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Summary

We apply the communication lower bound approach for
general loop nests to a particular tensor computation:
matricized-tensor times Khatri-Rao product (MTTKRP)

establishing lower bounds for sequential and parallel cases

We present optimal algorithms for dense tensors
separate algorithms for sequential and parallel cases
they attain the lower bounds to within constant factors

We compare with MTTKRP via matrix multiplication
new algorithms may perform more computation
they can perform less communication
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Tensors

Vector 
N = 1 

Matrix 
N = 2 

3rd-Order Tensor 
N = 3 

4th-Order Tensor 
N = 4 

5th-Order Tensor 
N = 5 

An N th-order tensor has N modes
Notation convention: vector v, matrix M, tensor X
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Fibers

Mode-1 Fibers Mode-2 Fibers Mode-3 Fibers 

A tensor can be decomposed into the fibers of each mode
(fibers are vectors – fix all indices but one)
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Matricized Tensors

A tensor can be reshaped into a matrix,
called a matricized tensor or unfolding, for a given mode,

where each column is a fiber
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CP Decomposition: sum of outer products

Matrix: M ≈
R∑

r=1

ur (σr vT
r )

Tensor: X ≈
R∑

r=1

ur ◦ vr ◦ wr

This is known as the CANDECOMP or PARAFAC or
canonical polyadic or CP decomposition
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CP Optimization Problem

For fixed rank R, we want to solve

min
U,V,W

∥∥∥∥∥X−
R∑

r=1

ur ◦ vr ◦ wr

∥∥∥∥∥
which is a nonlinear, nonconvex optimization problem

in the matrix case, the SVD gives us the optimal solution

in the tensor case, need iterative optimization scheme
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Alternating Least Squares (ALS)

Fixing all but one factor matrix, we have a linear LS problem:

min
V

∥∥∥∥∥X−
R∑

r=1

ûr ◦ vr ◦ ŵr

∥∥∥∥∥
or equivalently

min
V

∥∥∥X(2) − V(Ŵ � Û)T
∥∥∥

F

� is the Khatri-Rao product, a column-wise Kronecker product

ALS works by alternating over factor matrices, updating one at
a time by solving the corresponding linear LS problem
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CP-ALS

Repeat
1 Solve U(VTV ∗ WTW) = X(1)(W � V) for U
2 Solve V(UTU ∗ WTW) = X(2)(W � U) for V
3 Solve W(UTU ∗ VTV) = X(3)(V � U) for W

Linear least squares problems solved via normal equations
using identity (A � B)T(A � B) = ATA ∗ BTB,

where ∗ is element-wise product

All optimization schemes that compute the gradient
must also compute MTTKRP in all modes
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MTTKRP via Matrix Multiplication

MTTKRP: M = X(2)(W � U)

Standard approach to MTTKRP for dense tensors
1 “form” matricized tensor (a matrix)
2 compute Khatri-Rao product (a matrix)
3 call matrix-matrix multiplication

We’ll consider alternative approaches that don’t form
explicit Khatri-Rao product
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MTTKRP for 3-way Tensors

Matrix equation:
M = X(2)(W � U)

Element equation:

mjr =
I∑

i=1

K∑
k=1

xijkuir wkr

Example pseudocode:

for i = 1 to I do
for j = 1 to J do

for k = 1 to K do
for r = 1 to R do

M(j , r) += X(i , j , k) · U(i , r) · W(k , r)
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MTTKRP for N-way Tensors

Matrix equation:

M(n) = X(n)(U(N) � · · · � U(n+1) � U(n−1) � · · · � U(1))

Element equation:

m(n)
inr =

∑
xi1...iN

∏
m 6=n

u(m)
imr

Example pseudocode:

for i1 = 1 to I1 do
. . .

for iN = 1 to IN do
for r = 1 to R do

M(n)(in, r) += X(i1, . . . , iN) · U(1)(i1, r) · · ·U(N)(iN , r)
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Lower Bounds for MTTKRP

MTTKRP is a set of nested loops that accesses arrays...
... we just learned how to prove communication lower bounds!

From Nick’s talk...
tabulate how the arrays are accessed
use Hölder-Brascamp-Lieb-type inequality in LB proof
solve linear program to get tightest lower bound
details in [CDK+13]
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MTTKRP Loop Nest

for i1 = 1 to I1 do
. . .

for iN = 1 to IN do
for r = 1 to R do

M(n)(in, r) += X(i1, . . . , iN) ∗ U(1)(i1, r) ∗ · · · ∗ U(N)(iN , r)

∆ =

i1 · · · in · · · iN r
U(1) 1 1

...
. . .

...
M(n) 1 1

...
. . .

...
U(N) 1 1
X 1 · · · 1 · · · 1
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MTTKRP Lower Bound Proofs

Lower bound argument follows [CDK+13] almost directly
solve linear program involving ∆ for tightest bound

One gotcha: the number of nested loops is not constant
LB becomes too low by a factor of O(N) (number of loops)
Fixed using a technique similar to one used for tightening
the constant in matrix multiplication lower bound [SvdG17]

Key assumption: algorithm is not allowed to pre-compute
and re-use temporary values

e.g., forming explicit Khatri-Rao product

Also used inspiration from memory-independent LBs for
matrix multiplication [BDH+12, DEF+13] for parallel case
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Sequential Communication Lower Bound

Theorem
For sufficiently large I, any sequential MTTKRP algorithm
performs at least

Ω

(
NIR

M1−1/N

)
loads and stores to/from slow memory.

N is the number of modes

I is the number of tensor entries

R is the rank of the CP model

M is the size of the fast memory
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Communication-Optimal Sequential Algorithm (3D)

b

b
b

·U(1)

M(2)

U
(3)

1 Loop over b × · · · × b blocks
of the tensor

2 With block in memory, loop
over subcolumns of input
factor matrices, updating
corresponding subcolumn of
output matrix

choose b ≈ M1/N
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Theoretical Comparisons

Lower Bound New Algorithm Standard (MM)

Flops - NIR 2IR

Words Ω
(

NIR
M1−1/N

)
O
(

I + NIR
M1−1/N

)
O
(

I + IR
M1/2

)
Temp Mem - - IR

In

New algorithm performs N/2 more flops than standard
For relatively small R, I term dominates communication

we expect this to be the typical case in practice
For relatively large R, new algorithm communicates less

better exponent on M
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Parallel Communication Lower Bound

Theorem
Any parallel MTTKRP algorithm involving a tensor with
Ik = I1/N for all k and that evenly distributes one copy of the
input and output performs at least

Ω

((
NIR
P

) N
2N−1

+ NR
(

I
P

)1/N
)

sends and receives. (Either term can dominate.)

N is the number of modes

I is the number of tensor entries

Ik is the dimension of the k th mode

R is the rank of the CP model

P is the number of processors
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Communication-Optimal Parallel Algorithm (3D)

U(1)

M(2)
U
(3)

Each processor
1 Starts with one subtensor

and subset of rows of each
input factor matrix

2 All-Gathers all the rows
needed from U(1)

3 All-Gathers all the rows
needed from U(3)

4 Computes its contribution to
rows of M(2) (local MTTKRP)

5 Reduce-Scatters to compute
and distribute M(2) evenly
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Theoretical Comparisons

Lower Bound New Algorithm Standard (MM)
Words

Ω
(

NR
( I

P

)1/N
)

O
(

NR
( I

P

)1/N
)

O
(
I1/NR

)
(“small” P)

Words
Ω

((NIR
P

) N
2N−1

)
O
((NIR

P

) N
2N−1

)
O
(( IR

P

)2/3
)

(“large” P)

For relatively small P (or small R) and even dimensions,
parallel algorithm attains lower bound
Comparison with matrix multiplication from [DEF+13]

ignores parallel cost of forming Khatri-Rao product

For larger P (or R), then we need different algorithm
also parallelize over columns of output matrix
involves communicating the tensor
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Summary

We apply the communication lower bound approach for
general loop nests to a particular tensor computation:
matricized-tensor times Khatri-Rao product (MTTKRP)

establishing lower bounds for sequential and parallel cases
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What about lower bounds for...

all N MTTKRPs?
in sequence, as in CP-ALS
all at once, as in gradient-based methods

partial MTTKRPs and multi-TTVs?
MTTKRP methods that violate key assumption
[PTC13, KU16, LCP+17]

other tensor computations like tensor-times-matrix?
useful for Tucker decomposition

We believe the same lower bound framework will work,
still working out the details
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