Numerical Analysis of Coupled Free Flow with a Poroelastic Material

Prince Chidyagwai

Modeling and Numerical Methods for Complex Subsurface Flow

In Collaboration with Aycil Cesmelioglu (Oakland University) LOYOL

Problem Statement

Problem Statement

Solve the coupled system of the transient Stokes and fully dynamic Biot equation

• Continuous inf-sup stable elements in both flow domains

Problem Statement

- Continuous inf-sup stable elements in both flow domains
- Backward Euler discretization in time

Problem Statement

- Continuous inf-sup stable elements in both flow domains
- Backward Euler discretization in time
- Stability and error analysis for the fully discrete scheme

Problem Statement

- Continuous inf-sup stable elements in both flow domains
- Backward Euler discretization in time
- Stability and error analysis for the fully discrete scheme
- Heuristic stabilization technique for numerical oscillations in certain parameter regimes to prevent poroelastic locking

Problem Statement

Solve the coupled system of the transient Stokes and fully dynamic Biot equation

- Continuous inf-sup stable elements in both flow domains
- Backward Euler discretization in time
- Stability and error analysis for the fully discrete scheme
- Heuristic stabilization technique for numerical oscillations in certain parameter regimes to prevent poroelastic locking

Problem arises in modeling the interaction between a free fluid and a poroelastic material

Free flow

Stokes model

$$\rho_f \dot{\mathbf{u}} - \nabla \cdot \boldsymbol{\sigma}_f = \mathbf{f}_f \text{ in } \Omega_f \times (0, T]$$

$$\nabla \cdot \mathbf{u}_f = \mathbf{0} \text{ in } \Omega_f \times (0, T]$$
(1)
(2)

- \mathbf{u}_f, p_f fluid velocity and pressure, resp.
- ν_f fluid viscosity.
- **f**_f body forces acting on fluid.
- $\sigma_f = 2\nu_f D(\mathbf{u}_f) p_f \mathbf{I}$
- $\mathbf{D}(\mathbf{u}_f) = \frac{1}{2} \left(\nabla \mathbf{u}_f + (\nabla \mathbf{u}_f)^T \right)$

Poroelastic material

Biot Model

$$\rho_{s} \ddot{\eta} - \nabla \cdot \boldsymbol{\sigma}_{p} = \mathbf{f}_{s} \text{ in } \Omega_{p} \times (0, T]$$

$$(s_{0} \dot{\phi} + \alpha \nabla \cdot \dot{\boldsymbol{\eta}}) - \nabla \cdot \mathbf{K} \nabla \phi = f_{p} \text{ in } \Omega_{p} \times (0, T].$$

$$(4)$$

- η, ϕ displacement of structure and pore fluid pressure, resp.
- f_p , \mathbf{f}_s source/sink and external body force on fluid, resp
- λ_s, μ_s Lamé constants
- $s_0 > 0, K$ storage coefficient and hydraulic conductivity, resp.
- $\alpha > 0$ Biot-Willis constant
- $\sigma_p = 2\nu_s \mathbf{D}(\boldsymbol{\eta}) + \lambda_s (\nabla \cdot \boldsymbol{\eta}) \mathbf{I} \alpha \phi \mathbf{I}$

Poroelastic material

Let $\zeta=\dot{\eta}$ (the velocity of the poroelastic solid material) then: Biot Model

$$\rho_s \dot{\boldsymbol{\zeta}} - \nabla \cdot \boldsymbol{\sigma}_p \quad = \quad \mathbf{f}_s \text{ in } \Omega_p \times (0, T] \tag{5}$$

$$\eta - \dot{\zeta} = 0 \text{ in } \Omega_{
ho} \times (0, T]$$
 (6)

$$(\mathbf{s}_0 \ \dot{\phi} + \alpha \nabla \cdot \dot{\boldsymbol{\eta}}) - \nabla \cdot \mathbf{K} \nabla \phi = f_p \quad \text{in } \Omega_p \times (0, T]$$

$$(7)$$

- η, ϕ displacement of structure and pore fluid pressure, resp.
- f_p, \mathbf{f}_s source/sink and external body force on fluid, resp
- λ_s, μ_s Lamé constants
- $s_0 > 0, K$ storage coefficient and hydraulic conductivity, resp.
- $\alpha > 0$ Biot-Willis constant

•
$$\sigma_p = 2\nu_s \mathbf{D}(\boldsymbol{\eta}) + \lambda_s (\nabla \cdot \boldsymbol{\eta}) \mathbf{I} - \alpha \phi \mathbf{I}$$

Interface conditions

• Continuity of flux

$$\mathbf{u} \cdot \mathbf{n}_{\Gamma} = (\dot{\boldsymbol{\eta}} - \mathbf{K} \nabla \phi) \cdot \mathbf{n}_{\Gamma}$$
 .

• Balance of stresses

$$\boldsymbol{\sigma}_f \mathbf{n}_{\Gamma} = \boldsymbol{\sigma}_p \mathbf{n}_{\Gamma} \,,$$

• Balance of normal stresses:

$$\mathbf{n}_{\Gamma}\cdot\boldsymbol{\sigma}_{f}\mathbf{n}_{\Gamma}=-\phi\,,$$

• Beavers-Joseph Saffman condition

$$\mathbf{n}_{\Gamma} \cdot \boldsymbol{\sigma}_f \mathbf{t}_{\Gamma}^l = -eta(\mathbf{u} - \dot{\boldsymbol{\eta}}) \cdot \mathbf{t}_{\Gamma}^l, \ 1 \leq l \leq d-1$$

Weak formulation

Function spaces

 $\begin{aligned} \mathbf{X}_f &= \{ \mathbf{v} \in \mathbf{H}^1(\Omega_f) : \mathbf{v} = \mathbf{0} \text{ on } \Gamma_f \}, \quad Q_f = L^2(\Omega_f), \\ \mathbf{X}_p &= \{ \boldsymbol{\xi} \in \mathbf{H}^1(\Omega_p) : \boldsymbol{\xi} = \mathbf{0} \text{ on } \Gamma_p^1 \}, \quad Q_p = \{ r \in H^1(\Omega_p) : r = 0 \text{ on } \Gamma_p^D \}. \end{aligned}$

Stokes region bilinear forms

$$\begin{aligned} a_f(\mathbf{v}, \mathbf{w}) = & 2\nu_f(\mathbf{D}(\mathbf{u}), \mathbf{D}(\mathbf{w}))_{\Omega_f}, \forall \mathbf{v}, \mathbf{w} \in \mathbf{X}_f \\ b_f(\mathbf{v}, q_f) = & -(q_f, \nabla \cdot \mathbf{v})_{\Omega_f}, \forall \mathbf{v} \in \mathbf{X}_f, \forall q_f \in Q_f \end{aligned}$$

Biot region bilinear forms

 $\begin{aligned} \mathbf{a}_{e}(\boldsymbol{\eta},\boldsymbol{\xi}) &= (2\nu_{s}\mathbf{D}(\boldsymbol{\eta}),\mathbf{D}(\boldsymbol{\xi}))_{\Omega_{p}} + (\lambda_{s}\nabla\cdot\boldsymbol{\eta},\nabla\cdot\boldsymbol{\xi})_{\Omega_{p}}, \forall\boldsymbol{\eta},\boldsymbol{\xi}\in\mathbf{X}_{p} \\ \mathbf{b}_{e}(\boldsymbol{\xi},q_{p}) &= \alpha(q_{p},\nabla\cdot\boldsymbol{\xi})_{\Omega_{p}}, \forall\boldsymbol{\xi}\in\mathbf{X}_{p},q_{p}\in Q_{p} \\ \mathbf{a}_{d}(q_{p},\psi) &= (\mathbf{K}\nabla q_{p},\nabla\psi)_{\Omega_{p}}, \forall q_{p},\psi\in Q_{p}. \end{aligned}$

Fully coupled weak formulation

Find $(\mathbf{u}, p, \eta, \zeta, \phi) : (0, T) \rightarrow (\mathbf{X}_f \times Q_f \times \mathbf{X}_p \times \mathbf{X}_p \times Q_p)$ s.t $\forall \mathbf{v} \in \mathbf{X}_f, q \in Q_f, \xi \in \mathbf{X}_p, \tau \in \mathbf{X}_p$ and $r \in Q_p$,

$$\begin{aligned} (\rho_{f}\dot{\mathbf{u}},\mathbf{v})_{\Omega_{f}} + a_{f}(\mathbf{u},\mathbf{v}) + b_{f}(\mathbf{v},p) \\ + (\rho_{s}\zeta - \dot{\eta},\tau)_{\Omega_{p}} + (\rho_{s}\dot{\zeta},\boldsymbol{\xi})_{\Omega_{p}} + a_{e}(\eta,\boldsymbol{\xi}) - b_{e}(\boldsymbol{\xi},\phi)_{\Omega_{p}} \\ + s_{0}(\dot{\phi},r) + b_{e}(\dot{\eta},r) + a_{d}(\phi,r) \\ + \langle\phi\mathbf{n}_{\Gamma},\mathbf{v}-\boldsymbol{\xi}\rangle_{\Gamma_{I}} + \sum_{l=1}^{d-1}\langle\beta(\mathbf{u}-\dot{\eta})\cdot\mathbf{t}_{\Gamma}^{l},(\mathbf{v}-\boldsymbol{\xi})\cdot\mathbf{t}_{\Gamma}^{l}\rangle_{\Gamma_{I}} + \langle(\dot{\eta}-\mathbf{u})\cdot\mathbf{n}_{\Gamma},r\rangle_{\Gamma_{I}} \\ &= (\mathbf{f}_{f},\mathbf{v})_{\Omega_{f}} + (\mathbf{f}_{s},\boldsymbol{\xi})_{\Omega_{p}} + (f_{p},r)_{\Omega_{p}}, \end{aligned}$$

 $b_f(\mathbf{u},q)=0,$

Fully discrete coupled scheme

- $(\mathbf{X}_{f}^{h}, Q_{f}^{h})$ and $(\mathbf{X}_{p}^{h}, Q_{p}^{h})$ are the Taylor-Hood element $(\mathbb{P}_{2}, \mathbb{P}_{1})$
- Backward Euler in time on $\{t_n\}_{n=1}^N$:

$$\mathcal{D}_{\Delta t}g^n := rac{g^n - g^{n-1}}{\Delta t}$$

Fully discrete coupled scheme

(X^h_f, Q^h_f) and (X^h_p, Q^h_p) are the Taylor-Hood element (P₂, P₁)
 Backward Euler in time on {t_n}^N_{n=1}:

$$\mathcal{D}_{\Delta t}g^n := rac{g^n - g^{n-1}}{\Delta t}$$

Given $(\mathbf{u}_{h}^{0}, \eta_{h}^{0}, \zeta_{h}^{0}, \phi_{h}^{0}) \in \mathbf{X}_{f}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h} \times Q_{p}^{h}$, find $(\mathbf{u}_{h}^{n}, p_{h}^{n}, \eta_{h}^{n}, \zeta_{h}^{n}, \phi_{h}^{n}) \in \mathbf{X}_{f}^{h} \times Q_{f}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h}$, for $1 \leq n \leq N$ s.t

$$\begin{split} \rho_{f}(\mathcal{D}_{\Delta t}\mathbf{u}_{h}^{n},\mathbf{v})_{\Omega_{f}} + a_{f}(\mathbf{u}_{h}^{n},\mathbf{v}) + b_{f}(\mathbf{v},p_{h}^{n}) \\ + \rho_{s}(\zeta_{h}^{n} - \mathcal{D}_{\Delta t}\eta_{h}^{n},\tau)_{\Omega_{p}} + \rho_{s}(\mathcal{D}_{\Delta t}\zeta_{h}^{n},\boldsymbol{\xi})_{\Omega_{p}} + a_{e}(\eta_{h}^{n},\boldsymbol{\xi}) - b_{e}(\boldsymbol{\xi},\phi_{h}^{n}) \\ + s_{0}(\mathcal{D}_{\Delta t}\phi_{h}^{n},r)_{\Omega_{p}} + b_{e}(\mathcal{D}_{\Delta t}\eta_{h}^{n},r) + a_{d}(\phi_{h}^{n},r) \\ + \langle \phi_{h}^{n}\mathbf{n}_{\Gamma},\mathbf{v} - \boldsymbol{\xi} \rangle_{\Gamma_{I}} + \sum_{l=1}^{d-1} \langle \beta(\mathbf{u}_{h}^{n} - \mathcal{D}_{\Delta t}\eta_{h}^{n}) \cdot \mathbf{t}_{\Gamma}^{l}, (\mathbf{v} - \boldsymbol{\xi}) \cdot \mathbf{t}_{\Gamma}^{l} \rangle_{\Gamma_{I}} \\ + \langle (\mathcal{D}_{\Delta t}\eta_{h}^{n} - \mathbf{u}_{h}^{n}) \cdot \mathbf{n}_{\Gamma}, r \rangle_{\Gamma_{I}} = (\mathbf{f}_{f}^{n}, \mathbf{v})_{\Omega_{f}} + (\mathbf{f}_{s}^{n}, \boldsymbol{\xi})_{\Omega_{p}} + (f_{p}^{n}, r)_{\Omega_{p}}, \end{split}$$

for all $(\mathbf{v}, q, \boldsymbol{\xi}, \boldsymbol{\chi}, r) \in \mathbf{X}_{f}^{h} \times Q_{f}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h} \times Q_{p}^{h}$.

Poroelasitc locking

- The discretization of the poroelastic problem using standard finite elements leads to *non-physical oscillations* in the pore fluid pressure under
 - low permeability
 - small time steps
 - low compressibility

Poroelasitc locking

- The discretization of the poroelastic problem using standard finite elements leads to *non-physical oscillations* in the pore fluid pressure under
 - low permeability
 - small time steps
 - low compressibility
- Using *inf-sup* stable spaces diminishes the oscillations but they are not completely removed

Stabilization through Fluid Pressure Laplacian (FPL)

 Introduced by Truty and Zimmermann (2006)¹ and further analyzed by Aguilar et. al (2008)² and Rodrigo et al (2016)³

¹ A. Truty and T. Zimmermann. Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Computer Methods in Applied Mechanics and Engineering, 195(13):1517–1546, 2006

² Aguilar G., Gaspar F., Lisbona F., and Rodrigo C. Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation. International Journal for Numerical Methods in Engineering, 75(11):1282–1300, 2008, C

³C. Rodrigo, F.J. Gaspar, X. Hu, and L.T. Zikatanov. Stability and monotonicity for some discretizations of the Biotst MARLAN consolidation model. *Computer Methods in Applied Mechanics and Engineering, 298:183–204, 2016*

Stabilization through Fluid Pressure Laplacian (FPL)

- Introduced by Truty and Zimmermann (2006)¹ and further analyzed by Aguilar et. al (2008)² and Rodrigo et al (2016)³
- Stabilization technique is equivalent to adding a stabilization term

$$a_{stab}(q_p,\psi) = \epsilon rac{h^2}{\lambda_s + 2
u_s} \Big(\mathcal{D}_{\Delta t}
abla q_p,
abla \psi \Big)_{\Omega_p}, \forall q_p, \psi \in Q_p^h$$

¹ A. Truty and T. Zimmermann. Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Computer Methods in Applied Mechanics and Engineering, 195(13):1517–1546, 2006

² Aguilar G., Gaspar F., Lisbona F., and Rodrigo C. Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation. International Journal for Numerical Methods in Engineering, 75(11):1282–1300, 2008, C

³C. Rodrigo, F.J. Gaspar, X. Hu, and L.T. Zikatanov. Stability and monotonicity for some discretizations of the BYORY MANTANA consolidation model. *Computer Methods in Applied Mechanics and Engineering, 298:183–204, 2016*

Stabilization through Fluid Pressure Laplacian (FPL)

- Introduced by Truty and Zimmermann (2006)¹ and further analyzed by Aguilar et. al (2008)² and Rodrigo et al (2016)³
- Stabilization technique is equivalent to adding a stabilization term

$$a_{stab}(q_p,\psi) = \epsilon rac{h^2}{\lambda_s + 2
u_s} igg(\mathcal{D}_{\Delta t}
abla q_p,
abla \psi igg)_{\Omega_p}, orall q_p, \psi \in Q_p^h$$

- The success of this method depends on a careful choice of ϵ , however there is no technique for deriving an optimal choice in 2D.
- $\epsilon = \frac{1}{6}$ has been shown to be optimal in the 1D case (Rodrigo et al).

¹ A. Truty and T. Zimmermann. Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media. Computer Methods in Applied Mechanics and Engineering, 195(13):1517-1546, 2006

² Aguilar G., Gaspar F., Lisbona F., and Rodrigo C. Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation. International Journal for Numerical Methods in Engineering, 75(11):1282–1300, 2000 A

³C. Rodrigo, F.J. Gaspar, X. Hu, and L.T. Zikatanov. Stability and monotonicity for some discretizations of the Biogramma consolidation model. *Computer Methods in Applied Mechanics and Engineering, 298:183–204, 2016*

FPL stabilized scheme

(X^h_f, Q^h_f) and (X^h_p, Q^h_p) are the Taylor-Hood element (P₂, P₁)
 Backward Euler in time on {t_n}^N_{n=1}:

$$\mathcal{D}_{\Delta t}g^n := rac{g^n - g^{n-1}}{\Delta t}$$

Given $(\mathbf{u}_{h}^{0}, \eta_{h}^{0}, \zeta_{h}^{0}, \phi_{h}^{0}) \in \mathbf{X}_{f}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h} \times Q_{p}^{h}$, find $(\mathbf{u}_{h}^{n}, p_{h}^{n}, \eta_{h}^{n}, \zeta_{h}^{n}, \phi_{h}^{n}) \in \mathbf{X}_{f}^{h} \times Q_{f}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h}$, for $1 \leq n \leq N$ s.t

$$\begin{split} \rho_{f}(\mathcal{D}_{\Delta t}\mathbf{u}_{h}^{n},\mathbf{v})_{\Omega_{f}} + a_{f}(\mathbf{u}_{h}^{n},\mathbf{v}) + b_{f}(\mathbf{v},p_{h}^{n}) \\ + \rho_{s}(\zeta_{h}^{n} - \mathcal{D}_{\Delta t}\eta_{h}^{n},\tau)_{\Omega_{p}} + \rho_{s}(\mathcal{D}_{\Delta t}\zeta_{h}^{n},\xi)_{\Omega_{p}} + a_{e}(\eta_{h}^{n},\xi) - b_{e}(\xi,\phi_{h}^{n}) \\ + s_{0}(\mathcal{D}_{\Delta t}\phi_{h}^{n},r)_{\Omega_{p}} + b_{e}(\mathcal{D}_{\Delta t}\eta_{h}^{n},r) + a_{d}(\phi_{h}^{n},r) + \overline{a_{stab}(\phi_{h}^{n},r)} \\ + \langle \phi_{h}^{n}\mathbf{n}_{\Gamma},\mathbf{v}-\xi\rangle_{\Gamma_{I}} + \Sigma_{I=1}^{d-1}\langle\beta(\mathbf{u}_{h}^{n} - \mathcal{D}_{\Delta t}\eta_{h}^{n})\cdot\mathbf{t}_{\Gamma}^{I},(\mathbf{v}-\xi)\cdot\mathbf{t}_{\Gamma}^{I}\rangle_{\Gamma_{I}} \\ + \langle(\mathcal{D}_{\Delta t}\eta_{h}^{n} - \mathbf{u}_{h}^{n})\cdot\mathbf{n}_{\Gamma},r\rangle_{\Gamma_{I}} = (\mathbf{f}_{f}^{n},\mathbf{v})_{\Omega_{f}} + (\mathbf{f}_{s}^{n},\xi)_{\Omega_{p}} + (\mathbf{f}_{p}^{n},r)_{\Omega_{p}}, \end{split}$$

for all $(\mathbf{v}, q, \boldsymbol{\xi}, \boldsymbol{\chi}, r) \in \mathbf{X}_{f}^{h} \times Q_{f}^{h} \times \mathbf{X}_{p}^{h} \times \mathbf{X}_{p}^{h} \times Q_{p}^{h}$.

Stability

Let

$$E(\mathbf{v}, \boldsymbol{\eta}, \boldsymbol{\zeta}, \boldsymbol{\phi}) := \frac{\rho_f}{2} \|\mathbf{v}\|_{\Omega_f}^2 + \nu_s \|\mathbf{D}\boldsymbol{\eta}\|_{\Omega_p}^2 + \frac{\lambda_s}{2} \|\nabla \cdot \boldsymbol{\eta}\|_{\Omega_p}^2 + \frac{\rho_s}{2} \|\boldsymbol{\zeta}\|_{\Omega_p}^2 + \frac{s_0}{2} \|\boldsymbol{\phi}\|_{\Omega_p}^2$$
$$\|(\mathbf{v}, \boldsymbol{\phi})\|_{\mathbf{X}_f \times Q_p} := \left(2\nu_f \|\mathbf{D}\mathbf{v}\|_{\Omega_f}^2 + \|\mathbf{K}^{1/2} \nabla \boldsymbol{\phi}\|_{\Omega_p}^2\right)^{1/2}.$$

Assume that $\mathbf{f}_s = \mathbf{0}$, $\mathbf{u}_h^0 = \mathbf{0}$, $\boldsymbol{\eta}_h^0 = \mathbf{0}$, $\boldsymbol{\zeta}_h^0 = \mathbf{0}$ and $\phi_h^0 = 0$. Suppose that $\{(\mathbf{u}_h^k, p_h^k, \boldsymbol{\eta}_h^k, \phi_h^k)\}_{1 \le k \le N}$ is the solution at time step k. Then, for all $1 \le k \le N$,

$$E(\mathbf{u}_h^k, \boldsymbol{\eta}_h^k, \boldsymbol{\zeta}_h^k, \boldsymbol{\phi}_h^k) + \Delta t \sum_{i=1}^k \|(\mathbf{u}_h^i, \boldsymbol{\phi}_h^i)\|_{\mathbf{X}_f \times Q_p}^2 \leq \Delta t \mathcal{C}_k^2$$

where $\ensuremath{\mathcal{C}}$ depends on data and Sobolev inequality constants.

Convergence analysis

- $\Omega_f = (0,1) \times (1,2)$ and $\Omega_p = (0,1) \times (0,1)$ with $\Gamma_I = (0,1) \times \{1\}$.
- Stokes velocity and displacement: Dirichlet boundary on Γ_f and on Γ_p
- Darcy pore fluid pressure: Neumann on $\Gamma_p^N = \{0, 1\} \times (0, 1)$ and Dirichlet on $\Gamma_p^D = (0, 1) \times \{0\}$.
- Parameters: $\rho_f, \nu_f, \rho_s, \nu_s, \lambda_s, s_0, \alpha, \beta = 1$ and $\mathbf{K} = \mathbb{I}$
- Manufactured smooth solution: ⁴

$$\begin{aligned} \mathbf{u}(\mathbf{x},t) &= \left(\pi\cos(\pi t)(-3.0x+\cos(\pi y)),\pi\cos(\pi t)(y+1.0)\right),\\ p(\mathbf{x},t) &= e^t\sin(\pi x)\cos(\pi y)+2.0\pi\cos(\pi t),\\ \eta(\mathbf{x},t) &= \left(\sin(\pi t)(-3.0x+\cos(\pi y)),\sin(\pi t)(y+1.0)\right),\\ \phi(\mathbf{x},t) &= e^t\sin(\pi x)\cos(\pi y). \end{aligned}$$

⁴I. Ambartsumyan, E. Khattatov, I. Yotov, and P. Zunino. A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model. *Numerische Mathematik*, Apr 2018

Convergence analysis: Spatial errors in Ω_f

h	$ p - p_h _{\Omega_f}$	rate	$ \mathbf{u} - \mathbf{u}_h _{\Omega_f}$	rate	$ \mathbf{D}(\mathbf{u}-\mathbf{u}_h) _{\Omega_f}$	rate
$\frac{1}{2}$	3.327 <i>e</i> – 01		4.113 <i>e</i> - 02		4.744e - 01	
<u>1</u> 4	5.652 <i>e</i> - 02	2.55	5.445 <i>e</i> - 03	2.91	1.164e - 01	2.02
18	1.149e - 02	2.29	7.050 <i>e</i> - 04	2.95	2.852 <i>e</i> - 02	2.03
$\frac{1}{16}$	2.693 <i>e</i> - 03	2.09	8.951 <i>e</i> - 05	2.96	7.089 <i>e</i> - 03	2.00
$\frac{1}{32}$	6.761 <i>e</i> - 04	2.00	1.122e - 05	3.00	1.772e - 03	2.00

Errors and spatial convergence rates in Ω_f with $T = 10^{-4}$ and $\Delta t = 10^{-6}$.

Convergence analysis: Spatial errors in Ω_p

h	$ \phi - \phi_h _{\Omega_p}$	rate	$ \nabla(\phi - \phi_h) _{\Omega_p}$	rate	$ D(\boldsymbol{\eta} - \boldsymbol{\eta}_h) _{\Omega_p}$	rate
$\frac{1}{2}$	2.113e - 01		1.998e+00		4.792 <i>e</i> - 05	
$\frac{1}{4}$	3.649 <i>e</i> - 02	2.54	9.382 <i>e</i> - 01	1.09	1.175 <i>e</i> — 05	2.02
1/8	7.530 <i>e</i> - 03	2.28	4.469e - 01	1.06	2.879 <i>e</i> - 06	2.02
$\frac{1}{16}$	1.734e - 03	2.12	2.199e - 01	1.02	7.129e - 07	2.01
$\frac{1}{32}$	4.185 <i>e</i> - 04	2.05	1.093e - 01	1.01	1.780e - 07	2.00

Errors and spatial convergence rates in Ω_p with $T = 10^{-4}$ and $\Delta t = 10^{-6}$.

$ oldsymbol{\zeta}-oldsymbol{\zeta}_h _{\Omega_p}$	rate
4.078 <i>e</i> - 02	
5.426 <i>e</i> - 03	2.91
7.035 <i>e</i> – 04	2.94
8.937 <i>e</i> – 05	2.97
1.130e - 05	2.98

Errors and spatial convergence rates in Ω_{ρ} with $T = 10^{-4}$ and $\Delta t = 10^{-6}$.

Convergence analysis: Temporal errors in Ω_f

Δt	$ p_{h,\Delta t} - p_{h,\frac{\Delta t}{2}} _{\Omega_f}$	rate	$ \mathbf{u}_{h,\Delta t} - \mathbf{u}_{h,\frac{\Delta t}{2}} _{\Omega_f}$	rate
$\frac{1}{16}$	1.032e + 00		1.677 <i>e</i> - 02	
$\frac{1}{32}$	5.353 <i>e</i> - 01	0.94	8.767 <i>e</i> - 03	0.94
$\frac{2}{64}$	2.729e - 01	0.97	4.495 <i>e</i> - 03	0.96
$\frac{1}{128}$	1.378e - 01	0.99	2.272e - 03	0.98
$\frac{1}{256}$	6.922e - 02	1.00	1.140e - 03	0.99

Errors and temporal convergence rates in Ω_f with T = 1.0 and $h = \frac{1}{16}$.

$ \mathbf{D}(\mathbf{u}_{h,\Delta t} - \mathbf{u}_{h,\frac{\Delta t}{2}}) _{\Omega_f}$	rate
1.022e - 01	
5.425e - 02	0.91
2.810e - 02	0.94
1.428e - 02	0.98
7.187 <i>e</i> - 03	1.00

Errors and temporal convergence rates in Ω_f with T = 1.0 and $h = \frac{1}{16}$.

Convergence analysis: Temporal errors in Ω_p

Δt	$ \phi_{h,\Delta t} - \phi_{h,\Delta t} _{\Omega_p}$	rate	$ \mathbf{D}(\boldsymbol{\eta}_{h,\Delta t}-\boldsymbol{\eta}_{h,\frac{\Delta t}{2}}) _{\Omega_{p}}$	rate
$\frac{1}{16}$	2.043e - 01		1.784e - 01	
$\frac{10}{32}$	1.105e - 01	0.89	1.118e - 01	0.67
$\frac{31}{64}$	5.762 <i>e</i> - 02	0.93	6.377 <i>e</i> - 02	0.80
$\frac{1}{128}$	2.943e - 02	0.96	3.427 <i>e</i> - 02	0.90
256	1.487 <i>e</i> - 02	0.98	1.780e - 02	0.95

Errors and temporal convergence rates in Ω_p with T=1.0 and $h=rac{1}{16}$.

$ oldsymbol{\zeta}_{h,\Delta t}-oldsymbol{\zeta}_{h,rac{\Delta t}{2}} _{\Omega_{oldsymbol{ ho}}}$	rate
4.121e - 01	
2.354e - 01	0.81
1.274e - 01	0.87
6.656 <i>e</i> - 02	0.94
3.407 <i>e</i> - 02	0.97

Errors and temporal convergence rates in Ω_p with T = 1.0 and $h = \frac{1}{16}$.

Convergence analysis: Ω_f

h	$ p - p_h _{\Omega_f}$	rate	$ \mathbf{u} - \mathbf{u}_h _{\Omega_f}$	rate	$ \mathbf{D}(\mathbf{u}-\mathbf{u}_h) _{\Omega_f}$	rate
$\frac{1}{4}$	2.110e + 00		3.334 <i>e</i> - 02		2.342e - 01	
18	5.461e - 01	1.95	8.717 <i>e</i> - 03	1.94	6.208 <i>e</i> - 02	1.91
$\frac{\tilde{I}}{16}$	1.377 <i>e</i> - 01	1.99	2.200 <i>e</i> - 03	1.99	1.574 <i>e</i> - 02	1.97
10 32	3.448 <i>e</i> - 02	2.00	5.499 <i>e</i> - 04	2.00	3.940 <i>e</i> - 03	2.00
$\frac{1}{64}$	8.623 <i>e</i> - 03	2.00	1.373e - 04	2.00	9.845 <i>e</i> - 04	2.00

Errors and convergence rates in Ω_f with T = 1.0 and $\Delta t = h^2$.

Convergence analysis: Ω_p

h	$ \phi - \phi_h _{\Omega_p}$	rate	$ abla(\phi-\phi_h) _{\Omega_p}$	rate	$ D(\boldsymbol{\eta} - \boldsymbol{\eta}_h) _{\Omega_p}$	rate
$\frac{1}{4}$	4.347 <i>e</i> - 01		2.498e + 00		4.252 <i>e</i> - 01	
$\frac{1}{8}$	1.181e - 01	1.88	1.200e + 00	1.05	1.351e - 01	1.65
$\frac{1}{16}$	3.023 <i>e</i> - 02	1.97	5.946e - 01	1.01	3.632 <i>e</i> - 02	1.89
$\frac{1}{32}$	7.602 <i>e</i> - 03	1.99	2.966e - 01	1.00	9.260 <i>e</i> - 03	1.97
$\frac{1}{64}$	1.903e - 03	2.00	1.482e - 01	1.00	2.326 <i>e</i> - 03	2.00

Errors and convergence rates in Ω_p with T = 1.0 and $\Delta t = h^2$.

$ oldsymbol{\zeta}-oldsymbol{\zeta}_h _{\Omega_p}$	rate
9.053 <i>e</i> - 01	
2.622 <i>e</i> - 01	1.79
6.856 <i>e</i> - 02	1.93
1.735 <i>e</i> – 02	1.98
4.351 <i>e</i> - 03	2.00

Errors and convergence rates in Ω_p with T = 1.0 and $\Delta t = h^2$.

Free flow over clamped a poroelastic material

• Computational Domain : $\Omega = \Omega_f \cup \Omega_p$

 $\Omega_f = (0,1) \times (1,2) \text{ and } \Omega_\rho = (0,1) \times (0,1) \text{ and } \Gamma_I = (0,1) \times \{1\}$

• Ω_f: Stokes velocity boundary

$$\mathbf{u}(x,y) = \begin{cases} (0,-10^{-2}\sin(\pi x))^T & \text{if } y = 2\\ (0,0)^T & \text{if } x = 0,1 \end{cases}$$

Free flow over clamped a poroelastic material

• Computational Domain : $\Omega = \Omega_f \cup \Omega_p$

 $\Omega_f = (0,1) \times (1,2) \text{ and } \Omega_\rho = (0,1) \times (0,1) \text{ and } \Gamma_I = (0,1) \times \{1\}$

• Ω_f: Stokes velocity boundary

$$\mathbf{u}(x,y) = \begin{cases} (0,-10^{-2}\sin(\pi x))^T & \text{if } y = 2\\ (0,0)^T & \text{if } x = 0,1. \end{cases}$$

• Ω_p : Pore pressure boundary

$$\phi = g_D(x, y) \text{ on } \Gamma_p^D$$

Ω_p: Displacement boundary

$$\begin{split} \Gamma_{\rho} &= \Gamma_{\rho}^{1} \cup \Gamma_{\rho}^{2} \text{ where } \Gamma_{\rho}^{1} \text{ is the left boundary } (x = 0) \text{ and } \Gamma_{\rho}^{2} \text{ is the rest} \\ \boldsymbol{\eta} &= \boldsymbol{0} \text{ on } \Gamma_{\rho}^{1} \times (0, T], \\ \boldsymbol{\sigma}_{\rho} \cdot \boldsymbol{n}_{\rho} &= \boldsymbol{0} \text{ on } \Gamma_{\rho}^{2} \times (0, T], \end{split}$$

Free flow over a clamped poroelastic material

• Material parameters and source functions Ω_f :

$$\rho_f = 1.0, \quad \nu_f = 1.0, \quad \mathbf{f}_f = \mathbf{0}$$

 Ω_p :⁵

$$\begin{split} \rho_f &= 1.0, \quad \nu_f = 1.0, \quad \mathbf{f}_f = \mathbf{0}, \quad \alpha = 1.0, \quad \rho_s = 2.0, \quad \nu_s = 3.57 \times 10^3, \\ \lambda_s &= 1.4 \times 10^4, \quad s_0 = 1.0 \times 10^{-5}, \quad \beta = \frac{1.0}{\sqrt{\kappa}} \text{ where } \mathbf{K} = \kappa \mathbf{I} \\ \mathbf{K} &= 10^{-7} \mathbb{I}, \quad \mathbf{f}_s = \mathbf{0}, \quad f_\rho = 0 \end{split}$$

• Initial conditions

$$\mathbf{u}=oldsymbol{\eta}=oldsymbol{\zeta}=oldsymbol{0}, \quad \phi=\mathbf{0}$$

⁵M. Wheeler, G. Xue, and I. Yotov. *Coupling multipoint flux mixed finite element methods with continuous Gale Klint Matter methods for porcelasticity*. Comp Geosci, 18(1):5775, Feb 2014

Free flow over a clamped poroelastic material

23

Transient behavior

$$g_{\rm D}(x, y) = 0$$
 on Γ_p^D and set $\mathbf{K} = 10^{-7} \mathbb{I}$ in Ω_p
 $\Delta t = 5.0 \times 10^{-3}$ on unstructured mesh

24

Norm velocity at T = 5.0

Displacement vector field at T = 5.0

Effect of permeability on pressure and velocity

Effect of permeability on displacement

$$\begin{split} g_{\mathrm{D}}(x,y) &= 0 \ \mathrm{on} \ \Gamma^{D}_{p}, \quad \mathbf{K} = 10^{-2} \mathbb{I} \ \mathrm{(top)} \ , \quad \mathbf{K} = 10^{-7} \mathbb{I} \ \mathrm{(bottom)} \\ \Delta t &= 5.0 \times 10^{-3} \ \mathrm{on} \ \mathrm{unstructured} \ \mathrm{mesh} \end{split}$$

Transient behavior T=1 (top) T=5 (middle) T= 10 (bottom)

Conclusion

- Presented a fully coupled scheme for the coupled Stokes-Biot equations
- Numerical study of convergence for smooth problems
- Fluid Pressure Laplacian stabilization technique removes unphysical oscillations for realistic material parameters

