Communication Lower Bounds for Matricized-Tensor Times Khatri-Rao Product

Grey Ballard, Nick Knight, Kathryn Rouse

WAKe Forest

U N I V E R S I T Y

July 13, 2017

SIAM Annual Meeting
MS76: Communication-Avoiding Algorithms

Summary

- We apply the communication lower bound approach for general loop nests to a particular tensor computation: matricized-tensor times Khatri-Rao product (MTTKRP)
- establishing lower bounds for sequential and parallel cases
- We present optimal algorithms for dense tensors
- separate algorithms for sequential and parallel cases
- they attain the lower bounds to within constant factors
- We compare with MTTKRP via matrix multiplication
- new algorithms may perform more computation
- they can perform less communication

Tensors

Notation convention: vector \mathbf{v}, matrix \mathbf{M}, tensor \mathcal{X}

Fibers

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers

A tensor can be decomposed into the fibers of each mode (fibers are vectors - fix all indices but one)

Matricized Tensors

$$
\begin{aligned}
& \mathbf{X}_{(1)}=\left[\begin{array}{llll}
1 & 3 & 5 & 7 \\
2 & 4 & 6 & 8
\end{array}\right] \\
& \mathbf{X}_{(2)}=\left[\begin{array}{llll}
1 & 2 & 5 & 6 \\
3 & 4 & 7 & 8
\end{array}\right] \\
& \mathbf{X}_{(3)}=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]
\end{aligned}
$$

A tensor can be reshaped into a matrix, called a matricized tensor or unfolding, for a given mode, where each column is a fiber

CP Decomposition: sum of outer products

Matrix: $\quad \mathbf{M} \approx \sum_{r=1}^{R} \mathbf{u}_{r}\left(\sigma_{r} \mathbf{v}_{r}^{T}\right)$

Tensor: $\quad \boldsymbol{X} \approx \sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r} \circ \mathbf{w}_{r}$

This is known as the CANDECOMP or PARAFAC or canonical polyadic or CP decomposition

CP Optimization Problem

For fixed rank R, we want to solve

$$
\min _{\mathbf{U}, \mathbf{V}, \mathbf{W}}\left\|\mathcal{X}-\sum_{r=1}^{R} \mathbf{u}_{r} \circ \mathbf{v}_{r} \circ \mathbf{w}_{r}\right\|
$$

which is a nonlinear, nonconvex optimization problem

- in the matrix case, the SVD gives us the optimal solution
- in the tensor case, need iterative optimization scheme

Alternating Least Squares (ALS)

Fixing all but one factor matrix, we have a linear LS problem:

$$
\min _{\mathbf{v}}\left\|x-\sum_{r=1}^{R} \hat{\mathbf{u}}_{r} \circ \mathbf{v}_{r} \circ \hat{\mathbf{w}}_{r}\right\|
$$

or equivalently

$$
\min _{\mathbf{V}}\left\|\mathbf{X}_{(2)}-\mathbf{V}(\hat{\mathbf{W}} \odot \hat{\mathbf{U}})^{\top}\right\|_{F}
$$

\odot is the Khatri-Rao product, a column-wise Kronecker product
ALS works by alternating over factor matrices, updating one at a time by solving the corresponding linear LS problem

CP-ALS

Repeat

(c) Solve $\mathbf{U}\left(\mathbf{V}^{\top} \mathbf{V} * \mathbf{W}^{\top} \mathbf{W}\right)=\mathbf{X}_{(1)}(\mathbf{W} \odot \mathbf{V})$ for \mathbf{U}
(2) Solve $\mathbf{V}\left(\mathbf{U}^{\top} \mathbf{U} * \mathbf{W}^{\top} \mathbf{W}\right)=\mathbf{X}_{(2)}(\mathbf{W} \odot \mathbf{U})$ for \mathbf{V}
(3) Solve $\mathbf{W}\left(\mathbf{U}^{\boldsymbol{\top}} \mathbf{U} * \mathbf{V}^{\boldsymbol{\top}} \mathbf{V}\right)=\mathbf{X}_{(3)}(\mathbf{V} \odot \mathbf{U})$ for \mathbf{W}

Linear least squares problems solved via normal equations using identity $(\mathbf{A} \odot \mathbf{B})^{\top}(\mathbf{A} \odot \mathbf{B})=\mathbf{A}^{\top} \mathbf{A} * \mathbf{B}^{\top} \mathbf{B}$, where $*$ is element-wise product

All optimization schemes that compute the gradient must also compute MTTKRP in all modes

MTTKRP via Matrix Multiplication

MTTKRP: $\quad \mathbf{M}=\mathbf{X}_{(2)}(\mathbf{W} \odot \mathbf{U})$

Standard approach to MTTKRP for dense tensors
(1) "form" matricized tensor (a matrix)
(2) compute Khatri-Rao product (a matrix)
(0) call matrix-matrix multiplication

We'll consider alternative approaches that don't form explicit Khatri-Rao product

MTTKRP for 3-way Tensors

Matrix equation:

$$
\mathbf{M}=\mathbf{X}_{(2)}(\mathbf{W} \odot \mathbf{U})
$$

Element equation:

$$
m_{j r}=\sum_{i=1}^{l} \sum_{k=1}^{K} x_{i j k} u_{i r} w_{k r}
$$

Example pseudocode:

$$
\begin{aligned}
& \text { for } i=1 \text { to } I \text { do } \\
& \text { for } j=1 \text { to } J \text { do } \\
& \text { for } k=1 \text { to } K \text { do } \\
& \quad \text { for } r=1 \text { to } R \text { do } \\
& \quad \mathbf{M}(j, r)+=X(i, j, k) \cdot \mathbf{U}(i, r) \cdot \mathbf{W}(k, r)
\end{aligned}
$$

MTTKRP for N-way Tensors

Matrix equation:

$$
\mathbf{M}^{(n)}=\mathbf{X}_{(n)}\left(\mathbf{U}^{(N)} \odot \cdots \odot \mathbf{U}^{(n+1)} \odot \mathbf{U}^{(n-1)} \odot \cdots \odot \mathbf{U}^{(1)}\right)
$$

Element equation:

$$
m_{i_{n} r}^{(n)}=\sum x_{i_{1} \ldots i_{N}} \prod_{m \neq n} u_{i_{m} r}^{(m)}
$$

Example pseudocode:

$$
\begin{aligned}
& \text { for } i_{1}=1 \text { to } I_{1} \text { do } \\
& \qquad \quad \begin{array}{l}
\quad \text { for } i_{N}=1 \text { to } I_{N} \text { do } \\
\quad \text { for } r=1 \text { to } R \text { do } \\
\quad \mathbf{M}^{(n)}\left(i_{n}, r\right)+=X\left(i_{1}, \ldots, i_{N}\right) \cdot \mathbf{U}^{(1)}\left(i_{1}, r\right) \cdots \mathbf{U}^{(N)}\left(i_{N}, r\right)
\end{array}
\end{aligned}
$$

Lower Bounds for MTTKRP

MTTKRP is a set of nested loops that accesses arrays...
... we just learned how to prove communication lower bounds!

From Nick's talk...

- tabulate how the arrays are accessed
- use Hölder-Brascamp-Lieb-type inequality in LB proof
- solve linear program to get tightest lower bound
- details in [CDK $\left.{ }^{+} 13\right]$

MTTKRP Loop Nest

for $i_{1}=1$ to l_{1} do
for $i_{N}=1$ to I_{N} do for $r=1$ to R do

$$
\mathbf{M}^{(n)}\left(i_{n}, r\right)+=X\left(i_{1}, \ldots, i_{N}\right) * \mathbf{U}^{(1)}\left(i_{1}, r\right) * \cdots * \mathbf{U}^{(N)}\left(i_{N}, r\right)
$$

$\Delta=$| | i_{1} | \cdots | i_{n} | \cdots | i_{N} | r |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{U}^{(1)}$ | 1 | | | | |
| \vdots | | \ddots | | | | \vdots |
| $\mathbf{M}^{(n)}$ | | | 1 | | | 1 |
| \vdots | | | | \ddots | | \vdots |
| | $\mathbf{U}^{(N)}$ | | | | | 1 |
| x | 1 | \cdots | 1 | \cdots | 1 | |

MTTKRP Lower Bound Proofs

- Lower bound argument follows [CDK+13] almost directly
- solve linear program involving Δ for tightest bound

MTTKRP Lower Bound Proofs

- Lower bound argument follows [CDK+13] almost directly
- solve linear program involving Δ for tightest bound
- One gotcha: the number of nested loops is not constant
- LB becomes too low by a factor of $O(N)$ (number of loops)
- Fixed using a technique similar to one used for tightening the constant in matrix multiplication lower bound [SvdG17]

MTTKRP Lower Bound Proofs

- Lower bound argument follows [CDK+13] almost directly
- solve linear program involving Δ for tightest bound
- One gotcha: the number of nested loops is not constant
- LB becomes too low by a factor of $O(N)$ (number of loops)
- Fixed using a technique similar to one used for tightening the constant in matrix multiplication lower bound [SvdG17]
- Key assumption: algorithm is not allowed to pre-compute and re-use temporary values
- e.g., forming explicit Khatri-Rao product

MTTKRP Lower Bound Proofs

- Lower bound argument follows [CDK+13] almost directly
- solve linear program involving Δ for tightest bound
- One gotcha: the number of nested loops is not constant
- LB becomes too low by a factor of $O(N)$ (number of loops)
- Fixed using a technique similar to one used for tightening the constant in matrix multiplication lower bound [SvdG17]
- Key assumption: algorithm is not allowed to pre-compute and re-use temporary values
- e.g., forming explicit Khatri-Rao product
- Also used inspiration from memory-independent LBs for matrix multiplication $\left[\mathrm{BDH}^{+} 12, \mathrm{DEF}^{+} 13\right]$ for parallel case

Sequential Communication Lower Bound

Theorem

For sufficiently large I, any sequential MTTKRP algorithm performs at least

$$
\Omega\left(\frac{N I R}{M^{1-1 / N}}\right)
$$

loads and stores to/from slow memory.

- N is the number of modes
- I is the number of tensor entries
- R is the rank of the CP model
- M is the size of the fast memory

Communication-Optimal Sequential Algorithm (3D)

(1) Loop over $b \times \cdots \times b$ blocks of the tensor

Communication-Optimal Sequential Algorithm (3D)

(1) Loop over $b \times \cdots \times b$ blocks of the tensor
(2) With block in memory, loop over subcolumns of input factor matrices, updating corresponding subcolumn of output matrix

- choose $b \approx M^{1 / N}$

Theoretical Comparisons

	Lower Bound	New Algorithm	Standard (MM)
Flops	-	$N I R$	$2 I R$
Words	$\Omega\left(\frac{N I R}{M^{1-1 / N}}\right)$	$O\left(I+\frac{N I R}{M^{1-1 / N}}\right)$	$O\left(I+\frac{I R}{M^{1 / 2}}\right)$
Temp Mem	-	-	$\frac{I R}{I_{n}}$

Theoretical Comparisons

	Lower Bound	New Algorithm	Standard (MM)
Flops	-	$N I R$	$2 I R$
Words	$\Omega\left(\frac{N I R}{M^{1-1 / N}}\right)$	$O\left(I+\frac{N I R}{M^{1-1 / N}}\right)$	$O\left(I+\frac{I R}{M^{1 / 2}}\right)$
Temp Mem	-	-	$\frac{I R}{I_{n}}$

- New algorithm performs $N / 2$ more flops than standard
- For relatively small R, I term dominates communication
- we expect this to be the typical case in practice
- For relatively large R, new algorithm communicates less
- better exponent on M

Parallel Communication Lower Bound

Theorem

Any parallel MTTKRP algorithm involving a tensor with $I_{k}=I^{1 / N}$ for all k and that evenly distributes one copy of the input and output performs at least

$$
\Omega\left(\left(\frac{N I R}{P}\right)^{\frac{N}{2 N-1}}+N R\left(\frac{I}{P}\right)^{1 / N}\right)
$$

sends and receives. (Either term can dominate.)

- N is the number of modes
- l is the number of tensor entries
- I_{k} is the dimension of the k th mode
- R is the rank of the CP model
- P is the number of processors

Communication-Optimal Parallel Algorithm (3D)

Each processor

(1) Starts with one subtensor and subset of rows of each input factor matrix

Communication-Optimal Parallel Algorithm (3D)

Each processor

(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}^{(1)}$

Communication-Optimal Parallel Algorithm (3D)

Each processor

(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}^{(1)}$
(3) All-Gathers all the rows needed from $\mathbf{U}^{(3)}$

Communication-Optimal Parallel Algorithm (3D)

Each processor

(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}^{(1)}$
(3) All-Gathers all the rows needed from $\mathbf{U}^{(3)}$
(4) Computes its contribution to rows of $\mathbf{M}^{(2)}$ (local MTTKRP)

Communication-Optimal Parallel Algorithm (3D)

Each processor

(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}^{(1)}$
(3) All-Gathers all the rows needed from $\mathbf{U}^{(3)}$
(4) Computes its contribution to rows of $\mathbf{M}^{(2)}$ (local MTTKRP)

Communication-Optimal Parallel Algorithm (3D)

Each processor

(1) Starts with one subtensor and subset of rows of each input factor matrix
(2) All-Gathers all the rows needed from $\mathbf{U}^{(1)}$
(3) All-Gathers all the rows needed from $\mathbf{U}^{(3)}$
(4) Computes its contribution to rows of $\mathbf{M}^{(2)}$ (local MTTKRP)
(5) Reduce-Scatters to compute and distribute $\mathbf{M}^{(2)}$ evenly

Theoretical Comparisons

	Lower Bound	New Algorithm	Standard (MM)
Words ("small" P)	$\Omega\left(N R\left(\frac{l}{P}\right)^{1 / N}\right)$	$O\left(N R\left(\frac{l}{P}\right)^{1 / N}\right)$	$O\left(I^{1 / N} R\right)$

- For relatively small P (or small R) and even dimensions, parallel algorithm attains lower bound
- Comparison with matrix multiplication from [DEF ${ }^{+13}$]
- ignores parallel cost of forming Khatri-Rao product

Theoretical Comparisons

	Lower Bound	New Algorithm	Standard (MM)
Words ("small" $P)$	$\Omega\left(N R\left(\frac{I}{P}\right)^{1 / N}\right)$	$O\left(N R\left(\frac{I}{P}\right)^{1 / N}\right)$	$O\left(I^{1 / N} R\right)$
Words ("large" $P)$	$\Omega\left(\left(\frac{N I R}{P}\right)^{\frac{N}{2 N-1}}\right)$	$O\left(\left(\frac{N I R}{P}\right)^{\frac{N}{2 N-1}}\right)$	$O\left(\left(\frac{I R}{P}\right)^{2 / 3}\right)$

- For relatively small P (or small R) and even dimensions, parallel algorithm attains lower bound
- Comparison with matrix multiplication from [DEF $\left.{ }^{+} 13\right]$
- ignores parallel cost of forming Khatri-Rao product
- For larger P (or R), then we need different algorithm
- also parallelize over columns of output matrix
- involves communicating the tensor

Summary

- We apply the communication lower bound approach for general loop nests to a particular tensor computation: matricized-tensor times Khatri-Rao product (MTTKRP)
- establishing lower bounds for sequential and parallel cases
- We present optimal algorithms for dense tensors
- separate algorithms for sequential and parallel cases
- they attain the lower bounds to within constant factors
- We compare with MTTKRP via matrix multiplication
- new algorithms may perform more computation
- they can perform less communication

What about lower bounds for...

- all N MTTKRPs?
- in sequence, as in CP-ALS
- all at once, as in gradient-based methods
- partial MTTKRPs and multi-TTVs?
- MTTKRP methods that violate key assumption
- [PTC13, KU16, LCP ${ }^{+}$17]
- other tensor computations like tensor-times-matrix?
- useful for Tucker decomposition

We believe the same lower bound framework will work, still working out the details

References

G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz.

Brief announcement: strong scaling of matrix multiplication algorithms and memory-independent communication lower bounds.
In Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '12, pages 77-79, New York, NY, USA, June 2012. ACM.
M. Christ, J. Demmel, N. Knight, T. Scanlon, and K. Yelick.

Communication lower bounds and optimal algorithms for programs that reference arrays - part 1.
Technical Report UCB/EECS-2013-61, EECS Department, University of California, Berkeley, May 2013.
J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger.

Communication-optimal parallel recursive rectangular matrix multiplication.
In Proceedings of the 27th IEEE International Symposium on Parallel and Distributed Processing, IPDPS
'13, pages 261-272, 2013.
Oguz Kaya and Bora Uçar.
Parallel CP decomposition of sparse tensors using dimension trees.
Research Report RR-8976, Inria - Research Centre Grenoble - Rhône-Alpes, November 2016.
J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc.

Model-driven sparse CP decomposition for higher-order tensors.
In IEEE International Parallel and Distributed Processing Symposium, IPDPS, pages 1048-1057, May 2017.
Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki.
Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations.
IEEE Transactions on Signal Processing, 61(19):4834-4846, Oct 2013.
Tyler Michael Smith and Robert A. van de Geijn.
Pushing the bounds for matrix-matrix multiplication.
Technical Report 1702.02017, arXiv, 2017.

