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Large-Scale Systems
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Key Challenges

Distributed and Large Scale Data

e Lack of central “authority” e Large Data
o Centralized architecture not possible » Processing
= Size of the network / Proprietary issues ¢ Uncertainties
e Centralized architecture not desirable e Data mining & learning
= Security issues / Robustness to failures » Statistical inference
e Network connectivity dynamics e Data Characteristics
» Mobility of the network e Space/ Time variability
¢ Temporal data dynamics e Sparsity

e Challenges are to control, coordinate, optimize and analyze operations/performance
of such distributed and large scale systems
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Minisymposium on Distributed Methods for Optimization

# Focused on recently developed technigues for optimization in large scale systems

- TElkS

¢ Distributed Optimization in Directed Graphs: Push-Sum Based Algonthms
¢ Distributed Optimization in Undirected Graphs: Gradient and EXTRA Algorithms

» On the O(1/k) Convergence of Asynchronous Distributed Alternating Direction
Method of Multipliers

¢ Blessing of Scalability: A Tractable Dual Decompesition [ Approach for Large
Graph Estimation
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Example: Support Vector Machine (SVM)

Centralized Case
Given a data set {z;,y;}/_;, where z; eR" and y; € {+1.-1}

» Find a2 maxamum margin separating hyperplane =~
Centralized (not distributed) formulation

e
min F(r) = 2 2| E_I_ max{t,. 1 —yilz. z:)
reRd £ERD () 2” L ; ST Yl =) }

Kizich 5. 2ul
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Support Vector Machine (SVM) - Decentralized Case

Given n locations, each location @ with its data set {z;, y;}ies, where z; € B4 and
W €4+1,—1}

e Find 3 maximum margin separating hyperplane =¥, without disclosing the data sets

min (inl‘"2 +z max{§;. 1 — yyla, ':J}.})

<Rd
PERTAER =1 =

min F(z) =3 fi(a)

=1

i
fiz) = -ll=li*+ )

min max{&,, 1 — y;{x,z)}
iEd,

&

.|
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General Distributed Multi-Agent Model

Distributed Self-organized Agent System

fiimy.- - Tul

The problem can be formalized: J IMIL Tu |
a4 5 & - A //T Qﬁ
minimize  F(z)= Zf.(.r} f . >

=1 f P A
subjectto re X, XCB || g

.

FmiZL,- ooy Bn)

» Network of n agents represented by a graph ([n].£;) where [n] = {1..... n)

e [he edge set &£ captures the agent communications at time ¢

e Each agent 1 has 3 convex objective function f, : BY — B known to that agent only
e All agents know the set X, which is closed and convex

« Each agent sends/receives some information to/from its neighbors



2 Laed Ly Livam SIAM Cooromice on 1 whikped Byl SCoencs gt e I Wach 3. AT

How Can Agents Solve the Problem?
mimimize Y fi{x) subjecttor < X C R’

=7
Decompose the problem: an individual copy of the decision variable per agent

5]
minimize ) fi(x,)  subjectto z = X C B

=1

Wy =Ty rall &, 9= 1., n agreement Sonstraints

The key is in suitable equivalent re-formulation of the "agreement constraints
Assume the agents communicate cwver a static (bi-directional) network

o, = x; foralliand its peighbors j = 1...., r
— iy = Z v, forevery i Lapiacian form (scslar case) L= 0,
'H'-l‘h-,j_

where N, is the set of neighbors of agent : and d,, = |V}

1 . . .
s Ty = z x; foreveryq egual-neighbor veeights [averaging).
=
— B = Z nijir; for every ¢ waighted-averagng |scalar case) Ax = r,
JeN=

where N = Ni {i} and ay) >0 with ¥ yeay = 1.
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In this way the problem is equivalent to
n
minimize Z filz:)
=1

subject to z; € X C R*

network impact Ax = x o (I —AL)x = x, constraints coupling the agents
where
Ty
X = -
Ty

and A is a diagonal matrix. The linear constraints are distributed and local by noting that
each i agent may work with ith row of the corresponding matrix, i.e., each agent knows
A; or L;, as the values of z; are supplied from the neighbors
A general approach in optimization exists that proceeds by interleaving two steps
¢ A step toward minimizing a function (can be with projection when X is simple)
e A step toward "feasibility” - here corresponds to alignment of agreement of vectors
xj.j = 1,...,n expressed in "fixed point equation”.

10
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Consensus-Based Distributed Optimization Algorithm

e Consensus-like step - feasibility step for constraints x = Ax (or its Laplacian form)

n

wit+ 1) =) ay(Oz;(t) with a;(t) = O when j & N,(t)
=1
» Followed by a local gradient-based step

zi(t+1) = Nx[wit 4+ 1) —a(t)Vfi(uwit + 1))]
where f; is the local objective of agent ¢, a(t) > O is a stepsize, and My [x] is the
Eucdlidean projection on the set X

Intuition Behind the Algorithm: It can be viewed as a consensus steered by a " force":

a(t + 1)—, a (1) Ir}-n(t)v_f,(. ay; () |f])
=]

=1

e Algorithm works with time varying matrices (graphs) - all have the same fixed point
solutions under a graph connectivity assumption

B4
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e Such an algorithm can solve the problem (under some technical conditions on A(t))

e Matrices A(t) that lead to the average-consensus also yield convergence of the
algorithm

« Main Difficulty: Understanding the mixing rate in terms of the graph structure and
problem data

e Drawback: Construction of doubly stochastic matrices requires some additional
information exchange
e It can be accomplished with some additional " weights'" exchange in bi-directional
graphs

¢ Hard to do in the networks with communication delays and/or asynchronous
updates

+ Computationally prohibitive in directed graphs¥*

*98. Gharesifsrd and J Cortes, "Distributed strategies for generating weight-balanced and doublv stochastic digraphs.”
European Joumal of Centrol, 18 (6), 539-557. 2012

12
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Distributed Optimization in Directed Networks
Motivated by work of Rabbat, Tsianos and Lawlor addressing practical issues with bi-
directional communications

Related Work: all dealing with a static network

e A.D. Dominguez-Garcia and C. Hadjicostis " Distributed strategies for average consen-
sus in directed graphs” CDC 2011.

e C. N. Hadjicostis, A.D. Dominguez-Garcia, and N.H. Vaidya " Resilient Average Con-
sensus in the Presence of Heterogeneous Packet Dropping Links” CDC 2012

e K.I. Tsianos " The role of the Network in Distributed Optimization Algorithms: Conver-
gence Rates, Scalability, Communication / Computation Tradeoffs and Communication
Delays” PhD thesis, McGill University, ECE Dept., 2013.

e K.I. Tsianos, S. Lawlor, and M.G. Rabbat " Consensus-based distributed optimization:

Practical issues and applications in large-scale machine learning” Allerton Conference
2012.

e K.I. Tsianos, S. Lawlor, and M.G. Rabbat " Push-sum distributed dual averaging for
convex optimization” |EEE CDC 2012.

» K.I. Tsianos and M.G. Rabbat " Distributed consensus and optimization under commu-
nication delays” Allerton Conference 2011.

13
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Push-Sum Method (Ratio Consensus): Basic Idea
Having an = x n column-stochastic matrix A. consider the following process

a(t) = Az(t — 1) fort> 1,

starting with some x(0) € R". Under some conditions the matrix A' converges to a
rank-one column-stochastic matrix,

lim z(t) = [#1'] 2(0) = (i:,((})) 7. with =; > O for all 2
t—00 =

With a different initial condition, we can run the same process and obtain say y(t),

lim y(t) = [=1]y(0) = (Z y;(U)) ™

i=1

Consider the coordinate-wise ratio process

0.
zi(t) (D)’

for which we have " 2.(0)
li 2 - =1

Jim 2(¢) ¥ . 3(0)

Thus, to obtain the average of {z,(0),i € [n]}, we justiset ;(0) = 1 for all 2
e How about doing this with time-varying matrices A(¢)?

14
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Push-Sum for Time-Varying Directed Graphs

e Agents communications are given by a time-varying graph sequence {G(t)]
e N/"(t) is the set of "in"-neighbors of node : at time ¢ (in the graph G(¢))
e Each node i "knows" its out degree d,;(¢) (includes itself) at every time ¢

s Every node i maintains scalar variables x;(t) and y:(f)

e These quantities will be updated by the nodes according to the rules,

zi(t+1) = Z 24(1)

,;Eh'ti“{t}dj(t)f
(2)
w(t+1) = y;. 1
JE?'-',i“lZ-‘}dJ(t)
- _a .r.-(t + 1)
z(t+1) = 1) (1)

e The methodiT is initiated with an arbitrary =,(0) and %;(0) = 1 for all i.

fo. Kempe, A. Dobra. and J. Gehrke ™ Gossip-based computation of aggregate information” In Proceedings of the 44th Aanual
IEEE Symposium on Foundations of Computer Science, pages 452491, Oct. 2003
F. Benezit. V Blondel, P. Thiran. J. Tsitsikis, and M. Vetterli “Weighted gossip: distributed averaging using non-doubly
stochastic matrces In Proceedings of the 2010 IEEE International Symposium on Information Theory, Jun 2010

15
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Perturbed Push-Sum: Scalar Case

e _ z;(f)
u;(t 1) = Z d‘j(i‘}
JENT (1)
: —z H;-"{”
w(t+1) = ~ 4
JENT()
| _ wi(t+1)
MR yi(t + 1)
rilt+1) = wi(t+1)+e(t4+1) (2)

where €;(t + 1) are perturbations

16
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Error-Bound Result

Consider the sequences {z:(t)}, : = 1,....n, generated by the push-sum method.

Lemma 1 (Key) Assuming that the graph seguence {G(t)} is B-uniformly strongly
connected, for all t > 1 we have

_ Y d
2t 1) — ==t =il ) (FH:(D)"I—I-Z}.‘ o |E(5)|I1) :
T
where § > 0 and A € (0,1) satisfy
1 L
9= nnB’ A= (1 = nnH) i

Define matrices A(t) by A,;(¢t) = 1/d;(t) for 7 £ N™(t) and 0 otherwise
If each of the matrices A(t) are doubly stochastic, then

1B
§=1. Ag(l—i) .

4n3

17
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Optimization

The subgradient-push method for minimizing F(z) =Y ", fi(z) over z € R?
Every node i maintains scalar variables x,(¢).w,(t) in R, as well as an auxiliary scalar
variable 4;(t), initialized as 4;(0) = 1 for all i. These quantities will be updated by the

nodes according to the rules,

wif4+1) = z ."C_..l:f)*

= di(t)
;E.ﬁ.’:“{_r}
B y;(t)
y:(t+1) = % —dj(f)
JENT(1)
_ ikt
BeFa = w(t+1)°
xi{t+1) = wilt+1) —alt+ Dt +1). (3)

where g;(t + 1) is a subgradient of the function f, at #;(¢ + 1). The method is initiated
with arbitrary x;(0) and 4(0) = 1 for all i.

13
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Convergence Result

Qur first result demonstrates the correctness of the subgradient-push method

Proposition 1 Suppose that:

{a) The graph sequence {G(t)} is B-uniformly strongly connected.
(b) Each function fi(z) s conver and the set Z* = argmin__gq Y - ; fi(z) is nonempty.

(e) The subgradients of each f;(z) are uniformly bounded, i.e.. there is L, < o< such that
llgill2 < L; for all subgradients g; of fi(z) at all points z € R”.

Then, the distributed subgradient-push method with the stepsize satisfying the conditions
Yo a(t) =oc and ¥ o, o?(t) < oo has the following property

tﬁl'l"l Bilt) =" for all i and for some z° € Z°.
—+00

19
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Proof ldea

wilt+1) = Y. ;Jﬂ
~nrin -'{I)
j ."'l"l )

t
wit+1) = > '?J{ )
i)
jENImg)
w(t+ 1)
At 1) =
6L+ wl(t+ 1)

xit+1) = wilt+ 1) —alt+1)gl(t+1)
Due tn matrices 4(#) being ¢olumn stochastic 'ae have

I

LS IET(ERIEED SENO TS WNTEEY

¥
i=l1 =1 =1

with g,(t + 1) € Oflzlt + 1)

Mech 3. WUIH

Use the Key Lemma to approximate the differences z:(t +1) — 137 x.(¢ + 1) and

exploit the Lipschitz continuity and convexity of 1.

Key dificulty: non-linearity of the model, weak-ergodicity of the matrna sequence
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Convergence Rate

Qur second result gives explicit rate at which the objective function converges to its optimal
value. As standard with subgradient methods, we will make two tweaks in order to get a
convergence rate result:

(i) we take a stepsize which decays as a(t) = 1/v/% (stepsizes which decay at faster rates
usually produce inferior convergence rates),

(ii) each node i will maintain a convex combination of the values z,(1),z:(2),... for
which the convergence rate will be obtained.

We then demonstrate that the subgradient-push converges at a rate of O(Int//%). The

result makes use of the matrix A(t) that captures the weights used in the construction of
w;(t+ 1) and y;(t 4+ 1) in Eq. (3), which are defined by

1/d;(t) whenever j € N™(1),
Ai:lt) = Ak : 4
o(t) { 0 otherwise. )
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Convergence Rate |

Proposition 2 Suppose all the assumptions of Proposition 1 hold and. additionally.
a(t) = 1/t for t > 1. Moreover. suppose that every node i maintains the variable
z:(t) € R? initialized at time t = 1 to Z;(1) = 2:(1) and updated as
ST e a(t+1)z(t+ 1) -{-S(t)z,(t)
S(t+1)
where S(t) =Y ', a(s +1). Then, we have that for alit > 1.i =1,...,n, and any
e €27,

n%(0) — 2l n (S, L) (A +Ind)
Vi 2 4 Vi

2 5=1 lIx5(0)llz 16 - (14 1Int)
5(1—,\)(25) VE Y ia—n (ZLE)T

where X(0) = = Z,_l xi(0), and the scalars A and é are functions of the graph sequence
G(1),G(2),..., with the same properties properties as in Proposition 1.

F(Zi(t)) — F(z*) < 5

The rate is O(Int /1)
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Convergence Rate Il

Theorem 3 Suppose the assumptions of Proposition 1 hold and all functions f; are
strongly convex. Let a(t) = p/t for t > 1 where p 15 a constant (tuned). Moreover,
suppose that every node i maintains the variable Z;(t) € R? initialized at time t = 1
to 2:(1) = z:(1) and updated as

& _ tg(t+ 1) + 5(2)z:(t)
z{t+1) = S+ D) :
where S(t) = t(t —1)/2. Then, we have that forallt > 2. i=1..... i,
~ : * 2 N T EﬂL :" - P - 2
F(2(1) - F(z }+;u;nz,{f) e Bk _A; I;(0)ls +;§ L;
80pLnv'dmax; L,
14+iIn{t—1
+ > e (14 In{ ))

where z* is the solution of the problem. L, is the marimum norm subgradient in a ball
centeved at origin, L = E;'1=1 L;. and the scalars A and § are functions of the graph
sequence G(1),G(2). ..., with the same properties properties as tn Proposition 1.

The rate 1s O(In#/t)
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Conclusion & Future work
e The rate results are by factor In t worse than that of centralized algorithms
e Such scaling is expected as the graphs are " general” time-varying graphs

e Aspects for future studies

¢ Scalability with network size

¢ Dealing with constraints

Thank you
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