaventura L, Net M et al. 2014 



Serial standard time stepping versus Parallel Exp 

o  Parallel Matrix Exp 

o  REXI 

� Serial time stepping 

u(t) = etLu0 un = (I+�TL)n u0

etL ⇡
MX

m=�M

bm (tL� ↵m)�1

Paper: A high-order time-parallel scheme for solving 
wave propagation problems via the direct 
construction of an approximate time-evolution 
operator, Haut, Babb, Martinssen, Wingate, IMA J. 
Numer. Anal, 2015 

Exponential Integrators: 
C. Moler, “19 Dubious ways to compute the exponential of a matrix”,  1978, 2003 
M. Hochbruck and A. Ostermann, “Exponential Integrators”, 2010 

REXI 



Parallelization pattern 

Paper: Beyond spatial scalability limitations with a massively 
parallel method for linear oscillatory problems, Schreiber, 
Peixoto, Haut and Wingate, submitted to Intl J. of High Perf. 
Comp. IMA J. Numer. Anal, 2016 



Performance: Finite Difference vs. (T)REXI 
Time parallelism only 

N=128x128 
l    

 
Helmholtz equation is directly solved in spectral space 

Computed on Linux Cluster, LRZ / Technical University of Munich 

332 s 

28.7 s 

0.22 s 

Reduction in time:  
322.19/0.22 = 
1503.0 X faster 



Performance: Spectral Methods vs. (T)REXI 
Time parallelism only 
 

Helmholtz equation is directly solved in spectral space 

Computed on Linux Cluster, LRZ / Technical University of Munich 

N=128x128 
 
Faster by a 
factor of 
67/.57=118 

67 s 

0.57 s 



Nonlocal form  
in a Hilbert Space Embid and Majda, 1996, 1997 

Schochet, 1994 

Klainerman and Majda 1981 u =
�
v
�

⇥
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�
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divergence free and equipped with the L  norm. 
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Separation of time scales and the 
eigenfrequencies of the fast linear operator 

Quasi Geostrophy Ro � 0 Fr � 0

�(k) = 0 (double)

Fr/Ro = f/N = finite

�(k) = ± (Fr2m2 +Ro2|kH|)1/2

RoFr|k|

Two kinds of frequencies:  
 
1)  “slow” zero frequency for all k which contribute to the potential vorticity  
2)  “fast” dispersive waves with zero potential vorticity  
 



@u

@t
+

1

✏
Lu+N (u,u) = Du, u (0) = u0,

•  The          skew-Hermitian operator results in temporal 
oscillations on a time scale of  

•  Standard numerical time-stepping methods must use 
time steps                 for accuracy. 

Oscillatory Stiffness in the PDE 



Parareal – shooting-type method 

o  Nievergelt  (1964)  
o  Lions, Maday, Turinici, 

(2001)  ‘Parareal’ 

Newton Institute Lecture: Time-parallel algorithms for weather 
prediction and climate simulation; Jean Côté under the AMM 
program in September 2012 

Paper: Nonlinear Convergence Analysis of the Parareal Method, 
Gander and Hairer, Domain Decomposition Methods in Science 
and Engineering XVII, Springer 2008 



Demonstration of parareal algorithm 



For many PDEs that govern physics there are two main types 
of limiting cases : slow singular limits and fast singular limits 
(multiple time scales) 

Taylor Series useful 
on long time scales 

FAST singular limit 

Taylor Series only useful on 
small time scales 

SLOW singular limit 



The early days of numerical weather prediction 

Slow Dynamics and Asymptotic theory 
L.F. Richardson in (1922) -  using ‘computers’  
Charney (1948) and Charney (1950)  - derived ‘slow’ or 

Quasi-Geostrophic (QG) equations (important 
conceptual model) 

Charney and Phillips (1953) – the first realistic numerical 
weather prediction using the QG eqs 

  
 

 

L.F. Richardson 

J. Charney J. von Neumann 

 
•  There is an important notion that 

the fast frequencies get ‘swept’.  
 
•  Important counter example: 

some of the fast motions are ‘in 
resonance’ and collaborate to 
create ‘slow’ motions. Example, 
The Stepwise Precession of 
the Resonant Swinging 
Spring, “P. Lynch and D. Holm, 
2002 

 



Slow Manifolds (nonlinear normal mode initialization, center 
manifolds, dynamical systems, etc) 
Machanauer (1977), Baer (1977), Tribbia ( 1979), etc 
Leith, Nonlinear Normal Mode Initialization and Quasi-

Geostrophic Theory (1980) 
Lorenz, On the Existence of a Slow Manifold (1986) 
Lorenz and Krishnamurthy, On the non-Existence of the 

Slow Manifold (1987) 
Lorenz, The Slow Manifold – what is it? (1991) 
 
 
 
 

 

Does the real atmosphere behave asymptotically? 

Ed Lorenz 

Chuck Leith 

The dynamics is not 
asymptotic and is not 
accurate for numerical 
weather prediction and 
climate simulations. 
Non-invariant manifold. 



A superlinear parareal method: 
 complexity analysis and error bounds for APINT 

Constants Order of the time stepping method 

Banach space characterising 
the regularity 

Example: 
�t ⇡ ✏

1
2if you choose  the error scales like  ✏k+

1
2

Papers:  
An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs, T. Haut, B. 
Wingate, SIAM Journal of Scientific Computing, 2014 
Key Proofs: 
On the convergence and stability of the parareal algorithm to solve partial differential 
equations, Bal, In Domain Decomposition Methods in Science and Engineering, Springer, 
pp 425 2005 (stability too) 
Nonlinear convergence analysis of the parareal…, Gander & Hairer, 2008 (superlinear 
convergence) 

For fixed k and decreasing epsilon 
superlinear convergence: 



Maximum relative error versus number of iterations 

APAR: 5 
Parareal: 5 

APAR: 13 
Parareal: 4 
 

APAR : 100 
Parareal: 10 

✏ = 10�2

✏ = 10�1
✏ = 1
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Oscillatory Stiffness in the PDE 

Setting the dissipation  to zero, 

u (t) = e�t/✏Lv (t)

@v

@t
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Klainerman & Majda, Schochet, Embid, & others 

Where      solves: 

@u0

@⌧
+ L
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u0

�
= 0

u

0(x, t, ⌧) = e�⌧L
u(x, t)
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These ideas are the foundation for the locally asymptotic 
parallel-in-time numerical method 

+ O(✏)

….but goes all the way back to Bolgoliubov & Mitropolskiy 1961  



An asymptotic method-of-multiple scales in time (another way to 
derive Quasi Geostrophy is a singular perturbation in time): 

Embid and Majda, 1996, 1998, Majda and Embid, 1998, Schochet, 1994, 
Klainerman and Majda 1981, Wingate,  Embid,, Cerfon-Holme Taylor, 2011 
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There exits a finite [0,T], T independent of      :  ✏



Compare coordinate transformation to the 
asymptotic solution 

o  Asymptotic Solution 

o  Coordinate transformation 

u (t) = e�t/✏Lv (t)
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Step back from the limit 
As tau goes to infinity. 
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Over a few oscillations we approximate the time integral using 
HMM: 

•  The sum is fully parallelisable. 
•  The sum is over the nonlinear operator, not the solution itself!  
•  Resolving the near-resonant frequencies appears to be important for 

accuracy 

slow time scale 

fast time scale 



Near resonances in nonlinearity of the PDE  
If we look at the nonlinear term expanded in terms of the 
eigenfunctions of the linear operator : 
 
 
 
Look at the nonlinear term: 
 
 
 
 
 
Something interesting happens when there are near resonances: 
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Interacting wave frequencies 



Near-resonance when epsilon not small 

We finally have a convergence proof for epsilon finite – a few slides from now 

Large averaging windows are like 
finding the solution as epsilon goes to 
zero. 

Adam Peddle’s thesis at University of Exeter 

For epsilon finite, there is an 
optimisation problem to solve. 



What happens if the dynamics isn’t asymptotic 

The coarse propagator is: 



     = .1, superlinear convergence for parareal 

0 1 2 3 4 5

Simulation Time

0

1

2

3

4

5

6
x
-c
o
or
d
in
at
e

Slow Approximation of Height Field

-0.4
-0.2
-0.1
0.1
0.2
0.4
0.5
0.7
0.8
1.0

0 1 2 3 4 5

Simulation Time

0

1

2

3

4

5

6

x
-c
o
or
d
in
at
e

Projection of Slow Approximation

-0.4
-0.2
-0.1
0.1
0.2
0.4
0.5
0.7
0.8
1.0

0 1 2 3 4 5

Simulation Time

0

1

2

3

4

5

6

x
-c
o
or
d
in
at
e

True Solution

-0.4
-0.2
-0.1
0.1
0.2
0.4
0.5
0.7
0.8
1.0

✏



     = 1, poor guess for To – takes longer to converge 
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    = 1, good estimate for To (faster parareal convergence) 
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New theorem for when epsilon finite 
Adam Peddle’s thesis at University of Exeter 

Averaging Window 
increasing, so we can take 
a bigger time step 

This minimum is the place 
where the error in the time 
averaging balances the 
error in the time step 



A new theorem and optimization 
problem for epsilon finite 
Adam Peddle’s thesis at University of Exeter 
In collaboration also with Terry Haut from LLNL 

o  The 3 waves near-resonances play a key role 
o  But they are not only to do with the scale 

separation, they are the near-resonant set relevant 
to the time step ΔΤ

o  This minimum is where the equations become locally 
regularized (less stiff!) over some interval η such that 
over ΔT 

For a pth order time-stepping method, and η is To 

||u(Tn)�Uk
n||Bj  MCg

�
C1�T p+1✏⇤(⌘) + (C2 + C3✏)✏⌘

�k+1 ||u0||

⌘|�n| < �



Convergence for any ε   

C1�T p+1✏⇤(⌘) + (C2 + C3✏)✏⌘  1

•  η is the averaging window  
•  ΔT is the coarse time step 
•  ε is the time scale separation 
•  Λ is 

⇤(⌘) = max

x2R
�p

n

Z 1

0
⇢(s)ei�n⌘�Ts

ds



The role of average of the nonlinear operator averaging 

o  This is a measure of the degree to which the averaging can 
mitigate the stiffness from oscillations. 

o  When        is large (for highly oscillatory problems) it creates 
large gradients in the fluid that require a small timestep. 

o  In contrast, the integral tends to zero with ρ(s) the ‘smooth 
kernel’ for the average. 

o  In summary, this term tells us how the averaging of the 
nonlinear operator regularises the solution – it achieves a lower 
magnitude than         itself. 

⇤(⌘) = max

x2R
�p

n

Z 1

0
⇢(s)ei�n⌘�Ts

ds

�n

�n



To demonstrate a convergent parareal algorithm for any 
epsilon 

o  For               , this also goes to zero for any s. 
o  For               ,                           is  bounded. 
Therefore, we can then solve an optimisation problem to find a 
value of the averaging window that gives the minimum value and 
the parareal algorithm convergence for finite ε. 

C1�T p+1✏⇤(
�t

✏s
) + C2✏

1�s�T + C3✏
2�s�T  1

✏ ! 0
✏ ! 1 ⇤ (�T/✏s)

⌘ =

�t

✏s
for 0 < s < 1

Adam Peddle will be presenting this at 10:00 in Room 211 



How close are we to knowing this? Not very close!  

“Monolithic serial” “Sliding Window time-parallelism” 



What about climate, weather, and exascale computing? 

o  Realisable exascale (next 5 year) climate and weather prediction will 
be ports (CS&E)  of current models. Maybe some  RDIC and 
exponential integrators? 

o  The ports will drastically underuse the available compute power of 
exascale machines, this will lead to more statistical scientific questions 
(ensemble science) 

o  Other science problems that can use the machines more efficiently will 
make enormous gains in understanding. 

o  While the above is happening, CS&E will be building new (but simpler) 
models from scratch that contain more ways of using compute 
resources, but they will be simple – spheres and boxes, with no land 
mass. Example: using firedrake 

o  Time to solution for climate scientists?  The young people will adopt 
the new models for basic science, leading to their first use as sicentific 
models. 



Related Minisymposia 

 
Parallel in time  
Part I will be on Tuesday, February 28 from 9:10 AM to 10:50 AM in Room 211 
Part II will be on Tuesday, February 28 from 1:30 PM to 3:10 PM in Room 211 
 
MS269 Advancing Cross-Cutting Ideas for Computational 
Climate Science  
 
Will be on Tuesday, February 28 from 4:25 PM to 6:25 PM in Room 301 
 
MS294 Finite Element Methods for Weather, Oceans and 
Climate 
 
Part I wiil be on Friday, March 3 from 9:10 AM to 10:50 AM in Crystal AF - 1st Fl 
Part Ii will be on Friday, March 3 from 11:20 AM to 1:00 PM in Crystal AF - 1st Fl 
 
 
 


