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Data assimilation (DA) in the geosciences Introduction

Data assimilation (DA) in the geosciences

Data assimilation
best combines

observations and models

An ongoing expansion from numerical weather prediction to the climate
science/geosciences:

Oceanography

Atmospheric chemistry

Climate prediction and assessment

Glaciology

Hydrology and hydraulics

Geology

Space weather

and many other fields
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Data assimilation (DA) in the geosciences Introduction

DA as used in climate/atmosphere/ocean

I In the geosciences: Dynamical numerical models are often computationally costly.

I In the geosciences: The state space and observations space are huge (up to 109/107

for operational systems, up to 107/105 for research systems). A big data problem with
costly models to integrate.

IWhat for?: estimate initial state of chaotic systems for forecasting, re-analysis,
parameter estimation (∼ inverse modelling).

IData assimilation for forecasting chaotic geofluids: sequential schemes

Observation

Model (forecast)

H

Analysis

Observation

Model (forecast)

H

Analysis

Observation

Model (forecast)

H

Analysis

IThis design is the implicit consequence of the unstable dynamics of chaotic geofluids!
With this notable expection, DA schemes use models as black boxes.
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Data assimilation (DA) in the geosciences Introduction

Mathematical methods in DA

I Introduction of mathematical methods in operational numerical weather prediction:

1950 1975 1998 2005 2015

Objective
Analysis

Optimal Interpolation
3D-Var

4D-Var EnKF Hybrid/EnVar

Optimisation Linear Regression Optimal Control
Kalman Filtering

Monte Carlo

Dynamics Model Forecast Adjoint Model Ensemble Forecast

IUsing increasingly complex mathematical methods and increasingly resolved
high-dimensional models.
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Data assimilation (DA) in the geosciences Introduction

Data assimilation system

IData assimilation system = observation and evolution models + statistics of the
errors. Typically:

xk = Mk:k−1(xk−1) + ηk

yk = Hk(xk) + εk

with ηk ∼N (0,Qk) and εk ∼N (0,Rk).

t1 t2 tK tK+1 tK+2

Past Future

IDenoting xK :1 = x1,x2, . . . ,xK , yK :1 = y1,y2, . . . ,yK :

Prediction: Estimate xk for k > K , knowing yK :1;

Filtering: Estimate xK , knowing yK :1;

Smoothing: Estimate xK :1, knowing yK :1.
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Data assimilation (DA) in the geosciences 4D-Var

4D-Var (optimal control)

IStrongly constrained 4D-Var, i.e. assuming the model is perfect

J(x0) =
1

2
‖x0−xb

0‖2
B−1 +

1

2

K

∑
k=1

‖yk −Hk(xk)‖2
R−1
k

+
K

∑
k=1

λ
>
k (xk+1−Mk+1:k(xk)) .

IFits a model trajectory through the 4D data
points.

I In high-dimensional spaces, requires ∇x0J for
an efficient minimisation. But ∇x0J depends
on the adjoint of Mk+1:k and Hk .

t1 t2 t3 t4 t5

0.0

0.2

0.4

0.6

0.8

1.0
truth
4D-Var
observation
analysis

IWeakly constrained 4D-Var, i.e. assuming the model is imperfect

J(xK :0) =
1

2
‖x0−xb

0‖2
B−1 +

1

2

K

∑
k=0

‖yk −Hk(xk)‖2
R−1
k

+
1

2

K

∑
k=1

‖xk −Mk:k−1(xk−1)‖2
Q−1

k
.
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Data assimilation (DA) in the geosciences The EnKF

The ensemble Kalman filter (EnKF)

IMimics the Kalman filter (KF) but replaces the forecast error covariance matrix by

Pf ' XfX
>
f where [Xf]i =

x(i)−x
√
m−1

and x =
1

m

m

∑
i=1

x(i).

IThe stochastic EnKF is the closest to traditional KF, but adds stochastic
perturbations to the observations of each members [Burgers et al., 1998]:

xa
(i) = xf

(i) + K
(

y + ε(i)−Hxf
(i)

)
.

IThe deterministic EnKF avoids the stochasticity by updating the square root of Pf,
i.e. Xf . One of the variant (ETKF, [Hunt et al., 2007]) operates the linear algebra in the
space of the perturbations (Yf = HXf):

xa = xf + Xfw
a where wa =

(
Im + Y>f R−1Yf

)−1
Y>f R−1

(
y−Hxf

)
,

The perturbations around the mean are updated via

Xa = Xf

(
Im + Y>f R−1Yf

)− 1
2

U, where U ∈ O(m) and U1 = 1.
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Data assimilation (DA) in the geosciences The EnKF

The downside of the EnKF: rank-deficiency

ISampling errors: replacing Pf by XfX
>
f is in practice rank-deficient and generates

spurious correlations for distant state components. If P = XfX
>
f and B is the true error

covariance matrix of a Gaussian process:

Cov
(
[P]ii , [P]jj

)
=

2

N−1
[B]2ij , Cov

(
[P]ij , [P]ij

)
=

1

N−1

(
[B]2ij + [B]ii [B]jj

)
.

For geophysical systems, we know that most long-range correlations are dampened
exponentially. Consequently, the covariances are misestimated (too low variances, too
high long-range covariances) and leads to the divergence of the EnKF.
−→ Practically, this is solved using two fixes: inflation and localisation.

I Inflation consists in inflating the covariances by a scalar in the hope to compensate
for the underestimation of the error statistics [Pham et al., 1998, Anderson et al., 1999]:

x(i)←− x(i) + λ

(
x(i)−x

)
.
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Data assimilation (DA) in the geosciences Hybrid and EnVar

Hybridising ensemble and variational methods

IA collection of algorithms meant to capture
the best of variational and ensemble filtering
techniques:

IHybrid covariance schemes
I 4D-LETKF
IEnsemble of data assimilation (EDA)
I 4DEnVar
I IEnKS

ISeveral of these methods do not require an explicit model adjoint, which is a strong
motivation in operations

IMathematically, an EnVar method such as the IEnKS combines (in addition to
avoiding the adjoint):

a nonlinear variational analysis (like 4D-Var),

a flow-dependent representation of the error (like the EnKF).
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Data assimilation (DA) in the geosciences Hybrid and EnVar

The iterative ensemble Kalman smoother (IEnKS)

IReduced scheme in ensemble space, x0 = xf + Xfw, where X0 is the ensemble
perturbation matrix:

J̃(w) = J(xf + Xfw) .

IAnalysis IEnKS cost function in ensemble space:

J̃(w) =
1

2

L

∑
k=1

‖yk −Hk ◦Mk:0

(
xf + Xfw

)
‖2

βkR−1
k

+
1

2
(N−1)‖w‖2 .

{β0,β1, . . . ,βL} weight the observations impact within the window.

IAs a variational reduced method, one can use Gauss-Newton [Sakov et al., 2012],
Levenberg-Marquardt [Bocquet & Sakov, 2012], quasi-Newton, trust region, etc.,
minimisation schemes.

IPerturbation update: same as the ETKF

E?
0 = x?01T +

√
N−1Xf

[
∇

2
wJ̃
]−1/2

?
U where U ∈ O(N) and U1 = 1 .
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DA and the dynamics: evidences

Data assimilation and the dynamics

I So far, the model has (essentially) been considered as a black box.

IThe atmosphere and ocean exhibit chaotic dissipative dynamics: Highly state-dependent error
growth. DA must track and incorporate this flow-dependency in the quantification of the
uncertainty (i.e. error covariances).

IDissipation induces dimensional reduction: The error dynamics are confined to a subspace of
much smaller dimension, n0�m: the unstable subspace. The existence of the underlying
unstable-stable splitting of the phase space expected to have critical impact on the efficiency
and accuracy of DA.

−→ A set of ideas put forward and initially developed by Anna Trevisan et al. [Trevisan et al.

2004-2015; Palatella et al., 2013], and called AUS (assimilation in the unstable subspace).

Motivations

I Is there any fingerprint of the unstable subspace on the fate of the (En)KF and the (En)KS?

IUnderstand the interaction between DA and the dynamics.

ICan dynamical properties be used to design computationally cheap DA schemes?
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DA and the dynamics: evidences

DA and the dynamics: the linear and scalar case

IAnalytical formulae for the forecast and analysis variances can be obtained in the
linear, diagonal dynamics case [Fillion et al. 2018]

0 1 2 3 4 5
lag

0.0

0.1

0.2

0.3

0.4

0.5

0.6
P

4D-Var unstable
4D-Var stable
4D-Var 

IEnKS unstable
IEnKS stable
IEnKS 

I 4D-Var is impacted by its imperfect representations of the error stable modes as
opposed to the IEnKS [Talagrand et al., 2010; Fillion et al. 2018].
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DA and the dynamics: evidences

Nonlinear chaotic models: the Lorenz-96 low-order model
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I It represents a mid-latitude zonal circle of the global atmosphere.
ISet of M = 40 ordinary differential equations [Lorenz and Emmanuel 1998]:

dxm
dt

= (xm+1−xm−2)xm−1−xm +F , (1)

where F = 8, and the boundary is cyclic.
IConservative system except for a forcing term F and a dissipation term −xm.
IChaotic dynamics, 13 positive and 1 neutral Lyapunov exponents, a doubling time of
about 0.42 time units.
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DA and the dynamics: evidences

Nonlinear chaotic model

5 10 20 25 30 35 40

Ensemble size

15

20

25

30

35

40

45
M

ea
n

 a
n

g
le

 w
it

h
 t

h
e 

u
n

st
ab

le
-n

eu
tr

al
 s

u
b

sp
ac

e
Angle

5 10 15 20 25 30 35 40
0
0.20

0.50

1

2

3

4

5

A
v

er
ag

e 
ro

o
t 

m
ea

n
 s

q
u

ar
e 

er
ro

r

RMSE

IAverage angle (in degrees) between a perturbation (from the ensemble) and the
unstable-neutral subspace as a function of the DAW length (IEnKS, Lorenz-96), as well
as the corresponding RMSE of the analysis.
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Impact of the dynamics on DA: linear dynamics
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Impact of the dynamics on DA: linear dynamics The degenerate Kalman filter

Linear case: Degenerate Kalman filter equations

IModel dynamics and observation model:

xk = Mkxk−1 + wk , (2)

yk = Hkxk + vk . (3)

The model and observation noises, wk and vk , are assumed mutually independent,
unbiased Gaussian white sequences with statistics

E[vkv>l ] = δk,lRk , E[wkw>l ] = δk,lQk , E[vkw>l ] = 0 . (4)

IForecast error covariance matrix Pk recurrence of the Kalman filter (KF)

Pk+1 = Mk+1 (I + PkΩk)−1 PkM
>

k+1 + Qk+1, (5)

where
Ωk ≡H

>

kR−1
k Hk (6)

are the precision matrices and P0 can be of arbitrary rank.

I In the case Qk ≡ 0, it was proven that the full-rank KF Pk collapses onto the
unstable subspace [Gurumoorthy at al. 2017].

IStill in the case Qk ≡ 0, it will be generalised in the following and for degenerate P0

required to connect to reduced-order methods such as the ensemble Kalman filter
(EnKF) [Bocquet at al. 2017].
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Impact of the dynamics on DA: linear dynamics Collapse onto the unstable ensemble

Result 1: Bound of the covariance free forecast

ISimple inequality in the set of the semi-definite symmetric matrices

Pk ≤Mk:0P0M
>

k:0 + Ξk . (7)

where

Ξ0 ≡ 0 and fork ≥ 1 Ξk ≡
k

∑
l=1

Mk:lQlM
>

k:l (8)

is known as the controllability matrix [Jazwinski, 1970].

I In the absence of model noise (Qk ≡ 0 for the rest of this talk), it reads

Pk ≤Mk:0P0M
>

k:0. (9)

Assuming the dynamics is non-singular

Im(Pk) = Mk:0 (Im(P0)) . (10)

If n0 is the dimension of the unstable-neutral subspace, it can further be shown that

lim
k→∞

rank(Pk)≤min{rank(P0),n0} . (11)
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Impact of the dynamics on DA: linear dynamics Collapse onto the unstable ensemble

Result 2: Collapse onto the unstable subspace

I Let σk
i , for i = 1, . . . ,n denote the eigenvalues of Pk ordered as σk

1 ≥ σk
2 · · · ≥ σk

n . We
can show that

σ
k
i ≤ αi exp

(
2kλ

k
i

)
(12)

where kλ k
i is a log-singular value of Mk:0 and limk→∞ λ k

i = λi . This gives an upper
bound for all eigenvalues of Pk and a rate of convergence for the n−n0 smallest ones.

I If Pk is uniformly bounded, it can further be shown that the stable subspace of the
dynamics is asymptotically in the null space of Pk , i.e. for any vector uk:0 in the stable
subspace

lim
k→∞
‖Pkuk:0‖= 0. (13)
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Impact of the dynamics on DA: linear dynamics Asymptotics

Result 3: Explicit dependence of Pk on P0

IUsing either analytic continuation or the symplectic symmetry of the linear
representation of covariances, we have proven that

Pk = Mk:0P0M>k:0

(
I + ΓkMk:0P0M>k:0

)−1
. (14)

where

Γk ≡
k−1

∑
l=0

M−
>

k:l ΩlM
−1
k:l . (15)

IAn alternative is
Pk = Mk:0P0 [I + ΘkP0]−1 M

>

k:0 (16)

where

Θk ≡M
>

k:0ΓkMk:0 =
k−1

∑
l=0

M
>

l :0ΩlMl :0. (17)

is the information matrix, directly related to the observability of the DA system.
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Impact of the dynamics on DA: linear dynamics Asymptotics

Result 4: Asymptotics of Pk

IQuestions: Under which conditions does Pk forget about P0 = X0X>0 ? Can we
analytically compute its asymptotics?

IWe proposed a sufficient set of conditions

Condition 1: Assume the forward Lyapunov vectors at t0 associated to the
unstable and neutral directions are the columns of V+,0 ∈ Rn×n0 . The condition
reads

rank
(

X>0 V+,0

)
= n0. (18)

Condition 2: The model is sufficiently observed so that the unstable and neutral
directions remain under control, that is

U>+,kΓkU+,k > εI (19)

where U+,k is a matrix whose columns are the backward Lyapunov vectors related
to non-negative exponents and ε > 0 is a positive number.

Condition 3: For any neutral backward Lyapunov vector uk , we have

lim
k→∞

u>k Γkuk = ∞, (20)

i.e. the neutral modes should be sufficiently observed.
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Impact of the dynamics on DA: linear dynamics Asymptotics

Result 4: Asymptotics of Pk

Under these three conditions, we obtain

lim
k→∞

{
Pk −U+,k

[
U>+,kΓkU+,k

]−1
U>+,k

}
= 0. (21)

The asymptotic sequence does not depend on P0, only Γk !

IPeculiar role of the neutral modes (arithmetic convergence).

INumerical illustration and verification
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Impact of the dynamics on DA: linear dynamics Generalisations

From the degenerate KF to the square-root EnKF

INormalised perturbation decomposition:

Pk = XkX>k . (22)

ISquare-root formulation; right-transform update formula:

Xk = Mk:0X0

[
I + X>0 ΘkX0

]−1/2
Ψk , (23)

where Ψk is an orthogonal matrix.
ISquare-root formulation; left-transform update formula:

Xk =
[
I + Mk:0P0M>k:0Γk

]−1/2
Mk:0X0Ψk . (24)

IWith linear models, Gaussian observation and initial errors, the (square-root)
degenerate KF is equivalent to the square-root EnKF and can serve as a proxy to the
EnKF applied to nonlinear models.
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Impact of the dynamics on DA: linear dynamics The smoother case

Degenerate square root Kalman smoother

tL−3 tL−2

yL−3 yL−2

tL−1 tL

yL−1 yL

tL+1 tL+2

yL+1 yL+2

tL−2

tL

tL+2

S∆t

S∆t

L∆t

IThe scheme at a glance, variational correspondence (x = xk + Xkw) :

J̃ (w) =
1

2

k+L

∑
l=k+L−S+1

‖yl −HlMl :k (xk + Xkw)‖2
Rl

+
1

2
‖w‖2

IFrom the Hessian of J̃ ,

IN + X>k Ω̂kXk where Ω̂k ,
k+L

∑
l=k+L−S+1

M>l :kΩlMl :k ,

we infer

Xk+S = Mk+S:kXk

(
IN + X>k Ω̂kXk

)− 1
2

Ψk .
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Impact of the dynamics on DA: linear dynamics The smoother case

Degenerate square root Kalman smoother

IThe convergence rate of the collapse of Pk of the smoother is not expected to be
faster than the filter’s: the bounding rate is the same.

IHowever the accuracy of the smoother for re-analysis is expected to be better which
should impact the asymptotic sequences. Indeed we have, for k = pS , p = 0,1, . . .:

lim
k→∞

{
Xk −U+,k

[
U>+,k Γ̂kU+,k

]− 1
2

Ψk

}
= 0 .

IThe only difference is in the observability matrix Γ̂k , for k = pS , p = 0,1, . . .:

Γ̂k = Γk +
k+L−S

∑
l=k

M−>k:l ΩlM
−1
k:l .
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Further numerics with nonlinear dynamics

Outline

1 Data assimilation (DA) in the geosciences
Introduction
4D-Var
The EnKF
Hybrid and EnVar
References

2 DA and the dynamics: evidences

3 Impact of the dynamics on DA: linear dynamics
The degenerate Kalman filter
Collapse onto the unstable ensemble
Asymptotics
Generalisations
The smoother case

4 Further numerics with nonlinear dynamics

5 Impact of the dynamics on DA: noisy models

6 Conclusions and more

7 References

M. Bocquet SIAM Conference on Applications of Dynamical Systems, May 19-23 2019, Snowbird, Utah, USA 28 / 39



Further numerics with nonlinear dynamics

Spectrum of the analysis error covariance matrix

1 5 10 15 20 25 30 35 40

Eigenvalue rank r

0

0.05

0.10

0.15

0.20

N
o

rm
al

iz
ed

 m
ea

n
 e

ig
en

v
al

u
es

EnKF
IEnKS, L=30, S=1, filtering

IEnKS, L=30, S=1, smoothing

σ = 1

1 5 10 15 20 25 30 35 40

Eigenvalue rank r

0

0.05

0.10

0.15

0.20

N
o

rm
al

iz
ed

 m
ea

n
 e

ig
en

v
al

u
es

EnKF
IEnKS, L=30, S=1, filtering

IEnKS, L=30, S=1, smoothing

σ = 0.01

ITime-average spectra of Pa
k : A visible transition at r = 15.
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Further numerics with nonlinear dynamics

Nonlinear chaotic model
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IAverage angle (in degrees) between a perturbation (from the ensemble) and the
unstable-neutral subspace as a function of the observation error (EnKF and IEnKS,
Lorenz-96, ∆t = 0.05, R = σ2I N = 20).
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Further numerics with nonlinear dynamics

Nonlinear chaotic model
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EnKF
IEnKS, L=5, S=1, filtering

IEnKS, L=5, S=1, smoothing

IAverage angle (in degrees) between a perturbation (from the ensemble) and the
unstable-neutral subspace as a function of the interval between updates (EnKF and
IEnKS, Lorenz-96, R = 10−4I, N = 20).
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Impact of the dynamics on DA: noisy models
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Impact of the dynamics on DA: noisy models

Error in stochastic models: role of the instabilities?

xk = Mk:k−1(xk−1) + ηk , ηk ∈N (0,Qk )

IAsymptotic uncertainty in the stable BLVs no longer zero, but still bounded.

IHowever, the error bounds depend on [Grudzien et al. 2018a]

(i) the model error size (i.e. ||Q||), and (ii) the variance of the local LEs (LLEs).

m = 10 and n0 = 4

I If the noise is large and/or the LLEs have high variance, the bounds will be impractically large.

I In noisy systems it is necessary to include weakly stable BLVs of high variance.
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Impact of the dynamics on DA: noisy models

Error in stochastic models: an upwelling effect

IWill the necessary increase N = n0→ n0 + nws also be sufficient?

IWrite the model propagator in the basis of the BLVs using the recursive QR decomposition

Mk = EkUkET
k , Ek = (Ef

k Eu
k ) with Uk =

(
Uff

k Ufu
k

0 Uuu
k

)
and partition the error into filtered/unfiltered variables εk = Ef

kε f
k + Eu

kεu
k

IThe error in the filtered space (“seen” by DA) is given recursively by [Grudzien et al. 2018b]

ε
f
k+1 = (Uff

k+1−Uff
k+1KkHkEf

k)ε
f
k −Uff

k+1Kkε
obs
k + η

f
k + (Ufu

k+1−Uff
k+1KkHkEu

k)ε
u
k

IThe terms in black correspond to the usual KF-like recursion and highlight the stabilizing
effect of DA [Carrassi et al. 2008].

IThe terms in red disappear when the filtered subspace is the entire state space (n = m).
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Impact of the dynamics on DA: noisy models

Error in stochastic models: an upwelling effect

IWhen n <m, they represent the dynamical upwelling of the unfiltered error into the
filtered variables [Grudzien et al. 2018b].

IThis phenomenon occurs whenever n <m, but is exacerbated by stochastic noise.

I Leads to underestimating the error in the (En)KF ⇒ Inflation required

EKF solves the full-rank recursion.

EKF-AUS solves the low-rank recursion
without upwelling (black terms only).

EKF-AUSE solves the low-rank recursion
with upwelling (black+red terms).

M. Bocquet SIAM Conference on Applications of Dynamical Systems, May 19-23 2019, Snowbird, Utah, USA 35 / 39



Conclusions and more

Outline

1 Data assimilation (DA) in the geosciences
Introduction
4D-Var
The EnKF
Hybrid and EnVar
References

2 DA and the dynamics: evidences

3 Impact of the dynamics on DA: linear dynamics
The degenerate Kalman filter
Collapse onto the unstable ensemble
Asymptotics
Generalisations
The smoother case

4 Further numerics with nonlinear dynamics

5 Impact of the dynamics on DA: noisy models

6 Conclusions and more

7 References

M. Bocquet SIAM Conference on Applications of Dynamical Systems, May 19-23 2019, Snowbird, Utah, USA 36 / 39



Conclusions and more

Conclusions and more

IWe have shown that, in deterministic/noiseless dynamics, the (En)KF/(En)KS and
their iterative variants naturally project the uncertainty on the unstable-neutral
subspace ⇒ N = n0 members are sufficient.

IThis shows that the EnKF/EnKS naturally implement the AUS program (without
expliciting the Lyapunov filtration).

I In stochastic/noisy dynamics, weakly stable modes of high variance must be included.
Furthermore we have demonstrated the existence of an upwelling of uncertainty from
unfiltered-to-filtered subspace that motivates the need for multiplicative inflation.

IMuch more on the topic in the minisymposia MS172 Data and Dynamics: Dynamical
Systems Techniques in Data Assimilation - Part I & II, this afternoon, Ballroom 1.
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Conclusions and more

Conclusions and more

IThis was the state of the art 2 years ago about DA and DS . . .

ISince then, machine learning made its way to data assimilation, and a new hot topic
is the convergence of DA, DS and ML. For instance, DA could be used to infer the
ODEs or PDEs of dynamical systems from partial and noisy observations [Bocquet et al.,

2019], or use deep learning in combinaison with DA [Brajard et al., 2019].
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Many open questions: How many required dof in the surrogate model? Ergodic
properties of the surrogate models? Numerical stability (stiffness)? Can it be used as a
substitute for the model in DA schemes?
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