Reduced Basis ANOVA for PDEs with

High-Dimensional Random Inputs

Qifeng Liao™ and Guang Lin*

TSchool of Information Science and Technology, ShanghaiTech University

*Department of Mathematics, Purdue University

Qifeng LiaoT and Guang Lin™ JrShamghaiTech University, * Purdue University



€@ ANOVA decomposition for stochastic PDEs
© Reduced Basis ANOVA

© Numerical Study

Qifeng LiaoT and Guang Lin™ JrShanghaiTech University, * Purdue University



Outline

€@ ANOVA decomposition for stochastic PDEs

Qifeng LiaoT and Guang Lin™ JrShanghaiTech University, * Purdue University



Partial Differential Equations with Uncertain Coefficients

Let ¢ € I™ be a random vector. We find a random function u (, £):
L(z,&u(x,8)) = f(z,8), (z,6) € D x IM,
b(z,&u(x,8)) = g(z,9), (2,6) € 0D x 1.

e L: a partial differential operator.

e b: a boundary operator.

e Both of £ and b can have random coefficients.

e The random source € is high dimensional.
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ANOVA decomposition (Cao, Chen, Gunzburger, Gao, Hesthaven, ...)
L(z,&u(z,8) = f(2,8), (z,6) € Dx IM,
b (2, & u(z,€)) = g(x, ), (z,€) € 9D x IM.

Decompose the (global) random solution u(z, &) w.r.t £:

uw(z,€) = yy(z) + wi(z, &)+ ...+ wa(z,&12)+...= Z ug(z,&p).

teP )
Given anchor point ¢ = (c1,...,cu) € IM Py {0}
: . L Pli {1,...,M}
Define index set P := {Py, P1,...,Pu}t — Po: {(1,2), (1,3), .o (2,3), .}
o uy() = u(z, c) Par: {(1,2,..., M)}

o u(z,&) = U(l" (&1, 02,---,CM)> — ug(z)

@ Define a local solution for t € P: u(x, ¢,&t) := u(ac, (c1yes &ty s - Etys ))

° Ut<$, ft) = u(x, (& gt) - Zsct u5($, fS)
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Stochastic collocation for each ANOVA term

’U/(Z‘,f) = EteP Ut(l',&t)y ut(xvé.t) = u(x, Cagt) - Zsct us(mafs)'
U(I, C)ft) = U(.’L‘, (Clv "7§t1’ "-£t2a ))

‘C(Iaét; U(IE, Cagt)) :f(CC), (-’L‘,Et) €D x I|t|7

60 SRS (0,6 (s, 0.60) = 9(2), (2:80) € DD x 1M,

@ |t| (dimension of t) is expected to be < M.

@ Approximate u(z, ¢,&;) using stochastic collocation:
k
u? (1‘, C, ét) = th(k)gelqﬂ u (1’, @, f; )>(I)§§k) (ft) ~ U(CL‘7 C, ft)
@ Overall approximation: wu(z,&) & u(z,£) := Y scp ui(z, &),
Uf(fﬂ,ft) = Uq(za & gt) - ZsCt us(xa Ss)

m Stochastic collocation: Xiu, Hesthaven, Babuska, Nobile, Tempone, Webster ...
m ANOVA-Collocation: Ma, Zabaras, Yang, Lin, Karniadakis ...

JrShanghaiTech University, * Purdue University

Qifeng Liaot and Guang Lin*



Computational aspects of ANOVA-Collocation approximation

ANOVA-Collocation: u(z, &) ~ ul(z,€) = 3 ep uf(z, &),
uz?(xv gt) = uq(za ¢, ft) - Zsct U’S(x: gs)v
ul (2, ¢,6) == Lpw gl U (967 C@@)‘I’ w (&)

P :={Po,P1,...,Pu}

Computation challenges

Po: {0}
@ Many ANOVA terms (|P| is large) P {1,..., M}

Adaptive ANOVA (selecting important terms) iP.Q: 2 (s o250, el

m Ma, Zabaras (2010); Yang, et al. (2012) 7)];/[: {(1,2,..., M)}

@ Spatial d.o.f can be very large
(computing each collocation coefficient « (’I‘ c,gff“)) is expensive).

Reduced basis collocation:
m Elman, Liao (2013)
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Adaptive ANOVA-selecting important terms (indices)

ANOVA-Collocation:  wu(z,&) ~ ul(z,£) := 3 ep uf(z, &)

Po : {0}

Pr: {1, 2, 3, 4, 5}

P2 {(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3:4), (3,9), (4,5)}
Ps: {(1,3,5)}

Py : No 4th order terms.

Figure: A example of adaptive index selection.
Selecting criterion:
@ Relative mean value —
[[EC))]]

q
sev,\s\sm—WS)

relative-mean; :=
[=(=

m Adaptive ANOVA: Ma and Zabaras (2010); Yang, et al. (2012).
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Reduced Basis Methods for Parameter Dependent PDEs

ul(z,8) == Yiep ui (,&0),  uf (2, &) = ul(z, ¢, &) — Tocy us(2,&s),
ul (2, ¢,6t) == Letw gl U (»L Cafgk)>‘1’§§k> (&) -
o Let Bg,(+,-) = I(-) denote a weak form, and X" a FEM space.
o Seek uy(:, c,&) € XM — Be (un (-, ¢,&),v) = l(v), Yve XM
Each FEM solution uy(+, ¢,&;) is called a snapshot.

Reduced basis approximation

@ Introduce a reduced basis @ with a small size, span(Q) C X".
@ Seek u, (-, ¢, &) € span(Q) — Be (ur (-, ¢, &), v) = I(v), Yv € span(Q).

Each u, (-, ¢,&;) is called a reduced solution.

What information should @) contain, and how large is it?
o Ideally, span(Q) D {up (-, ¢,&),& € I}, (the full snapshot set).

o Size of Q = rank of {uy, (-, ¢,&),& € 111} < N7 (Ny: FEM d.o.f):

Qifeng LiaoT and Guang Lin™ JrShanghaiTech University, * Purdue University




Algebraic Issue and Error Indicator, Linear PDEs

Original finite element approximation: Ag, € RNe XN _y

Agtuh =f.

Reduced basis approximation: Q € R¥M*Nr with N, < Nj —

Q"A¢Qu, = Q"f.

Reduced basis approximation is a projection:

@ projects a large Nj X N, system to a small N, x N, system —

very cheap to solve.

To estimate the error e = u, — Qu,., we use the residual indicator:
error-indicatorg, = [|A¢, Qu, — f||.

m The cost of this residual indicator is O(N?), independent of Nj,.
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Greedy Algorithm (Patera, Boyaval, Bris, Lelievre, Maday, Nguyen,

Goal for reduced solution: u, ~ uy, < span(Q) =~ {us (-, ¢, &), & € 111},

@ SVD approach: get @ from SVD{uy (-, ¢, &), & € 111}, but may expensive
@ Greedy approach: find most important samples — Q).

Given: a set of candidate parameters x = {{;},

an initial choice &) € x, and compute the snapshot (-, ¢, ¢;"))
Initialize: Q = {w(-, c, 651))}
for each & € x

compute reduced solution u,(-, ¢, &;)

compute error-indicatore, (an error indicator for |luj — u,||)
If error-indicators> tol

compute up (-, ¢,&;), and update @ = {Q, up(-, ¢, &)}
endif

endfor

m Greedy on sparse grids: Elman and Liao (2013); Chen et al. (2015)
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Reduced bases for ANVOA-Collocation terms

ANOVA-Collocation: u(z, &) ~ ul(z,€) = 3 ep uf(z, &),
uz?(xv gt) = uq(za ¢, ft) - Zsct U’S(x: gs)v
ul (2, ¢,6) == Lpw gl U (967 c,£§k)>¢>£§k) (&) -

@ Use collocation points G)|qt| as candidate set Y.
@ Use reduced solution u, — u, := u <m, c,fik;)> whenever possible.

© Different reduced basis @; for different ¢, but use them hierarchically —

Po : {0}

Py : {1, 2, 3, 4, 5}

P : {(1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5)}
Ps - {(17375)}
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Algorithm (Reduced Basis ANOVA)

@ Start with ANOVA level i = 0, initialize the index set Py = {(}.
Q Set Qp == {un(-, )}
O Set P, ={1,...,M}.
©Q Update ANOVA level 7 =i+ 1.
@ Loop over each t € P;, i.e. |t| =i
o Initialize local reduced basis: @ := SVD{q | ¢ € Usc+ Qs }.
o For each fgk) € G)lqtl (collocation points),

(k)

compute the reduced solution u,(-, ¢,&; ) and error-indicatorg () .

If error-indicatorgw < tol, u. < ur(-, c,fgk)).

If error-indicatorg > tol, u. < up (-, c,.ﬁik)) and Q; := {Q, up}.
o Compute relative-mean;.
o If relative-mean; < tolyyova, remove the index t: P; = P; \ t.

@ Generate P; 11 based on P;, and repeat step 5 for next level ¢ = i + 1.

Qifeng LiaoT and Guang Lin™ JrShanghaiTech University, * Purdue University



Outline

© Numerical Study

Qifeng LiaoT and Guang Lin™ JrShanghaiTech University, * Purdue University



Test Problem

Diffusion equation: —V - (aVu) = f in [0, 1]
The permeability coefficient a is a random field:
@ mean function: ag(z) = 1, standard deviation: o = 0.25

@ covariance function C(z,y):

C(z,y) = o exp (—|I1 —ol_ |z _y2|),
c c

where c is the correlation length.

Parameterizing a using truncated KL expansion'
a(z,§) ~ ap(x) + Z vV Akar(2)Ek,

random vector & = (&, -+, &yy) is unlformly distributed in I = [—1, 1]/

@ Small correlation length ¢ leads to many KL terms.
@ We consider small ¢ situations (high-dimensional problems).
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correlation length
@ FEM d.o.f : Nj, = 1089
@ Directly applying reduced basis methods may not be efficient for ¢ < 0.625
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Direct combination of MC and reduced basis (for comparison)

For each MC input sample ¢,
compute reduced solution ur(-,g(k)) and error-indicatorg):
if error-indicator. ) < tol, MC sample —u(-,e®);
if error-indicatorg) > tol, MC sample —up(-,e®) and Q == {Q, up}.

Computational cost assessment model:
@ Cost unit: 1 FEM system solve.
@ Cost of a reduced system solve: N,./Ny,
(N, reduced basis size; Nj: FEM d.o.f).
@ Cost of a full MC with NV samples: N.
@ Cost of a reduced basis MC with N samples and N FEM solves:
AT
k=1
reduced basis size N, (¢£(%)) is dependent on £(¥) in the greedy procedure.
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Direct reduced MC test, for ¢ = 0.3125, M = 367; rank ~ N;, = 1089.
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For this test, comparing MC and reduced basis MC (rMC),

@ costs of the reduced basis MC are still large.
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ANOVA vs MC, for ¢ = 0.3125, M = 367; rank ~ N;, = 10809.
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For this test,

@ ANOVA has very small mean errors.
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Reduced basis ANOVA, for ¢ = 0.3125, M = 367; rank ~ N;, = 1089.
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For this test,
@ Reduced basis ANOVA (rANOVA) is very cheap.
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@ ANOVA methods have been designed to solve PDEs with

high-dimensional random inputs.
@ Many PDE solves can be involved for generating ANOVA-Collocation
approximation.

@ Our hierarchically-generated reduced bases can reduce the

computational costs of ANOVA methods.
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