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Outline

o Ocean models (climate, weather) & HPC in the next decade

ACME, ESCAPE, NextGenlO, ESIWACE, UK Met Office - Gung Ho, ECMWEF,
etc.

o Implications for physics with oscillatory and dissipative stiffness
(including numerical models of weather and climate)

o Introduction to disruptive algorithms: time-parallelism

Some examples: RDIC, results for the time-parallel matrix exponential (REXI),
Parareal

o Mathematics underpinning the algorithms: oscillatory and
dissipative stiffness

o Final thoughts
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Meeting and projections about this topic are E ETER
happening world-wide, what can we do with the

new architectures?

SIAM CSE 2017

ReCoVER - UK EPSRC

DOE-ACME

ESCAPE

Horizon2020 - NextGenlO,
Horizon2020 - ESIWACE

UK Met Office - Gung Ho, ECMWEF, etc.

O 0O 0O 0O 0O 0 o
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Some attributes of Climate & weather models

0]

have “physics” models for clouds, land surface (trees!),
sometimes even “economic forcing”

assimilate data into the simulations

Tightly coupled physics and numerics: the Gent McWilliams
model example

Paper: The Gent-McWilliams Parameterization: 20/20 hindsight,
P. Gent, Ocean Modelling, Vol 39, 2011

o Different resolutions require different physics models. A weather

or climate model that ‘converges’ as the grid spacing
decreases is generally much more complex than simple grid
convergence studies

Climate and weather models are complex fusions of numerical
and physical models.




Baroclinic Instability — improvement in models UNIVERSITY OF
Can be more important than improvements In numerics! E ETE
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Algorithms for climate and weather and new comp
architectures

o Fixed grid on N processors
For a fixed grid you may already have an optimal distribution of the grid
on N processors. If you add more processors, more communication
would be required.

o Grid refinement (we'll still have to wait for each time step)
Because current algorithms need to reduce their maximum time step
as the number of grid points increases, these new machines may not

significantly reduce wall clock time. You may be able to have a higher
resolution grid but you will still wait a longer time for each time step to

complete.



Example: Linear Rotating Shallow-water equations

« 2X 14 cores, Intel
Xeon(R) CPU E5-2697,
no hyperthreading,
compact affinities

« Shared-memory
parallelization only, no
distributed-memory ]
communication ;
overheads s

. Scalability limited

Scalability
O H N W A U O N ©© ©
Larger is better

o

Scalability
N

w

Finite-difference methods
Runge-Kutta 4

p

®
®
2
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Finite Differences

128x128
—m— 64x64

—— 32x32

|

Spectral methods
Runge-Kutta 4

Larger is better

< -0 ° ° o ’e
4 < g —

L 2

o R
g . o

12 16 20 24 28

Number of computina 6ec1_ro| Me.‘.hods

256x256
—o— 128x128

64x64

32x32

12 16 20 24 28
Number of computing cores

Schreiber, Peixoto, Haut & Wingate, Beyond spatial scalability limitations with a
massively parallel method for linear oscillatory problems accepted
International Journal of High Performance Computing Applications 2017
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Time-parallel performance models? We need these
kinds of models.

solution solution

/.

Time-to- / Time-to-
/
2

e

Processors

—

Processors
“Monolithic serial” “Sliding Window time-parallelism”
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Time-parallel performance models? We need these
kinds of models.

.7
Time-to- |/ Time-to-
solution / solution
Ay % 4
Processors
Processors
“Monolithic serial” “Sliding Window time-parallelism”

Are there models like this for different types of time-
parallelism, simple equation sets and new
architectures?
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Challenges for Parareal and Climate/Weather models:
Stiffness in Parareal — dissipative & oscillatory stiffness

(a) Stiffness from oscillations (b) Stiffness from dissipation

\

1
\ Jos&fa “ S0 A0

FAST singular limit

Taylor Series only useful on SLOW singular limit
small time scales Taylor Series useful
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Disruptive Algorithms: Parellelisation in time is 50 years &d

RIDC — Revisionist Integral Deferred Correction

Pereyra, 1966 & Ong et al 2010

Shooting type methods — Parareal — Lions, Turinici, Maday, 2001
Multi-grid type methods — Emmett and Minion 2012

exp(t L) — exponential integrators

Iterative and direct

50 years of time parallel time integration,
Gander, M.J. In Carraro, T., Geiger, M., Korkel, S.,
Rannacher, R (Eds). Multiple Shooting and Time
Domain Decomposition. Springer-Verlag, 2015



Friendly Example: RIDC Revisionist Integral DeferreE
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Correction

O

O

Based on the idea of promoting a lower order scheme to
a higher one, then using ideas from predictor corrector

Small-scale parallelism — you compute the iterates in
parallel

Pereyra, 1966 & Ong et al 2010

correction (¢ = 3) J o
correction (¢ = 2) e o o o/\‘
correction (£ = 1) e o o o o a

prediction (¢ = 0) e o o000 d0

to tp th t3 ts ts tg t7 tg to tip--- L
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Exponential Integrators for Weather
Clancy C and Pudykiewicz J, 2013
Garcia F, Bonaventura L, Net M et al. 2014

Serial Time Stepping versus Parallel Exp

The problem:

d u(t)

- =Lu), u(0)=uo
Has matrix o |
exponential Has serial fime stepping
solution: solution:

u(t) = et“u, u” = I+ ATL)" ug
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Serial standard time stepping versus Parallel Exp E ETER

Exponential Integrators:
C. Moler, “19 Dubious ways to compute the exponential of a matrix”, 1978, 2003
M. Hochbruck and A. Ostermann, “Exponential Integrators”, 2010

o Parallel Matrix Exp Serial time stepping
u(t) = e*“uy u" = (I+ ATL)"
° REA __REXI

Z b (LL — tp) "

Paper: A high-order time-parallel scheme for solving
wave propagation problems via the direct
construction of an approximate time-evolution
operator, Haut, Babb, Martinssen, Wingate, IMA J.
Numer. Anal, 2015
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Parallelization pattern E ETER

Compute ranks

>

Communication:
Broadcast initial

w conditions U(t)

Computation

Solve system of

S T T T S T S POt
VYVYY YVVY vy vy L0t

Communication:
Reduce Uj yielding
solution U(t+dt)

Timeline
<«

Paper: Beyond spatial scalability limitations with a massively
parallel method for linear oscillatory problems, Schreiber,
Peixoto, Haut and Wingate, submitted to Intl J. of High Perf.
Comp. IMA J. Numer. Anal, 2016
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Performance: Finite Difference vs. (T)REXI E ETER
Time parallelism only ,,-%
74
332s EXRE =T
1000 I S
/ —a—RK4, FD method N =3
—e—REXI| M=2048 time+spacepar ~ ’)ff =\l
saty ’ - ) D
== REX| M=4096 time+spacepar Z, vv/’"””',/f// =
» 100 REXI M=8192 time+spacepar — ==
T
c
: T T T " N=128x128
=
2 Ao . N
E Reduction in time:
Z8.7s ._ 322.19/0.22 =
2 £ 1503.0 X faster
= -
2
: 0.22
= 22'S
0.1
1 2 4 8 16 32 64 128 256 512 1024 2048 4096

Number of total cores, 1 thread per rank

Helmholtz equation is directly solved in spectral space

Computed on Linux Cluster, LRZ / Technical University of Munich



Performance: Spectral Methods vs. (T)REXI
Time parallelism only

1000
=R K4, spectral method
=g REXI M=8192 time+spacepar
3 100 mtee REXI M=16384 lime+spacepar
667 S REXI M=131072 time+spacepar
8 o= - - - = = =]
=
2 10
=
o -
[ @
e s
® o
E 1 |
i .
&
01 0.57 s
14 28 56 112 224 448 896 1792 3584

Number of total cores, 1 thread per rank

Helmholtz equation is directly solved in spectral space

Computed on Linux Cluster, LRZ / Technical University of Munich

UNIVERSITY OF

EXETER

N=128x128

Faster by a
factor of
67/.57=118
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Nonlocal form TER

. = *"1
in a Hilbert Space  Embid and Majda, 1996, 1997 \_/
Schochet, 1994

u— <V> Klainerman and Majda 1981

P Hilbert Space X of vector fields u in L that are
divergence free and equipped with the > norm.

a_u + iLRo(u) T iLF'P(U‘) —|—_/\/(u, u) = LD( )

ot Ro Fr Re
~ ~1
LRo(u) = (Z X v+ VA w3) LF’I“

ult—o = up(x)
(z p + VA Z))
0

Aua) — (v.vv—v‘é v(pv v VV) D(u) = (1/£7YA,0>
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Separation of time scales and the EXETER
eigenfrequencies of the fast linear operator

Quasi Geostrophy Ko — 0 Fr — 0 Fr/Ro= f/N = finite

(Fr®m? 4+ Ro?|kg|)/?
RoF'r|k]|

w(k) =0 (double)

wk) ==+

Two kinds of frequencies:

1) “slow” zero frequency for all k which contribute to the potential vorticity
2) “fast” dispersive waves with zero potential vorticity
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Oscillatory Stiffness in the PDE

ou
ot

« The ¢ !£ skew-Hermitian operator results in temporal
oscillations on a time scale of O (e)

« Standard numerical time-stepping methods must use
time steps At = O (¢) for accuracy.

1
F—Lu+ N (u,u) = Du, u(0) = uyg,
€
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Parareal — shooting-type ;nethod NAT

E(ul)—
<I>( —
LR

uy)

o Nievergelt (1964)

o Lions, Maday, Turinici,
(2001) ‘Parareal’

USZEAT(US—Q‘F@AT(US:%) ar(Un= 1))

Newton Institute Lecture: Time-parallel algorithms for weather
prediction and climate simulation; Jean Cété under the AMM
program in September 2012

Paper: Nonlinear Convergence Analysis of the Parareal Method,
Gander and Hairer, Domain Decomposition Methods in Science
and Engineering XVII, Springer 2008
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Demonstration of parareal algorithm

14
First Iteration, U% = ¢(UY_,)

1.3
5 12
3
op;

1.1

I @ U°
—— Direct
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time
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For many PDEs that govern physics there are two main t
of limiting cases : slow singular limits and fast singular limits
(multiple time scales)

FAST singular limit SLOW singular limit

-~ Taylor Series useful
. on long time scales

T Yl

Taylor Series only useful on | rowsre
small time scales
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The early days of numerical weather prediction E ETER

Slow Dynamics and Asymptotic theory
L.F. Richardson in (1922) - using ‘computers’

Charney (1948) and Charney (1950) - derived ‘slow’ or
Quasi-Geostrophic (QG) equations (important
conceptual model)

Charney and Phillips (1953) — the first realistic numerical
weather prediction using the QG eqgs

 There is an important notion that
the fast frequencies get ‘swept’.

« Important counter example:
some of the fast motions are ‘in
resonance’ and collaborate to
create ‘slow’ motions. Example,
The Stepwise Precession of
the Resonant Swinging R
Spring, “P. Lynch and D. Holm, J.von Neumann Charney
2002
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Does the real atmosphere behave asymptotically?

Slow Manifolds (nonlinear normal mode initialization, center
manifolds, dynamical systems, etc)

Machanauer (1977), Baer (1977), Tribbia ( 1979), etc

Leith, Nonlinear Normal Mode Initialization and Quasi-
Geostrophic Theory (1980)

Lorenz, On the Existence of a Slow Manifold (1986)

Lorenz and Krishnamurthy, On the non-Existence of the
Slow Manifold (1987) -

—

Lorenz, The Slow Manifold — what is it? (1991) ¢ g

. <4

The dynamics is not
asymptotic and is not
accurate for numerical
weather prediction and
climate simulations. Chuck Leith
Non-invariant manifold.
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A superlinear parareal method: E ETER

complexity analysis and error bounds for APINT

For flxgd k and decreasing epsilon Banach space characterising
superlinear convergence: the regularity

THEOREM 1. Assuming that ug = u(Tp) 4 , the error, u (T,) —UE | after
the kth parareal iteration is bounded by
€

A‘
Hu (Th) — Uf;HBj < ATP + €) ( E) Huo||Bk+j+1 ,

where Cy ; 1s a constant tHat depends only on thé constants Cp,, m =0,1,...,k+ 3.

Constants Order of the time stepping method
Example: 1

1 1
if you choose At &~ €2 the error scales like ek+ 2

Papers:

An Asymptotic Parallel-in-Time Method for Highly Oscillatory PDEs, T. Haut, B.
Wingate, SIAM Journal of Scientific Computing, 2014

Key Proofs:

On the convergence and stability of the parareal algorithm to solve partial differential
equations, Bal, In Domain Decomposition Methods in Science and Engineering, Springer,

pp 425 2005 (stability too)
Nonlinear convergence analysis of the parareal..., Gander & Hairer, 2008 (superlinear

convergence)
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Maximum relative error versus number of iterations

ml}ﬂ L}J’j —u(nAT)|| ./ |u(nAT) |, asa function of k (log,, scale); e =10"*

m&’g gU'i —u(nAT)||/|lu(nAT) |, as a function of k (log,, scale); ¢ =10""
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—-45 .
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Oscillatory Stiffness in the PDE

ou 1
ot

Setting the dissipation to zero,

u(t) = e Vv (t)
ov
ot

L0k~~~

UNIVERSITY OF

EXETER

__|_E£u_|—_/\/(u,u):Du, 11(0):1107

Fic. 3. Schematic depiction of the moving time average.

et/eﬁj\/‘ (G_t/€£V(t), e—t/eﬁv (t)) —0

ov
E—O(l)

03v
oz =Y

(

1

€

)
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Klainerman & Majda, Schochet, Embid, & others

...out goes all the way back to Bolgoliubov & Mitropolskiy 1961

ou®

E—F,C(HO)ZO

[uO(X,t,T) = e TFu(x,t) + O(e) }

Where 13 solves:

T—00 T

[ é;—ﬁ(x, t) = — lim ! /T st (./\/'(e_SEﬁ, e‘sgﬁ)) ds ]
t 0

These ideas are the foundation for the locally asymptotic
parallel-in-time numerical method
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An asymptotic method-of-multiple scales in time (another way to
derive Quasi Geostrophy is a singular perturbation in time]:

1
%—1; —£u+N(u u) = Du, u(0) = ug,

There exits a f|n|te [0,T], T independent of € :
u(t) = e u(t) + Ofe)

g—?—l—ﬁ( 1) = Du, u(0) = uy,
where 1 T
Du(t) = lim / (e**D e *F)u(t) ds
. -
N(a(t), u(n) = lim / eC (N (e, e *Cm)) ds
— 00 0

Embid and Majda, 1996, 1998, Majda and Embid, 1998, Schochet, 1994,
Klainerman and Majda 1981, Wingate, Embid,, Cerfon-Holme Taylor, 2011



UNIVERSITY OF

Compare coordinate transformation to the
asymptotic solution E ETER

o Coordinate transformation

u(t) =e Vv (t)

%—Z + et/ EN (e_t/eﬁv(t), e MLy (t)) =0

Step back from the limit
As tau goes to infinity.

o Asymptotic Solution

ul(x,t,7) = e TFU(x, ¢

ou
ot
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Over a few oscillations we approximate the time integral using

HMM:
N(@),ut) = lim -
W), u(r) = [lim -
1 [To
M ~ To ; P
1 M—-1
~ MZP
R m=0

Fic. 3. Schematic depiction of the moving time average.

slow time scale

/OTesLN(s,cu\(t)z

ds

(?)

SN—

& , € u

fast time scale

« The sum is fully parallelisable.

accuracy

« The sum is over the nonlinear operator, not the solution itself!
» Resolving the near-resonant frequencies appears to be important for
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Interacting wave frequencies EXETER

Near resonances in nonlinearity of the PDE

If we look at the nonlinear term expanded in terms of the
eigenfunctions of the linear operator ;

a zkx o
S S Uk 'y

ke oo=—
Look at the nonlinear term:

e/ EN (et Ly (x,t), e u(a, t) =

1 1
Z Z ( Z Z 01?1’1?2 1(:3010{41 (t) 010{42 (t) ei (k-x—(wﬁll -I—wfz; —wﬁ‘)t/e))rﬁ
1,k2, 2

keZ ao=—1 *ki+kas=k aj,a2=—1

Something interesting happens when there are near resonances:

g + w2 —wg| < e



Near-resonance when epsilon not sm
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Adam Peddle’s thesis at University of Exeter

30

APInT Convergence Window Study, AT =04

~—— Epsilon = 0.01

For epsilon finite, there is an
optimisation problem to solve.

— Epsilon =1
~— Epsilon = 0.1

o
—
o

Iterations to Converge
o

10 F

Large averaging windows are like
finding the solution as epsilon goes to

Zero.
N\ \eq 5 pod
0 1 2 3 i 5 6 7 S

To/ AT

We finally have a convergence proof for epsilon finite — a few slides from now
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What happens if the dynamics isn’t asymptotic E ETER

The coarse propagator is:

u = e_wﬁ

ou 1 10 S sL —sL—~ —sL—~
a ~ o7 p(ﬁ)e N (e7*~u(t),e U (t)) ds
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€ = .1, superlinear convergence for parareal

Slow Approximation of Height Field

1.0
6 0.8
% 5 0.7
=4 0.5
s 0.4
53 0.2
g2 0.1
" 1 -0.1
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0 -0.4
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0 1 2 3 4 5 04
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True Solution
6 1.0
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% 5 0.7
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—
[\]
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€ =1, poor guess for To — takes longer to converge

Slow Approximation of Height Field

1.0
6 0.8
% 5 0.7
s 0.4
53 0.2
g2 0.1
" 1 -0.1
0.2
09 1 2 3 4 5 04

Simulation Time

Projection of Slow Approximation

6 : : 1.0
0.8
g5 i 07
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0 1 2 3 4 5 04
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True Solution
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€ =1, good estimate for To (faster parareal convergence

Slow Approximation of Height Field

1.0

6 0.8

2 5 0.7
= 0.4
53 0.2
22 0.1
% 0.1
-0.2

00 1 2 3 4 5 04

Simulation Time
Projection of Slow Approximation
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New theorem for when epsilon finite E ETER

Adam Peddle’s thesis at University of Exeter
APInT Convergence Window Study, AT =04

30

~—— Epsilon = 0.01

\ — Epsilon =1

~—— Epsilon = 0.1
Averaging Window -
Increasing, so we can take w
a bigger time step M

>

15+

|terations t¢ Co

This minimum is the place
where the error in the time

ol T averaging balances the

M error in the time step
|

0 1 ) 3 1 5 6 7 8
To/ AT
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A new theorem and optimization
problem for epsilon finite

Adam Peddle’s thesis at University of Exeter
In collaboration also with Terry Haut from LLNL
For a pth order time-stepping method, and n is To

|(T,) — U¥||s, < MC, (CiATP e (n) + (Cy + Cae)en)™ ™

[luol|

o The 3 waves near-resonances play a key role

o But they are not only to do with the scale
separation, they are the near-resonant set relevant
to the time step AT

o This minimum is where the equations become locally
regularized (less stiff!) over some interval ny such that

over AT n‘)\n‘ < 5
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Convergence for any €

CiATPT eA(n) + (Cy + Cse)en < 1

n is the averaging window
AT iIs the coarse time step

¢ IS the time scale separation
e AliSs

1
A(n) = max )\fL/ p(s)ernnaTsdg
0

reclR
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The role of average of the nonlinear operator averaging

1

A(n) =max A2 [ p(s)e?12T5(s
reR 0

o This is a measure of the degree to which the averaging can
mitigate the stiffness from oscillations.

o When )\n is large (for highly oscillatory problems) it creates
large gradients in the fluid that require a small timestep.

o In contrast, the integral tends to zero with p(s) the ‘smooth
kernel’ for the average.

o In summary, this term tells us how the averaging of the
nonlinear operator regularises the solution — it achieves a lower
magnitude than \,, itself.
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To demonstrate a convergent parareal algorithm for any
epsilon

n=— for 0<s <1
ES

At
CLATP T eA(—) + Coe' T°AT + C3e?*AT < 1
€
o Fore — 0 , this also goes to zero for any s.

o Fore —1. A (AT/ES) is bounded.

Therefore, we can then solve an optimisation problem to find a
value of the averaging window that gives the minimum value and
the parareal algorithm convergence for finite e.

Adam Peddle will be presenting this at 10:00 in Room 211
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How close are we to knowing this? Not very close!

solution solution

/.

Time-to- / Time-to-
/
2

e

Processors

—

Processors
“Monolithic serial” “Sliding Window time-parallelism”
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What about climate, weather, and exascale computing

o Realisable exascale (next 5 year) climate and weather prediction will
be ports (CS&E) of current models. Maybe some RDIC and
exponential integrators?

o The ports will drastically underuse the available compute power of
exascale machines, this will lead to more statistical scientific questions
(ensemble science)

o Other science problems that can use the machines more efficiently will
make enormous gains in understanding.

o While the above is happening, CS&E will be building new (but simpler)
models from scratch that contain more ways of using compute
resources, but they will be simple — spheres and boxes, with no land
mass. Example: using firedrake

o Time to solution for climate scientists? The young people will adopt
the new models for basic science, leading to their first use as sicentific
models.
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Related Minisymposia

Parallel in time
Part | will be on Tuesday, February 28 from 9:10 AM to 10:50 AM in Room 211
Part Il will be on Tuesday, February 28 from 1:30 PM to 3:10 PM in Room 211

MS269 Advancing Cross-Cutting Ideas for Computational
Climate Science

Will be on Tuesday, February 28 from 4:25 PM to 6:25 PM in Room 301

MS294 Finite Element Methods for Weather, Oceans and
Climate

Part | wiil be on Friday, March 3 from 9:10 AM to 10:50 AM in Crystal AF - 1st FlI
Part li will be on Friday, March 3 from 11:20 AM to 1:00 PM in Crystal AF - 1st FlI



